Skip to main content
Erschienen in: Molecular and Cellular Pediatrics 1/2024

Open Access 01.12.2024 | Review

Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both?

verfasst von: Matthias Hardtke-Wolenski, Sybille Landwehr-Kenzel

Erschienen in: Molecular and Cellular Pediatrics | Ausgabe 1/2024

Abstract

Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Hinweise
Matthias Hardtke-Wolenski and Sybille Landwehr-Kenzel contributed equally and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AIRE
Autoimmune Regulator
AIH
Autoimmune Hepatitis
APS-1
Autoimmune Polyendocrine Syndrome Type 1
BACH2
BTB Domain and CNC Homolog 2 (a transcription factor)
CAR
Chimeric Antigen Receptor
CCR
C–C Chemokine Receptor
CD
Crohn's Disease
CD25
IL-2 Receptor Alpha Chain (also known as IL2RA)
CTLA-4
Cytotoxic T-lymphocyte-associated Protein 4
CXCR3
Chemokine Receptor
DC
Dendritic Cell
EBV
Epstein-Barr Virus
FOXP3
Forkhead Box P3 (a transcription factor crucial for Treg development and function)
GITR
Glucocorticoid-Induced TNFR-Related Protein
GWAS
Genome-Wide Association Study
IDD
Insulin-dependent diabetes
Ig
Immunoglobulin
IDO
Indoleamine 2,3-Dioxygenase
IFN-γ
Interferon-gamma
IL-2
Interleukin-2
IL-10
Interleukin-10
IL-10R
IL-10 Receptor
IL2RA
IL-2 Receptor Alpha Chain
IL-35
Interleukin-35
IPEX Syndrome
X-linked Immune Dysregulation, Polyendocrinopathy, and Enteropathy
IUIS
International Union of Immunological Societies
mTECs
Medullary Thymic Epithelial Cells
NOD
Non-obese Diabetic (mouse model)
PD-1/PD-1L
Programmed Cell Death Protein 1/Programmed Cell Death 1 Ligand 1
SNPs
Single Nucleotide Polymorphisms
STAT3
Signal Transducer and Activator of Transcription 3
STAT5
Signal Transducer and Activator of Transcription 5
STAT5B
Signal Transducer and Activator of Transcription 5B
T1D
Type 1 Diabetes
TCR
T-Cell Receptor
Teff cells
Effector T cells
Tregs
Regulatory T cells
Tr1 cells
Type 1 regulatory T cells
TSA
Tissue-Specific Antigens
Tregopathies
Diseases Causing Regulatory T-cell Deficiencies
TNBS
2,4,6-Trinitrobenzenesulfonic Acid
tTregs
Thymically derived Tregs
pTregs
Peripherally induced Tregs

Background

The immune system is a complex network of cells and molecules that defends the body against harmful pathogens while maintaining self-tolerance. This delicate balance is orchestrated by various cell types, including T cells, which play a central role in adaptive immunity. Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that play a pivotal role in maintaining immune system homeostasis and preventing excessive immune responses such as autoimmune diseases. More than four decades ago, Tregs emerged as a cornerstone of immunological research. Tregs encompass a heterogeneous population of cells with varying origins and functions. Functionally, Tregs constitute the physiological counterplayers of conventional or cytotoxic T cells and crucially contribute to the maintenance of peripheral immune tolerance [1]. Since their identification by Sakaguchi et al. in 1995, regulatory T cells have grown into a large and complex family of regulatory cell populations. Among these, thymically derived Tregs (tTregs), which develop within the thymus before being released into the periphery, represent the majority of peripheral FoxP3 + Tregs. In contrast, peripherally induced Tregs (pTregs) develop from mature conventional FoxP3CD4+ T cells upon continuous antigen stimulation in peripheral tissues. During this process, conventional T cells acquire regulatory properties directed by multiple factors, including the presence of certain cytokines and the formation of cellular synapses between various immune cells. This duality highlights the dynamic nature of Treg development and its adaptability to various immunological contexts. Within this review we will summarize biology and functions of Tregs and present the current understand of Tregs deficiencies in monogenetic immunodeficiency and multifactorial autoimmune diseases. Additionally, we will discuss novel therapeutic approaches using Tregs as target or agent to overcome currently unmet medical needs.

Treg biology and function

The functional characteristics of tTregs and pTregs overlap but differ in terms of their stability. pTregs show a high plasticity and exert regulatory functions only temporarily by transient expression of FoxP3 and additional regulatory elements, which induce the formation of regulatory cytokines [2, 3]. In contrast, tTregs express high levels of FoxP3 [4] and IL2R alpha chain CD25, but low levels of IL-7 receptor CD127. These characteristic elements are critical for the development, function, and homeostasis of tTregs and are tightly linked to their regulatory stability irrespective of the immunologic milieu [5, 6]. However, despite substantial efforts and the discussion of various promising candidates, a phenotypic marker or marker combination that is uniquely expressed by tTregs or allows the discrimination between tTregs and pTregs has not yet been identified [7].
In humans, Tregs constitute only 3–10% of the naïve peripheral CD4+ T-cell population. During embryogenesis, Tregs are present within the thymus at 12 gestational weeks and remain stable throughout pregnancy and infancy [8]. Fetal tTregs already express FoxP3 and other markers characteristically linked to their early established immunosuppressive phenotype, e. g. the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and glucocorticoid-induced TNFR-related protein (GITR) [8, 9]. To protect the human body from autoimmunity, tTregs possess a T-cell receptor (TCR) with a specific affinity for autoantigens [10]. TCR-dependent maturation is mediated by the thymic selection process of tTregs, which focuses on self-protection through the presentation of autoantigens. The presentation of various self-peptides, the so-called tissue-specific antigens (TSA), in medullary thymic epithelial cells (mTECs) is regulated by the transcription factor AIRE (Autoimmune Regulator) and the zinc finger protein Fezf2 [11, 12]. T-cell selection and maturation in a TSA-rich environment ensures immunological self-tolerance. Only T cells bearing TCRs with an intermediate affinity for self-peptides differentiate into tTregs. In contrast, T cells are deleted if they recognize self-peptides with a high-affinity TCR or differentiate into naïve CD4+ T cells if self-peptides are recognized with low-affinity TCRs [7, 1316]. This leads to the effect that pTreg TCRs have a low affinity towards self-antigens but a high affinity for foreign antigens, for example, microbial structures. Sequencing analysis of tTregs, pTregs, and conventional T-cell populations revealed that clonal overlap between these populations is particularly low [1720]. The close link between thymic maturation and stable expression of FoxP3 has been demonstrated to result from a unique pattern of DNA demethylation within an enhancer element of the FoxP3 promoter region (regulatory T-cell–specific demethylated region [TSDR]) and activation of histone modifications [2124]. However, even before FoxP3 is functionally expressed, Treg-specific super-enhancers and additional tTreg signature genes, including CTLA-4, IL2RA, which encodes the IL-2 receptor CD25, and IKZF2, encoding the transcription factor Helios and IFZF4, encoding Eos, are activated in Treg progenitor cells [25]. During this process, Satb1, a genome stabilizer, binds to specific genomic sites and supports the opening of chromatin and activation of super-enhancers. Together with the histone lysine methyltransferase MLL4 [26], Satb1 binds to conserved enhancer regions within the FoxP3 promoter, such as CNS0, CNS3, and CNS2, and induces stable activation of these enhancers, as well as the FoxP3 promoter itself [25, 27, 28]. After thymic release, tTregs reside within lymph nodes and peripheral blood. Continuous recognition of self-antigens maintains tTregs in a highly proliferative state and mediates physiological immune homeostasis. Expression of CCR7 and CD62L in naive tTregs and enables Treg homing to the secondary lymphoid organs [29]. There, tTregs—similar to other T-cell subsets—undergo peripheral maturation from naïve (TN CD45RA+CCR7+) to central memory (TCM, CD45RACCR7+), effector memory (TEM, CD45RACCR7) and finally CD45RA expressing terminally differentiated effector memory cells (TEMRA, CD45RA+CCR7) [3034]. Tregs further employ a broad range of chemokine receptors and adhesion molecules for recruitment to inflammatory sites. The release of attractive chemokines at these sites induces Treg migration along a chemotactic gradient. CCR2, CCR4, and CCR5, and particularly CXCR3, CCR6, and CCR8, support recruitment towards sites dominated by Th1, Th2, and Th17 inflammation [35, 36]. The inflammatory response and recruitment of Tregs are further supported by other T-cell subsets and macrophages through the release of IL-2, IL-35, or TGF-β. These not only enhance the recruitment, function, and survival of Tregs, but also support the polarization of naïve CD4+ T cells towards pTregs [2]. Conversely, immunosuppressive molecules, including IL-10, IL-35, and TGF-β, are induced in Tregs, which themselves promote crucial survival signals to sustain Tregs in peripheral tissues and mediate non-specific anti-inflammatory signals [37].
Both tTregs and pTregs act as inhibitory immunomodulators through several cell–cell contact-dependent and -independent mechanisms, including inhibition of effector cell proliferation, targeted T-cell cytolysis, ATP consumption (metabolic disruption), and alteration of antigen presentation by macrophages and dendritic cells Fig. 1. Although cytotoxicity is characteristically attributed to conventional CD8+ T cells, Tregs have been observed to use Granzyme B and Perforin-mediated cytolysis of target T cells as additional MHC/TCR-independent mechanisms to control inflammation [3840]. Activation induced expression of CTLA-4 orchestrates broad antigen-specific suppressive functions of Tregs in a contact-dependent fashion [37, 41]. CTLA-4 competitively binds to CD80/CD86 on APCs, including B cells and dendritic cells [37, 42] and thereby reducing the CD28-mediated co-stimulation of conventional T-cells (Tconv). CLTA-4 binding to DCs further reduces the density of antigen-specific MHC-II and CD80/86 on DC via trans-endocytosis [4346]. Thus, DC lose their capability for MHC-II-mediated antigen-specific activation and T-cell co-stimulation. Antigen presentation on DCs is further reduced by CTLA-4 mediated induction of indoleamine 2,3-dioxygenase (IDO) in DCs. IDO leads to tryptophan depletion and accumulation of the tryptophan metabolite kynurenine, which (i) mediates suppression of proliferation and activation of effector T cells and (ii) promotes differentiation of other immune cells towards a regulatory phenotype [47]. Accordingly, monocytic differentiation is shifted towards anti-inflammatory M2 macrophages, while differentiation to pro-inflammatory M1 macrophages and Th17-cell expansion is inhibited [4850]. The expression of additional inhibitory surface molecules further contributes to the contact-dependent inhibition of T cells, B-cell and DCs. Among these, PD-1/PD-1L interaction induces phosphorylation of ITSM, which downmodulates intracellular cascades including TCR-, PI3K/AKT-, and Ras/MEK/ERK-signaling and represses T- and B-cell proliferation [5154]. Additional metabolic pathways used by Tregs not only induce peripheral Treg differentiation and proliferation but also deprive effector T cells of key nutrients, including the degradation of ATP to adenosine by CD39/CD73 and the competitive consumption of key nutrients such as glucose or amino acids [55, 56]. While all T cells express dimeric IL-2 receptors consisting of the γ-chain CD132 and IL2Rβ subunit CD122 with an intermediate IL-2 affinity, Tregs are characterized by the additional and constitutive expression of the high-affinity IL2Rα subunit CD25. This trimeric receptor is characterized by an ca. 1000-fold higher affinity for IL-2. Thus, the expression of CD25 confers a selection advantage during thymic Treg differentiation and induces FoxP3 expression early during Treg development. The phenotypic characteristics of particularly high CD25 expression further correlate with the exertion of regulatory functions. In the periphery, Treg survival and proliferation are strictly dependent on IL-2 produced by activated conventional T cells. Intracellularly, IL-2R signaling in Tregs has recently been shown to be crucially involved in the JAK-STAT5 pathway. Activated transcription factor STAT5 translocates to the nucleus and mediates the induction of CD25 and FoxP3. In addition to the crucial role of CD25 in Treg differentiation and maintenance, extracellular CD25 mediated consumption of IL-2 adds to the key repertoire of Treg mechanisms for suppressing CD8+ T-cell proliferation [57]. In contrast, inhibition of CD4+ T cells has recently been shown to require IL2R mediated activation of Tregs but to occur independently of extracellular IL-2 deprivation [57]. The situation in pTregs however is different as pTregs may modulate their phenotype and function in response to the microenvironment. In a Th1-mediated milieu, which is characterized by the release of IFN-γ, the expression of the transcription factor T-bet is induced in Tregs. Expression of T-bet (T-box expressed in T cells, also called T-box transcription factor TBX21) promotes the expression of the chemokine receptor CXCR3 and accumulation of Tregs at Th1-cell rich inflammatory sites [58]. In contrast, in a Th-2-rich environment the transcription factor GATA-3 is upregulated and maintains high levels of FoxP3 expression in pTregs [59]. This enables pTregs to contain excessive pro-inflammatory polarization and promote the accumulation of pTregs at Th-2 inflammatory sites [59, 60].. Further, although the expression of the transcription factors IRF-4 [61] and STAT3 [62] is typically assigned to Th-2 and Th-17 cells, respectively, both can be induced in Tregs and enhance their immunomodulatory potential when Th17-cells dominate inflammation [6264]. In summary, the micromilieu substantially influences how pTregs can modulate their phenotypic and functional phenotype, while tTregs are characterized by an exceptionally high stability.

Monogenetic treg deficiencies

Numeric or functional Treg deficiencies due to monogenetic variations in the human genome lead to the clinical phenotype of primary immunodeficiency, with predominant signs of polytopic immune dysregulation. Although the clinical phenotype overlaps for various Tregs deficiencies, understanding the underlying molecular defect is important in order to tailor and select appropriate disease-specific therapeutic approaches.

IPEX-syndrome due to FoxP3 deficiency

The clinical picture of the most profound monogenetic Treg deficiency, named X-linked immune dysregulation, polyendocrinopathy and enteropathy (IPEX) syndrome was first described by Powell et al. in 1982. The authors reported a family with 19 affected males from one large family, of whom only two survived the first decade. All affected individuals suffered from severe eczema, enteropathy, thyroiditis, type I diabetes, autoimmune cytopenia and immunodeficiency [65]. Later reports added antibody-mediated intestinal villous atrophy, eosinophilia, high IgE levels, lymphoid hyperplasia, islet-cell hypo- or aplasia, arthritis, kidney involvement, and severe immunodeficiency [6672]. The scurfymouse model mimics X-linked disease with a clinical phenotype similar to that of patients with IPEX, such as scaly skin, runting, diarrhea, lymphadenopathy, hepatosplenomegaly, and progressive anemia. Even before the molecular cause of IPEX syndrome was identified, this mouse line served as a helpful model for the pathophysiological understanding of IPEX syndrome [7375]. At the cellular level, CD4+ lymphoproliferation, lymphocytic tissue infiltrates, and elevated proinflammatory cytokine levels characterize the disease [7375]. However, it was not until the early 2000s that the genetic defect, localized in the centromeric region of the X chromosome (Xp11.23-Xq13.3) was identified [71] and closed the pathophysiological loop between the clinical presentation of IPEX disease, the crucial role of FoxP3 signaling and regulatory T cells functions [4, 6, 76]. Since then, IPEX syndrome is also named according to the molecular defect as FoxP3 deficiency. Independent of the genetic mutation, the clinical presentation of patients with IPEX varies substantially. In a cohort of 96 IPEX patients, 39 had neonatal onset of enteropathy, type I diabetes, and eczema, and in less than half of the patients, nephropathy, autoimmune cytopenia, hepatitis, or thyroiditis. Only a few patients present with arthritis, alopecia, lymphadenopathy, or neutropenia [77]. Vice versa type I diabetes may be the only clinical sign at time of diagnosis [78, 79].
Meanwhile, numerous additional monogenetic diseases that lead to clinically relevant Treg deficiency have been described. These diseases share mutations in individual genes encoding proteins that crucially support regulatory T-cell functions. In the last update in 2022, the International Union of Immunological Societies (IUIS) classified these pathologies as diseases of immune dysregulation, summarized in the IUIS group IV. Most of these diseases result from monogenetic loss-of-function mutations (LOF), e. g. in FOXP3, CD25, LRBA, CTLA4, AIRE, IL-10, IL-10R, STAT5B, or BACH2. Additionally, gain-of-function mutations (GOF) in STAT3, may lead to a similar phenotype. However, as the genetic and phenotypic heterogeneity of Treg deficiencies makes the clinical diagnosis difficult, the term “Tregopathies” has been aptly established [80]. Laboratory findings in patients with numeric or functional Treg deficiencies are only indicative and require specific Treg staining because lymphocyte distribution frequently shows largely normal results. Furthermore, despite the shared clinical characteristics of genetically different Treg pathologies, understanding the underlying functional pathomechanisms to direct target-specific therapies is crucial.

CTLA4-deficiency

As a member of the immunoglobulin superfamily and a costimulatory molecule that transmits inhibitory signals to T cells, CTLA-4 is a key element in Treg-mediated immune regulation [4, 81]. The phenotypic overlap between FoxP3, CTLA-4 and also TGF-β deficiency was first described in mice [8285]. Tregs are severely impaired in patients with CTLA4 haploinsufficiency. The clinical phenotype is dominated by immune dysregulation with autoimmunity, immunodeficiency, and lymphoproliferation (IDAIL) but shows a highly variable presentation [8690]. Based on its genotypic background, this syndrome is also referred to as CHAI (CTLA-4 Haploinsufficiency with Autoimmune Infiltration). Although late disease onset is possible, most patients report their initial clinical signs during early childhood. In a cohort of 133 patients from 54 unrelated families with genetically confirmed CTLA4 deficiency initial symptoms included autoimmune cytopenia (33%), respiratory manifestations (21%), enteropathy (17%), type 1 diabetes (8%), neurologic symptoms (seizures and headache (6%)), thyroid disease (5%), arthritis (3%), growth retardation, fever or night sweats, atopic dermatitis, or alopecia [87]. The pattern of lymphocytic organ infiltration was found to be heterogeneous, even among members of the same family [8689]. Susceptibility to infection in CHAI reflects the characteristics of combined immunodeficiency with infections predominantly caused by Hemophilus influenzae, pneumococci, Salmonella enteritidis, and fungal species. Both EBV and CMV infections may affect multiple organs and typically recur [87]. While the frequency of circulating FoxP3 + Tregs may be normal or even increased, the expression of both CLTA-4 and FoxP3 is substantially reduced and must be specifically requested during immunological workup. Insufficient CTLA-4-mediated T-cell inhibition results in increased T-cell activation and the loss of naive CD45RA + CD4+ T cells. Dysregulated activation of the T-cell compartment contributes to autoimmune manifestations and uncontrolled lymphoproliferation. Without sufficient control of non-specific T-cell activation, pathogen-specific immune responses and lymphocytic maturation are compromised. Altered T-/B-cellular interactions may result in hypogammaglobulinemia and the formation of autoreactive antibodies [87, 88, 90]. Similar to Foxp3 deficiency, pathogenic mutations in DEF6 may lead to a secondary CTLA-4 deficiency [91]. The guanine nucleotide exchange factor DEF6, also known as IRF-4 binding protein (IBP), interacts downstream of TCR with the GTPase RAB11 and is crucially involved not only in CTLA-4 availability and trafficking, but also in multiple processes of the innate and adaptive immune system, particularly T-cell differentiation, expansion, and maturation [91, 92].

LRBA deficiency

CTLA4 recycling to the cell surface is further dependent on lipopolysaccharide-responsive and beige-like anchor protein LRBA. LRBA deficiency, which is typically associated with autoantibodies, regulatory T (Treg) cell defects, autoimmune infiltration, and enteropathy (called LATAIE) was first described in 2012 [93, 94]. Although the initial clinical manifestation within the first four years of life is dominated by autoimmunity including antibody-mediated cytopenia or endocrinopathy (42%), chronic diarrhea (27%) recurrent infections particularly of the respiratory tract (16%) and lymphoproliferation (5%), other signs of manifestation should not be missed [95]. The latter may include asthma and allergies, fever or unspecific failure to thrive. Later, autoimmunity (82%), enteropathy (63%), splenomegaly (57%) and pneumonia (49%) dominate the clinical course of disease [95],, but are accompanied by lymphadenopathy and lymphocytic tissue infiltration [9699]. Homozygous mutations in the LRBA gene result in the loss of LRBA and impaired cellular signalling, dysfunctional vesicular trafficking, and lysosomal degradation of CTLA-4. Tregs in LRBA deficient patients are both numerically and functionally reduced with decreased expression of the most important Treg markers FoxP3, CD25 and CTLA4 [97]. The suppressive capacity of LRBA-deficient Tregs is significantly impaired, although IL-10 production seems to increase compared to healthy controls [97]. Uncontrolled T-cell activation leads to a loss of naivety and enhanced T-cell turnover. Dysregulated T follicular helper cells and defective B-cell activation result in peripheral B-cell lymphopenia and early-onset hypogammaglobulinemia, which seems to be the primary cause for recurrent respiratory tract infections [100]. At the same time functional Treg deficiency promotes the development of autoantibodies [97, 100].

IL-2 signaling deficiencies

Signaling events within the IL-2 pathway crucially involve the IL-2 receptor CD25 and the transcription factors STAT3, STAT5B and FoxP3. CD25 deficiency due to homozygous mutations in the IL-2 receptor alpha chain (IL2RA) was first described in 1997 by Sharfe et al. in a child with increased susceptibility to viral, bacterial, and fungal infections, lymphoproliferation and chronic lung disease [101]. As CD25 is critically involved in global T-cell activation, CD25 deficiency not only results in reduced and functionally impaired Tregs and autoimmunity but also in profound T-cell proliferation deficits and nonspecific lymphoproliferation [101104]. In the absence of functional CD25, IL-2-mediated Treg differentiation and maturation is hampered, leading to substantially reduced and dysfunctional Tregs and increased numbers of autoreactive T cells [104]. Although the clinical picture of CD25 deficiency varies with respect to the sites of manifestation and severity, the triad comprising immune dysregulation, autoimmunity, and severe susceptibility to viral, bacterial, and fungal infections has been described almost all patients [101105]. The profoundness of this disorder is not only indicated by the manifestation severity but also by the early onset of the disease (mean 1.25 months) [106]. As the disease progresses, autoimmune-mediated cytopenia, hepatitis, pneumopathy and small vessel pulmonary vasculitis may occur [102, 105, 107]. Closely related, impaired IL-2 signalling may be caused by a homozygous mutation in the IL2RB (CD122) gene [108]. Affected individuals present with life-threatening immune dysregulation, including nonspecific but severe lymphoproliferation, enteropathy, eczema, and susceptibility to viral infections, particularly CMV, during early infancy [108, 109]. The immunological phenotype further includes impaired NK cell differentiation despite increased peripheral NK cell frequencies and combined immunodeficiency with hypergammaglobulinemia and autoantibody formation [108, 109].

IL-10/IL-10R deficiencies

As IL-2 responsiveness is important for IL-10 induction in CD4+ T cells, patients with CD25 deficiency share severe and early onset inflammatory bowel disease with patients suffering from IL-10 or IL-10R (IL-10RA or IL-10-RB) deficiency [102, 110112]. IL-10 is involved in the development and maintenance of Tregs and supports Treg-mediated suppression of pathogenic Th-17 cells in a STAT3 dependent manner [62, 113]. In in a cohort of 286 patients with IL-10/IL-10R deficiency, gastrointestinal disorders occurred in all patients with perianal manifestations (92%), fistulae (60%), and colitis (50%) being the most prominent signs, Interestingly, perianal abscesses (57%) and complications beyond the gastrointestinal tract including failure to thrive (58%), susceptibility to infections (≤ 23%), lymphoproliferation (≤ 12%), dermatologic manifestations (49%), or rheumatologic disorders (13%) were strictly linked to IL-10R deficiences and did not occur in IL-10 deficient patients [114].

STAT3 and STAT5B signaling deficiencies

Downstream of the IL-2 and IL-10 receptor STAT3 acts as transcription factor that orchestrates multiple cellular functions. Furthermore, STAT3 acts as a key regulator in multiple signaling cascades downstream of e. g. receptors that involve the common gamma chain (IL-2, IL-4, IL-9, IL-15, IL-21) [115119], receptors of the interferon family [120] and hormone receptors. Upon receptor activation STAT3 is phosphorylated in a JAK-dependent fashion and subsequently translocates to the nucleus where it binds as homo- or heterodimer to responsive elements triggering the transcription of cytokine responsive genes [121]. Loss of function mutations result in early-onset eczema, bacterial and fungal infections particularly of the skin and the lung, facial dysmorphism and joint hyperextensibility accompanies by elevated serum IgE levels [122]; but autoimmune phenomena are very rare [123]. In contrast, gain-of-function mutations in STAT3, which follow an autosomal inheritance, usually manifest during early childhood as a poly-autoimmune disease with lymphoproliferation, polyendocrinopathy, enteropathy, cytopenia, and severe interstitial lung disease. Further, increased susceptibility to infections, eczema, and short stature has been reported in these patients [124127]. The functional details of enhanced STAT3 are only partially understood and the cellular phenotype in STAT3 GOF patients seems heterogeneous, but absolute T-cell and B-cell numbers are characteristically reduced, and frequently associated with hypogammaglobulinema and impaired antigen-specific B-cell maturation and hypogammaglobulinemia [124126]. At the molecular level, activated STAT3 induces the expression of SOCS3, an inhibitor of STAT5 [128]. Accordingly, STAT3 GOF mutations result in secondary STAT5b deficiency [128]. As STAT5 itself is a crucial transcription factor for the expression of FOXP3, reduced FoxP3 expression can be observed in most patients with STAT3 GOF, and Tregs are functionally impaired [129132]. This further explains why GOF mutations in STAT3 and LOF mutations in STAT5B share not only multiple aspects of the immunological IPEX-like phenotype including severe immune dysregulation but is also characterized by short stature due to (partial) growth hormone insensitivity [128, 133137]. The clinical picture caused by pathogenic STAT5B mutations further includes severe pneumopathy, variable immunodeficiencies associated with susceptibility to severe sinopulmonary, dermal, and gastrointestinal infections. Initially described to follow an autosomal-recessive (AR) inheritance [134], STAT5B LOF mutations were identified to also occur as autosomal-dominant (AD) negative pathogenic variants in 2018 [137]. While growth retardation and eczema frequently occur in both AR and AD disease, additional clinical features occur not only in milder manifestations but also in less than 10% of patients with AD disease [106, 138]. The latter might explain why only few cases have been reported so far and suggests a high number of unrecognized cases. In summary, although defects in the IL-2 signalling pathway share many clinical features, depending on the defective molecule clinical phenomena differ in terms of the severity and frequency. For example, while eczema is with a prevalence of > 50% similarly frequent in patients with LOF mutations in FOXP3, CD25, STAT5B or GOF mutations in STAT3, autoimmune phenomena including cytopenia, thyroiditis and hepatitis as well as lymphoproliferations are characteristic for CD25 deficiency but occur in only less than 10% of patients with STAT5 deficiency [106, 129, 135, 139].

CARMIL2 deficiency

Early onset skin lesions, including eczematous dermatitis associated with chronic mucocutaneous candidiasis, molluscum contagiosum bacterial abscesses, warts, inflammatory plaques, and hyperkeratosis, are characteristic hallmarks of CARMIL2 deficiency. Early reports on patients with homozygous CARMIL2 mutations further described a particular susceptibility to EBV infections, although recurrent and severe infections by other viruses, bacteria, mycobacteria, and fungi may occur [140143]. Secondary to EBV infection, affected individuals show an increased risk of EBV-associated tumors [142, 144]. The CARMIL2 gene is located on chromosome 16q22.1, and encodes the cytosolic protein CARMIL2 (Capping Protein Arp 2/3, Myosin-I Linker), also known as RLTPR [145], which acts as a scaffold bridging the CD28 to CARD11 and NFκB signaling cascades [146]. Functional analysis of CD4+ and CD8+ T-cell responses confirmed deficient CD3/CD28 costimulation in CARMIL2 deficient individuals [143]. While peripheral T-, B-, and NK cell counts are typically normal, Tregs are profoundly reduced. Due to deficient T-cell maturation, both CD4+ and CD8+ T-cell subsets are skewed towards naïve forms [140143]. Within the B-cell compartment, class-switched B cells and plasmablasts may be reduced and show impaired immunoglobulin formation [141, 142]. Clinically, this results in a combined immunodeficiency syndrome with profound, early onset skin and inflammatory bowel disease and susceptibility to infections [147149].

BACH2 deficiency

The transcription factor BACH2, a highly conserved basic leucine zipper protein, is a key modulator of multiple immune processes, including T- and B-cell differentiation and maturation [150152]. The BACH2 locus contains a T-cell super-enhancer that regulates the expression of multiple pro-inflammatory cytokines and cytokine receptors [153, 154] and thereby reducing effector T-cell differentiation. In Tregs, BACH2 induces high FoxP3 expression, thereby promoting Treg development, maturation, and survival [151, 155]. BACH2 haploinsufficiency causes low Treg frequency and function, while differentiation of Th1-cells, which express the intestinal homing receptors CCR9 and ITGB7, is enhanced [97]. Similarly, the lack of BACH2 mediated repression of Th-2 differentiation results in increased Th-2 cytokine formation, promoting both airway and bowel inflammation [156]. As the effects of BACH2 deficiency manifest at every level of B-cell development, B-cell maturation and IgG class switch are profoundly impaired, resulting in increased transitional B-cell numbers, low immunoglobulins, and inability to generate appropriate antibody responses to specific antigens of vaccines. Accordingly, the clinical picture of BACH2-related immunodeficiency and autoimmunity (BRIDA syndrome) syndrome is dominated by sinopulmonary infections and autoimmune gastrointestinal diseases, which may present early in life [154].

Tregs in autoimmune diseases

Unlike monogenetic Treg disorders polygenetic or multifactorial Treg deficiencies involve a complex interplay of multiple genes and environmental factors. Due to the multifactorial and polygenetic nature of these diseases understanding the interwoven factors contributing to the specific pathophysiology remains challenging. As mentioned earlier, we now know that Tregs represent a diverse subpopulation characterized by distinct transcriptional repertoires influenced by tissue- or context-specific transcription factors. For example, Tregs residing in adipose tissue express the transcription factor PPARγ, whereas those critical for driving Th1-type responses increase Tbet [58, 157, 158]. However, our current challenge is to use this knowledge to identify biomarkers that indicate Treg function in clinical settings. The broad spectrum of Treg functions makes the selection of a single marker or in vitro functional assay challenging, particularly in the context of a particular disease. The difficulties become even greater when assessing Treg activities in humans, primarily because of the obstacles associated with isolating Tregs from tissues other than blood.

Tregs in type 1 diabetes

Type 1 diabetes (T1D) is the best-characterized autoimmune disease, and is often referred to as Juvenile Diabetes. It is a persistent autoimmune ailment characterized by a targeted immune response driven by both T- and B-cells, culminating in the destruction of insulin-producing β-cells nestled in the pancreatic islets [159]. T1D is one of the most common chronic metabolic diseases, affecting approximately 1.5 million people under 20 years of age [160]. It is one of the most frequent chronic metabolic diseases in childhood and adolescence, with a global increase in the incidence rate of 3–4% per year and strong regional differences [161]. Many autoimmune disorders, including T1D, frequently share disruptions in the control of effector cell populations as a fundamental contributing element [162, 163], and this aberration might stem from irregularities in the suppressive functions governed by Tregs.
A significant number of studies have indicated no disparities in peripheral blood Treg frequencies among T1D patients [164]. Nonetheless, anomalies in Treg phenotype and their suppressive potential have been documented [165, 166]. As described above, the challenge of obtaining healthy human tissue is particularly daunting when studying the role and function of Tregs in T1D, as pancreatic samples can only be obtained postmortem. Unfortunately, the unavailability of pancreatic samples from T1D patients has primarily confined data collection to peripheral blood, obscuring whether Tregs actively mitigate β-cell destruction or exhibit modified traits within islets during disease progression. Consequently, animal models such as mice have been harnessed to scrutinize disease advancement within the islet microenvironment.
Therefore, non-obese diabetic (NOD) mice are an essential model for T1D research. NOD mice spontaneously develop autoimmune diabetes, typically commencing at approximately 12 weeks in females, with the incidence increasing until approximately 25 weeks [167]. Male NOD mice experience delayed onset and progression of diabetes. The incidence is approximately 70% in females and 30% in males, a difference potentially rooted in gender-based variances in the gut microbiome and hormonal fluctuations [168]. Environmental factors, including housing conditions and diet, have been implicated in autoimmune diabetes onset [167]. Genomic investigations have identified susceptibility loci termed as insulin-dependent diabetes (IDD) loci in NOD mice. A plethora of over 40 IDD loci has been cataloged, with the major histocompatibility complex (MHC) exhibiting the most substantial link to T1D incidence [167, 169, 170]. Although the NOD mouse manifests several similarities with human T1D, some distinctions persist. Nevertheless, NOD mice have emerged as valuable tools for elucidating the role of Tregs in autoimmune diabetes [167].
Undoubtedly, genetic susceptibility constitutes a fundamental cornerstone in the evolution of T1D, with a significant proportion of susceptible single nucleotide polymorphisms (SNPs) being closely linked to immune-related genes, thereby underscoring immune dysregulation. Particularly noteworthy is the robust correlation observed with genes that have considerable influence over Treg function, most prominently IL2RA, IL-2, PTPN2, CTLA4, and IL-10 [171, 172]. However, translation of these SNPs into functional outcomes has only been achieved in a few studies. Additionally, because numerous pivotal genes serve both effector T cell and Treg functions, deciphering the relative impact of allelic variants on regulatory and effector T cells poses a formidable challenge. Several studies have reported SNP-associated impairments in Treg function, with a particular emphasis on IL-2 signaling [173175]. These findings, coupled with analogous findings in NOD mice highlighting a deficiency in IL-2 signaling within Tregs, have galvanized efforts to harness this pathway for therapeutic intervention [175].
A regrettable adverse facet of low-dose IL-2 therapy, which effectively amplified Tregs, was the simultaneous escalation of eosinophils and natural killer cells, coupled with a reduction in C-peptide levels [176]. However, recent studies on Treg-specific IL-2 administration hold promise for overcoming off-target effects [177179]. Furthermore, novel methodologies geared towards manipulating the pharmacokinetics of IL-2 therapy are expected to enhance its efficacy. One notable study employed the administration of low-dose IL-2/CD25 fusion protein, forestalling diabetes onset and even managing overt diabetes in the NOD mouse model of T1D. The augmented half-life of this IL-2 analog facilitates prolonged interaction with CD25-expressing Tregs, thereby amplifying IL-10 production and encouraging its migration to the pancreas [180].
More recently, a study harnessed T-cell population-specific epigenetic analysis to precisely locate susceptible SNPs within enhancer regions pivotal for Treg function in autoimmunity [181]. Comparative epigenetic evaluations across Treg and conventional T-cell populations revealed that autoimmune-associated SNPs were enriched in naïve Treg-specific demethylated regions and, to a lesser extent, in activated Treg-demethylated regions. These insights suggest that autoimmune-linked SNPs exert a more profound influence on thymus-derived Treg development and function than on aberrant activation of autoimmune effector T cells.
Several pathways critical for Treg development, function, and lineage stability are perturbed in T1D, potentially resulting in Treg dysfunction. Although studies employing Tregs derived from peripheral blood have provided evidence of altered Treg function in T1D patients [182, 183], the extent to which peripheral blood can accurately reflect Treg function at the tissue site remains ambiguous. Mouse models, particularly the NOD model, have provided invaluable insights into the mechanisms underlying the Treg suppression of islet autoimmunity. These investigations have illuminated the notion that certain deficiencies in Treg function are exacerbated at the tissue site, with Treg deficits not always conspicuous in in vitro assays [184, 185]. It is plausible that an amalgamation of chronic inflammatory mediators, anomalies in the IL-2 signaling pathway, and diminished TCR diversity, among other factors, converge within the pancreatic tissue, collectively weakening Treg function [184187]. An optimal therapeutic strategy tailored to Tregs should be meticulously devised to address this combination of defects by stabilizing FOXP3 [188, 189].

Tregs in autoimmune hepatitis

The incidence of autoimmune hepatitis (AIH) is similar. Due to the much smaller number of patients, the data were more uncertain. A pioneering genome-wide association study (GWAS) identified mainly genes of the HLA complex as risk factors, such as in T1D, but none were directly related to Tregs [190]. In relation to AIH, research has shown that Tregs may play a significant role in this context. A couple of studies from Vergani et al. have observed that patients with AIH may have reduced Treg numbers in the peripheral blood compared to healthy individuals [191193]. The reduction in Tregs may contribute to an uncontrolled immune response against endogenous liver cells, ultimately leading to inflammation and liver damage. In particular, in pediatric AIH, decreased Treg, characterized as CD3+CD4+CD25+ numbers and impaired Treg function have been documented. Nonetheless, in a more recent study that included FOXP3 in Treg characterization (CD3+CD4+CD25highFOXP3+), the opposite was described as patients with AIH had increased Treg numbers in the blood [194]. This is consistent with the intrahepatic observation that the number of Tregs increases during active disease [195]. Notably, the same group also observed the opposite result in untreated pediatric patients with AIH [196]. In addition, the more pronounced effect of standard steroid therapy on decreasing Tregs over T effector cells was striking, leading to an increase in the apoptosis of Tregs [195, 197].
In mice, knockout of genes related to Treg development or function, such as aire or pd-1, leads to fatal autoimmunity in the liver and other organs, accompanied by decreased or absent numbers of Tregs [198200]. In contrast, in animal models of AIH that resemble different aspects of human disease, an intrahepatic increase in Tregs in active AIH has also been observed [201204].

Tregs in colitis

The role of Tregs in colitis is closely linked to the balance between the inflammatory and regulatory immune responses in the gut. Studies have shown that Tregs play a key role in preventing excessive inflammatory processes in the gut. Patients with colitis, particularly Crohn's disease (CD) and ulcerative colitis, have been observed to have deficiencies in the number and function of Tregs [205208]. This, in turn, promotes an unbridled and chronic inflammatory response that can damage intestinal tissue.
Previously conducted genome-wide association studies have identified over 100 separate genetic loci that contribute to either susceptibility or defense against the development of inflammatory bowel disease (IBD), with a considerable portion of these loci being shared between the two conditions [209, 210]. Administration of NOD2 ligands, including peptides or muramyl dipeptides, has demonstrated the potential to alleviate colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS) in normal mice [211, 212]. In a TNBS-induced colitis model, treatment with Lactobacillus peptidoglycan increased the number of Tregs in mesenteric lymph nodes and elevated IL-10 expression in the colonic mucosa, implying that NOD2 activity within the intestinal mucosa fosters a milieu conducive to immune tolerance. Furthermore, receptors associated with T cell and Treg migration, such as CD62L, C–C chemokine receptor (CCR)4, CCR5, CCR7, CCR9, αEβ7 integrin, and α4β7 integrin, also contribute to the pathogenesis of IBD [213219]. The presence of these receptors on Treg cells plays a pivotal role in maintaining intestinal immunological equilibrium, and their compromised expression has been linked to the development of IBD, owing to the impaired migration of Treg cells into the intestinal tract. For example, the absence of CCR7 impedes Treg cell functionality in an experimental colitis model [214].

Tregs as therapeutic agent or target

Among genetic and multifactorial autoimmune diseases, IBD is the most promising disease for polyclonal Treg transfer therapies. It has been shown, that Tr1 cells inhibit the proliferation of antigen-specific T cells through an IL-10-dependent mechanism and exhibit protective effects in the adoptive transfer model of colitis involving naïve T cells, as in SCID patients with colitis [220]. Although both FOXP3 + Treg cells and Tr1 cells generate IL-10, Tr1 cells appear to play a crucial role in upholding tolerance towards commensal bacteria. Nonetheless, Battaglia et al. demonstrated the necessity of FOXP3 + Treg cells next to Tr1 cells to persist for the initial induction of tolerance in autoinflammatory diseases [221223]. We have highlighted the importance of Tregs to home to the gut and expand into the lamina propria to regain immunological tolerance [224]. As observed in SCID patients, the transfer of polyspecific Tregs is sufficient to treat autoimmune diseases that lack functional Tregs, such as SCID or APS-1 patients. Later, this was shown in other studies in the corresponding aire-deficient mouse model [199, 225228]. To ensure the safety and efficacy of poly- or ovalbumin-specific autologous Tregs in the treatment of CD, many clinical trials have been conducted, including NCT03185000 (TRIBUTE) [229, 230], Eudract no. 2006–004712-44 [231], NCT02327221, NCT05566977, NCT03011021, NCT02932826, and NCT02691247. In addition, also antigen-specific Tregs bearing a chimeric antigen receptor (CAR) against model antigens were very successful in controlling colitis in animal models [232235].
In T1D, the situation is very different, as polyspecific Tregs show no positive effects in mouse models or patients. It has been shown that antigen-specific Tregs are required to control diabetes and prevent its induction. Considering that Treg insufficiency potentially fuels T1D and autoimmune diabetes, bolstering the Treg count in circulation could serve as a strategy to counter this inadequacy. Notably, recurring adoptive Treg transfers into neonatal NOD mice have demonstrated the ability to postpone the onset of autoimmune diabetes, implying that Treg number or functionality might wane in NOD mice over time, necessitating supplementation [236]. Many T1D studies use BDC-2.5 mice, which are genetically modified NOD mice, carrying a transgenic TCR that recognizes a pancreatic antigen in NOD mice. These T cells destroy the insulin-producing cells in the pancreas. Therefore, another convincing strategy involves the adoptive transfer of a small quantity of DC-expanded BDC2.5 TCR-tg Tregs into pre-diabetic NOD mice. The transfer successfully prevented diabetes development and even salvaged mice with manifest diabetes [237]. When pre-diabetic NOD splenocytes or BDC2.5 TCR-tg Teff cells are transplanted into immunodeficient NOD mice, autoimmune diabetes typically emerges approximately 14 d post-transfer. Interestingly, co-transplantation with over a million polyclonal Tregs or a few thousand BDC2.5 TCR-tg Tregs can prevent the disease [238]. While a minimal number of antigen-specific Tregs have the capacity to reverse autoimmune diabetes, adopting ten-fold more polyclonal Tregs was not as effective in the therapeutic treatment of NOD mice, underscoring the critical significance of specificity for β-cell antigens in optimizing Treg functionality [239243].
Clinically, in vitro-expanded polyclonal Tregs are being evaluated as a promising avenue that diverges from pharmacologically based treatments. Early phase clinical trials encompassing both pediatric and adult participants with autologous, polyspecific Tregs have been conducted, reflecting no immediate safety concerns, such as ISRCTN06128462, NCT01210664, NCT02932826, and NCT02772679 [244247]. Notably, in children, potential efficacy has been assessed based on C-peptide levels at 4–5 weeks post-treatment. However, while initial elevations in C-peptide levels were evident at the one- and two-year follow-ups, they gradually diminished over time. Intriguingly, nearly 25% of transferred Tregs, characterized by a naïve/memory-like profile, persisted in patients at the one-year follow-up based on deuterium incorporation. A parallel trial conducted in Poland has yielded encouraging outcomes. In a cohort of 12 children with T1D, a one-year follow-up revealed augmented C-peptide levels and reduced insulin usage in 8 of 12 patients, resulting in complete insulin independence in 2 of the 12 patients [244247]. Whether these encouraging observations endure and can be replicated in phase 2 clinical trials remains to be ascertained.
The potential for a more robust success may rely on combination therapy. Potential synergies with Tregs have been explored to optimize their therapeutic response in different autoimmune diseases. One effective strategy could involve bolstering the Treg population through the infusion of ex vivo expanded Tregs, while concurrently reducing the Teff population using agents such as anti-CD3 monoclonal antibody (NCT00129259) [248] or LFA3-Immunglobulin (Ig) (NCT00965458) [249, 250], which have shown promise in initial trials for new-onset T1D, followed by more than 30 other trials with similar results.
Another avenue to consider is the coupling of Treg cell infusion with interleukin-2 (IL-2). In vivo, IL-2 at low doses plays a pivotal role in the growth and survival of Tregs [251, 252], and constitute a critical component of Treg expansion protocols. Either Tregs might be directly equipped with IL-2 signals [253] or employing low-dose IL-2 has been effective in enhancing endogenous Tregs, leading to diabetes prevention and reversal in the NOD mouse model [184, 254]. Preliminary clinical investigations involving low-dose IL-2 have demonstrated selective increases in Tregs, yielding positive clinical outcomes in many (auto-)inflammatory conditions [255259]. While a clinical trial combining IL-2 with rapamycin showed transient deterioration in beta cell function, potentially due to the relatively higher IL-2 dose or the influence of rapamycin, which led to significant increases in natural killer cells and eosinophils, early studies on lower IL-2 doses in T1D have shown no acute degradation in beta cell function [260, 261]. Several ongoing studies are aimed at evaluating the safety and efficacy of this approach. In an upcoming phase I trial involving autologous ex vivo expanded Tregs followed by low-dose IL-2, we will assess whether low-dose IL-2 enhances in vivo survival and functionality of infused Tregs.
Tregs administered in the initial clinical trials on T1D did not exhibit TCRs or CARs that specifically targeted diabetes antigens. There are several possible explanations for the selection of polyclonal Tregs for such an administration. The safety aspect was the most important, as all studies validated the safety of polyclonal cells, which is a primary consideration in devising a clinical research protocol. Thus, the effectiveness of polyspecific Tregs has been demonstrated in animal models, and data from animal studies involving exogenous IL-2, which augments Treg numbers, suggest the efficacy of polyclonal cells. Unlike other cellular processes, Treg-mediated suppression lacks antigen specificity; hence, polyclonal T cells should be capable of regulating cells that possess specificities for diabetes antigens.
Preclinical investigations have proposed that antigen-specific Tregs are more efficient in controlling autoimmune-mediated beta cell destruction than polyclonal Tregs [239243]. Although target antigens for T1D have been identified, a significant challenge lies in isolating these less common cells from peripheral circulation and subsequently expanding them for clinical application [262]. Hence, it may be advantageous to generate antigen-specific de novo Tregs. Engineered Tregs featuring CARs have exhibited success in pre-clinical T1D [263, 264] and could potentially be viable for clinical deployment, albeit the specific antigen profile might need customization for each individual patient.
Polyspecific Tregs were also used in a clinical trials for AIH (NCT02704338) [265], Pemphigus Vulgaris NCT03239470, and Lupus Erythematosus NCT02428309 proving safety. However, polyspecific Treg transfer was not very effective in AIH mouse models [201, 203]. Therefore, we and others have successfully used optimization protocols for Tregs to determine their therapeutic responses in different AIH models [266268]. Nonetheless, data on combination therapy or antigen-specific CAR-Tregs are lacking.
Notably, the significance of antigen-specific CAR-Treg cells in preventing genetic resilience against organ-specific autoimmunity and inhibiting autoimmune tissue damage has been well documented in various disease models, including multiple sclerosis [269] and Alzheimer’s disease [270].

Conclusion

Numeric and functional Treg deficiencies may be due to monogenetic, inborn errors of immunity or occur by a more complex multifactorial processes. While congenital global Treg deficiencies result in polytopic diseases and usually affect multiple organ systems, genetically undefined autoimmune diseases, such as T1D or AIH, are characterized by the lack of particular antigen-specific Treg subsets but normal Tregs numbers. With the rapidly growing understanding of the genetic and functional Treg biology, new therapeutic approaches are currently being developed to overcome unmet medical needs in Treg diseases. The adoptive transfer of ex vivo expanded or even genetically modified Treg products is in the focus of upcoming clinical trials. The success of these approaches will depend on both overcoming technical and regulatory hurdles and ensuring product safety and efficacy in larger patient cohorts. Undoubtedly, the possibility to tailor highly personalized Treg products that address patient or disease specific needs has certainly opened a new dimension of target specific treatment approaches.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Chen WJ, Jin W, Hardegen N et al (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J Exp Med 198(12):1875–1886PubMedPubMedCentralCrossRef Chen WJ, Jin W, Hardegen N et al (2003) Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J Exp Med 198(12):1875–1886PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061PubMedCrossRef Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061PubMedCrossRef
5.
Zurück zum Zitat Liu W, Putnam AL, Xu-yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711PubMedPubMedCentralCrossRef Liu W, Putnam AL, Xu-yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRef
7.
Zurück zum Zitat Povoleri GAM, Scottà C, Nova-Lamperti EA et al (2013) Thymic versus induced regulatory T cells - who regulates the regulators? Front Immunol 4:169PubMedPubMedCentralCrossRef Povoleri GAM, Scottà C, Nova-Lamperti EA et al (2013) Thymic versus induced regulatory T cells - who regulates the regulators? Front Immunol 4:169PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Darrasse-Jèze G, Marodon G, Salomon BL, Catala M, Klatzmann D (2005) Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 105(12):4715–4721PubMedCrossRef Darrasse-Jèze G, Marodon G, Salomon BL, Catala M, Klatzmann D (2005) Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 105(12):4715–4721PubMedCrossRef
9.
Zurück zum Zitat Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35(2):383–390PubMedCrossRef Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35(2):383–390PubMedCrossRef
10.
Zurück zum Zitat Mazerolles F, Stolzenberg M-C, Pelle O et al (2018) Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation. Front Immunol 9:718PubMedPubMedCentralCrossRef Mazerolles F, Stolzenberg M-C, Pelle O et al (2018) Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation. Front Immunol 9:718PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Hsieh C-S, Lee H-M, Lio C-WJ (2012) Selection of regulatory T cells in the thymus. Nat. Rev. Immunol 12(3):157–167PubMedCrossRef Hsieh C-S, Lee H-M, Lio C-WJ (2012) Selection of regulatory T cells in the thymus. Nat. Rev. Immunol 12(3):157–167PubMedCrossRef
14.
Zurück zum Zitat Jordan MS, Boesteanu A, Reed AJ et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2(4):301–306PubMedCrossRef Jordan MS, Boesteanu A, Reed AJ et al (2001) Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2(4):301–306PubMedCrossRef
15.
Zurück zum Zitat Moran AE, Holzapfel KL, Xing Y et al (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208(6):1279–1289PubMedPubMedCentralCrossRef Moran AE, Holzapfel KL, Xing Y et al (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208(6):1279–1289PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Kieback E, Hilgenberg E, Stervbo U et al (2016) Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity. Immunity 44(5):1114–1126PubMedCrossRef Kieback E, Hilgenberg E, Stervbo U et al (2016) Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity. Immunity 44(5):1114–1126PubMedCrossRef
17.
Zurück zum Zitat Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T Cell Receptor Diversity of Foxp3+CD4+CD25+ T Cells. Immunity 25(2):249–259PubMedCrossRef Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T Cell Receptor Diversity of Foxp3+CD4+CD25+ T Cells. Immunity 25(2):249–259PubMedCrossRef
18.
Zurück zum Zitat Lei H, Kuchenbecker L, Streitz M et al (2015) Human CD45RA- FoxP3hi Memory-Type Regulatory T Cells Show Distinct TCR Repertoires with Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am J Transplant 15(10):2625–2635PubMedCrossRef Lei H, Kuchenbecker L, Streitz M et al (2015) Human CD45RA- FoxP3hi Memory-Type Regulatory T Cells Show Distinct TCR Repertoires with Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am J Transplant 15(10):2625–2635PubMedCrossRef
19.
Zurück zum Zitat Wyss L, Stadinski BD, King CG et al (2016) Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 17(9):1093–1101PubMedPubMedCentralCrossRef Wyss L, Stadinski BD, King CG et al (2016) Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 17(9):1093–1101PubMedPubMedCentralCrossRef
20.
21.
22.
Zurück zum Zitat Polansky JK, Schreiber L, Thelemann C et al (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med Berl Ger 88(10):1029–1040CrossRef Polansky JK, Schreiber L, Thelemann C et al (2010) Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med Berl Ger 88(10):1029–1040CrossRef
23.
Zurück zum Zitat Polansky JK, Kretschmer K, Freyer J et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663PubMedCrossRef Polansky JK, Kretschmer K, Freyer J et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38(6):1654–1663PubMedCrossRef
24.
Zurück zum Zitat Toker A, Engelbert D, Garg G et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. Baltim. Md 1950 190(7):3180–8 Toker A, Engelbert D, Garg G et al (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. Baltim. Md 1950 190(7):3180–8
25.
Zurück zum Zitat Kitagawa Y, Ohkura N, Kidani Y et al (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol 18(2):173–183PubMedCrossRef Kitagawa Y, Ohkura N, Kidani Y et al (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol 18(2):173–183PubMedCrossRef
26.
27.
Zurück zum Zitat Kondo M, Tanaka Y, Kuwabara T et al (2016) SATB1 Plays a Critical Role in Establishment of Immune Tolerance. J Immunol 196(2):563–572PubMedCrossRef Kondo M, Tanaka Y, Kuwabara T et al (2016) SATB1 Plays a Critical Role in Establishment of Immune Tolerance. J Immunol 196(2):563–572PubMedCrossRef
28.
Zurück zum Zitat Beyer M, Thabet Y, Müller R-U et al (2011) Repression of SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat Immunol 12(9):898–907PubMedPubMedCentralCrossRef Beyer M, Thabet Y, Müller R-U et al (2011) Repression of SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat Immunol 12(9):898–907PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Sallusto F, Kremmer E, Palermo B et al (1999) Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 29(6):2037–2045PubMedCrossRef Sallusto F, Kremmer E, Palermo B et al (1999) Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 29(6):2037–2045PubMedCrossRef
30.
Zurück zum Zitat Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712PubMedCrossRef Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712PubMedCrossRef
32.
Zurück zum Zitat Schmueck-Henneresse M, Sharaf R, Vogt K et al (2015) Peripheral Blood-Derived Virus-Specific Memory Stem T Cells Mature to Functional Effector Memory Subsets with Self-Renewal Potency. J Immunol 194(11):5559–5567PubMedCrossRef Schmueck-Henneresse M, Sharaf R, Vogt K et al (2015) Peripheral Blood-Derived Virus-Specific Memory Stem T Cells Mature to Functional Effector Memory Subsets with Self-Renewal Potency. J Immunol 194(11):5559–5567PubMedCrossRef
33.
Zurück zum Zitat Berger C, Jensen MC, Lansdorp PM et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invesitgation 118(1):294–305CrossRef Berger C, Jensen MC, Lansdorp PM et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invesitgation 118(1):294–305CrossRef
36.
Zurück zum Zitat Menning A, Höpken UE, Siegmund K et al (2007) Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 37(6):1575–1583PubMedCrossRef Menning A, Höpken UE, Siegmund K et al (2007) Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur J Immunol 37(6):1575–1583PubMedCrossRef
37.
Zurück zum Zitat Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science 322(5899):271–275PubMedCrossRef Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science 322(5899):271–275PubMedCrossRef
38.
Zurück zum Zitat Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601PubMedCrossRef Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601PubMedCrossRef
39.
Zurück zum Zitat Karreci ES, Eskandari SK, Dotiwala F et al (2017) Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation. JCI Insight 2(21):e91599. https://doi.org/10.1172/jci Karreci ES, Eskandari SK, Dotiwala F et al (2017) Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation. JCI Insight 2(21):e91599. https://​doi.​org/​10.​1172/​jci
40.
Zurück zum Zitat Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646PubMedCrossRef Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646PubMedCrossRef
41.
Zurück zum Zitat Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105(29):10113–10118PubMedPubMedCentralCrossRef Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105(29):10113–10118PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Sage PT, Paterson AM, Lovitch SB, Sharpe AH (2014) The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41(6):1026–1039PubMedPubMedCentralCrossRef Sage PT, Paterson AM, Lovitch SB, Sharpe AH (2014) The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41(6):1026–1039PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Ovcinnikovs V, Ross EM, Petersone L et al (2019) CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol 4(35):eaaw0902PubMedPubMedCentralCrossRef Ovcinnikovs V, Ross EM, Petersone L et al (2019) CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol 4(35):eaaw0902PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Kennedy A, Waters E, Rowshanravan B et al (2022) Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 23(9):1365–1378PubMedPubMedCentralCrossRef Kennedy A, Waters E, Rowshanravan B et al (2022) Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 23(9):1365–1378PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Qureshi OS, Zheng Y, Nakamura K et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603PubMedPubMedCentralCrossRef Qureshi OS, Zheng Y, Nakamura K et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Romano M, Fanelli G, Tan N et al (2018) Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Front Immunol 9:1625PubMedPubMedCentralCrossRef Romano M, Fanelli G, Tan N et al (2018) Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Front Immunol 9:1625PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98(24):13866–13871PubMedPubMedCentralCrossRef Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98(24):13866–13871PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Patsoukis N, Brown J, Petkova V et al (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal 5(230):ra46PubMedPubMedCentralCrossRef Patsoukis N, Brown J, Petkova V et al (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci. Signal 5(230):ra46PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Hofmeyer KA, Jeon H, Zang X (2011) The PD-1/PD-L1 (B7–H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol 2011:451694PubMedPubMedCentralCrossRef Hofmeyer KA, Jeon H, Zang X (2011) The PD-1/PD-L1 (B7–H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol 2011:451694PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Jiang S, Park SE, Yadav P, Paoletti LC, Wessels MR (2012) Regulation and function of pilus island 1 in group B streptococcus. J Bacteriol 194(10):2479–2490PubMedPubMedCentralCrossRef Jiang S, Park SE, Yadav P, Paoletti LC, Wessels MR (2012) Regulation and function of pilus island 1 in group B streptococcus. J Bacteriol 194(10):2479–2490PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Priyadharshini B, Loschi M, Newton RH et al (2018) Cutting Edge: TGF-β and Phosphatidylinositol 3-Kinase Signals Modulate Distinct Metabolism of Regulatory T Cell Subsets. J. Immunol. Baltim. Md 1950 201(8):2215–2219 Priyadharshini B, Loschi M, Newton RH et al (2018) Cutting Edge: TGF-β and Phosphatidylinositol 3-Kinase Signals Modulate Distinct Metabolism of Regulatory T Cell Subsets. J. Immunol. Baltim. Md 1950 201(8):2215–2219
56.
Zurück zum Zitat Gerriets VA, Kishton RJ, Johnson MO et al (2016) Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol 17(12):1459–1466PubMedPubMedCentralCrossRef Gerriets VA, Kishton RJ, Johnson MO et al (2016) Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol 17(12):1459–1466PubMedPubMedCentralCrossRef
57.
58.
Zurück zum Zitat Koch MA, Tucker-Heard G, Perdue NR et al (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602PubMedPubMedCentralCrossRef Koch MA, Tucker-Heard G, Perdue NR et al (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Wang Y, Su MA, Wan YY (2011) An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35(3):337–348PubMedPubMedCentralCrossRef Wang Y, Su MA, Wan YY (2011) An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35(3):337–348PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Wohlfert EA, Grainger JR, Bouladoux N et al (2011) GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest 121(11):4503–4515PubMedPubMedCentralCrossRef Wohlfert EA, Grainger JR, Bouladoux N et al (2011) GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest 121(11):4503–4515PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Zheng Y, Chaudhry A, Kas A et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356PubMedPubMedCentralCrossRef Zheng Y, Chaudhry A, Kas A et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Chaudhry A, Rudra D, Treuting P et al (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326(5955):986–991PubMedPubMedCentralCrossRef Chaudhry A, Rudra D, Treuting P et al (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326(5955):986–991PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Kluger MA, Melderis S, Nosko A et al (2016) Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int 89(1):158–166PubMedCrossRef Kluger MA, Melderis S, Nosko A et al (2016) Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int 89(1):158–166PubMedCrossRef
64.
Zurück zum Zitat Kluger MA, Luig M, Wegscheid C et al (2014) Stat3 Programs Th17-Specific Regulatory T Cells to Control GN. J Am Soc Nephrol JASN 25(6):1291–1302PubMedCrossRef Kluger MA, Luig M, Wegscheid C et al (2014) Stat3 Programs Th17-Specific Regulatory T Cells to Control GN. J Am Soc Nephrol JASN 25(6):1291–1302PubMedCrossRef
65.
Zurück zum Zitat Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100(5):731–737PubMedCrossRef Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100(5):731–737PubMedCrossRef
66.
Zurück zum Zitat Satake N, Nakanishi M, Okano M et al (1993) A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152(4):313–315PubMedCrossRef Satake N, Nakanishi M, Okano M et al (1993) A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152(4):313–315PubMedCrossRef
67.
Zurück zum Zitat Peake JE, McCrossin RB, Byrne G, Shepherd R (1996) X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed 74(3):F195–199PubMedPubMedCentralCrossRef Peake JE, McCrossin RB, Byrne G, Shepherd R (1996) X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch Dis Child Fetal Neonatal Ed 74(3):F195–199PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Goulet OJ, Brousse N, Canioni D et al (1998) Syndrome of Intractable Diarrhoea with Persistent Villous Atrophy in Early Childhood: A Clinicopathological Survey of 47 Cases. J Pediatr Gastroenterol Nutr 26(2):151PubMed Goulet OJ, Brousse N, Canioni D et al (1998) Syndrome of Intractable Diarrhoea with Persistent Villous Atrophy in Early Childhood: A Clinicopathological Survey of 47 Cases. J Pediatr Gastroenterol Nutr 26(2):151PubMed
69.
Zurück zum Zitat Roberts J, Searle J (1995) Neonatal Diabetes Mellitus Associated with Severe Diarrhea, Hyperimmunoglobulin E Syndrome, and Absence of Islets of Langerhans. Pediatr Pathol Lab Med 15(3):477–483PubMedCrossRef Roberts J, Searle J (1995) Neonatal Diabetes Mellitus Associated with Severe Diarrhea, Hyperimmunoglobulin E Syndrome, and Absence of Islets of Langerhans. Pediatr Pathol Lab Med 15(3):477–483PubMedCrossRef
70.
Zurück zum Zitat Rocco MD, Marta R (1996) X linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch. Dis. Child. - Fetal Neonatal Ed 75(2):F144PubMedPubMedCentralCrossRef Rocco MD, Marta R (1996) X linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea. Arch. Dis. Child. - Fetal Neonatal Ed 75(2):F144PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Ferguson PJ, Blanton SH, Saulsbury FT et al (2000) Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am J Med Genet 90(5):390–397PubMedCrossRef Ferguson PJ, Blanton SH, Saulsbury FT et al (2000) Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. Am J Med Genet 90(5):390–397PubMedCrossRef
72.
Zurück zum Zitat Gambineri E, Ciullini Mannurita S, Hagin D et al (2018) Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front Immunol 9:2411PubMedPubMedCentralCrossRef Gambineri E, Ciullini Mannurita S, Hagin D et al (2018) Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome. Front Immunol 9:2411PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Clark LB, Appleby MW, Brunkow ME et al (1999) Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. Baltim. Md 1950 162(5):2546–2554 Clark LB, Appleby MW, Brunkow ME et al (1999) Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. Baltim. Md 1950 162(5):2546–2554
74.
Zurück zum Zitat Lyon MF, Peters J, Glenister PH, Ball S, Wright E (1990) The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci 87(7):2433–2437PubMedPubMedCentralCrossRef Lyon MF, Peters J, Glenister PH, Ball S, Wright E (1990) The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci 87(7):2433–2437PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Ramsdell F, Ziegler SF (2014) FOXP3 and scurfy: how it all began. Nat Rev Immunol 14(5):343–349PubMedCrossRef Ramsdell F, Ziegler SF (2014) FOXP3 and scurfy: how it all began. Nat Rev Immunol 14(5):343–349PubMedCrossRef
76.
Zurück zum Zitat Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263PubMedCrossRef Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263PubMedCrossRef
77.
Zurück zum Zitat Barzaghi F, Amaya Hernandez LC, Neven B et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. J Allergy Clin Immunol 141(3):1036–1049.e5PubMedCrossRef Barzaghi F, Amaya Hernandez LC, Neven B et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. J Allergy Clin Immunol 141(3):1036–1049.e5PubMedCrossRef
78.
Zurück zum Zitat Hwang JL, Park S-Y, Ye H et al (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy. X-linked syndrome Pediatr Diabetes 19(3):388–392PubMedCrossRef Hwang JL, Park S-Y, Ye H et al (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy. X-linked syndrome Pediatr Diabetes 19(3):388–392PubMedCrossRef
79.
Zurück zum Zitat De Benedetti F, Insalaco A, Diamanti A et al (2006) Mechanistic Associations of a Mild Phenotype of Immunodysregulation, Polyendocrinopathy, Enteropathy. X-Linked Syndrome Clin Gastroenterol Hepatol 4(5):653–659PubMedCrossRef De Benedetti F, Insalaco A, Diamanti A et al (2006) Mechanistic Associations of a Mild Phenotype of Immunodysregulation, Polyendocrinopathy, Enteropathy. X-Linked Syndrome Clin Gastroenterol Hepatol 4(5):653–659PubMedCrossRef
80.
Zurück zum Zitat Cepika A-M, Sato Y, Liu JM-H et al (2018) Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol 142(6):1679–1695PubMedCrossRef Cepika A-M, Sato Y, Liu JM-H et al (2018) Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol 142(6):1679–1695PubMedCrossRef
81.
Zurück zum Zitat Magistrelli G, Jeannin P, Herbault N et al (1999) A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 29(11):3596–3602PubMedCrossRef Magistrelli G, Jeannin P, Herbault N et al (1999) A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 29(11):3596–3602PubMedCrossRef
82.
Zurück zum Zitat Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547PubMedCrossRef Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547PubMedCrossRef
83.
Zurück zum Zitat Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4. Science 270(5238):985–988PubMedCrossRef Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4. Science 270(5238):985–988PubMedCrossRef
84.
Zurück zum Zitat Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73PubMedCrossRef Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73PubMedCrossRef
85.
Zurück zum Zitat Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci 90(2):770–774PubMedPubMedCentralCrossRef Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci 90(2):770–774PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Kuehn HS, Ouyang W, Lo B et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345(6204):1623–1627PubMedPubMedCentralCrossRef Kuehn HS, Ouyang W, Lo B et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345(6204):1623–1627PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Schwab C, Gabrysch A, Olbrich P et al (2018) Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 142(6):1932–1946PubMedPubMedCentralCrossRef Schwab C, Gabrysch A, Olbrich P et al (2018) Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 142(6):1932–1946PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Schubert D, Bode C, Kenefeck R et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20(12):1410–1416PubMedPubMedCentralCrossRef Schubert D, Bode C, Kenefeck R et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20(12):1410–1416PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat López-Nevado M, González-Granado LI, Ruiz-García R et al (2021) Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation. Early Diagnosis and Management Front Immunol 12:671755PubMedCrossRef López-Nevado M, González-Granado LI, Ruiz-García R et al (2021) Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation. Early Diagnosis and Management Front Immunol 12:671755PubMedCrossRef
90.
91.
Zurück zum Zitat Serwas NK, Hoeger B, Ardy RC et al (2019) Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 10(1):3106PubMedPubMedCentralCrossRef Serwas NK, Hoeger B, Ardy RC et al (2019) Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 10(1):3106PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Fournier B, Tusseau M, Villard M et al (2021) DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 147(2):740–743.e9PubMedCrossRef Fournier B, Tusseau M, Villard M et al (2021) DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. J Allergy Clin Immunol 147(2):740–743.e9PubMedCrossRef
93.
Zurück zum Zitat Alangari A, Alsultan A, Adly N et al (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(2):481–488.e2PubMedPubMedCentralCrossRef Alangari A, Alsultan A, Adly N et al (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(2):481–488.e2PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Burns SO, Zenner HL, Plagnol V et al (2012) LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 130(6):1428–1432PubMedPubMedCentralCrossRef Burns SO, Zenner HL, Plagnol V et al (2012) LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol 130(6):1428–1432PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Habibi S, Zaki-Dizaji M, Rafiemanesh H et al (2019) Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. J Allergy Clin Immunol Pract 7(7):2379–2386.e5PubMedCrossRef Habibi S, Zaki-Dizaji M, Rafiemanesh H et al (2019) Clinical, Immunologic, and Molecular Spectrum of Patients with LPS-Responsive Beige-Like Anchor Protein Deficiency: A Systematic Review. J Allergy Clin Immunol Pract 7(7):2379–2386.e5PubMedCrossRef
96.
Zurück zum Zitat Revel-Vilk S, Fischer U, Keller B et al (2015) Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clin Immunol 159(1):84–92PubMedCrossRef Revel-Vilk S, Fischer U, Keller B et al (2015) Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clin Immunol 159(1):84–92PubMedCrossRef
97.
Zurück zum Zitat Charbonnier L-M, Janssen E, Chou J et al (2015) Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 135(1):217–227PubMedCrossRef Charbonnier L-M, Janssen E, Chou J et al (2015) Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 135(1):217–227PubMedCrossRef
98.
Zurück zum Zitat Alkhairy OK, Abolhassani H, Rezaei N et al (2016) Spectrum of Phenotypes Associated with Mutations in LRBA. J Clin Immunol 36(1):33–45PubMedCrossRef Alkhairy OK, Abolhassani H, Rezaei N et al (2016) Spectrum of Phenotypes Associated with Mutations in LRBA. J Clin Immunol 36(1):33–45PubMedCrossRef
99.
Zurück zum Zitat Jamee M, Hosseinzadeh S, Sharifinejad N et al (2021) Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 205(1):28–43PubMedPubMedCentralCrossRef Jamee M, Hosseinzadeh S, Sharifinejad N et al (2021) Comprehensive comparison between 222 CTLA-4 haploinsufficiency and 212 LRBA deficiency patients: a systematic review. Clin Exp Immunol 205(1):28–43PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Lopez-Herrera G, Tampella G, Pan-Hammarström Q et al (2012) Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity. Am J Hum Genet 90(6):986–1001PubMedPubMedCentralCrossRef Lopez-Herrera G, Tampella G, Pan-Hammarström Q et al (2012) Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity. Am J Hum Genet 90(6):986–1001PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Sharfe N, Dadi HK, Shahar M, Roifman CM (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A 94(7):3168–3171PubMedPubMedCentralCrossRef Sharfe N, Dadi HK, Shahar M, Roifman CM (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A 94(7):3168–3171PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119(2):482–487PubMedCrossRef Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119(2):482–487PubMedCrossRef
103.
Zurück zum Zitat Goudy K, Aydin D, Barzaghi F et al (2013) Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol 146(3):248–261PubMedPubMedCentralCrossRef Goudy K, Aydin D, Barzaghi F et al (2013) Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol 146(3):248–261PubMedPubMedCentralCrossRef
104.
105.
Zurück zum Zitat Bezrodnik L, Caldirola MS, Seminario AG, Moreira I, Gaillard MI (2014) Follicular bronchiolitis as phenotype associated with CD25 deficiency. Clin Exp Immunol 175(2):227–234PubMedPubMedCentralCrossRef Bezrodnik L, Caldirola MS, Seminario AG, Moreira I, Gaillard MI (2014) Follicular bronchiolitis as phenotype associated with CD25 deficiency. Clin Exp Immunol 175(2):227–234PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Al Sukaiti N, Al Sinani A, Al Ismaily S, Shaikh S, Al AS (2014) Pulmonary hemorrhage in a case of CD25 deficiency. LymphoSign J 01(01):39–43CrossRef Al Sukaiti N, Al Sinani A, Al Ismaily S, Shaikh S, Al AS (2014) Pulmonary hemorrhage in a case of CD25 deficiency. LymphoSign J 01(01):39–43CrossRef
108.
Zurück zum Zitat Fernandez IZ, Baxter RM, Garcia-Perez JE et al (2019) A novel human IL2RB mutation results in T and NK cell–driven immune dysregulation. J Exp Med 216(6):1255–1267PubMedPubMedCentralCrossRef Fernandez IZ, Baxter RM, Garcia-Perez JE et al (2019) A novel human IL2RB mutation results in T and NK cell–driven immune dysregulation. J Exp Med 216(6):1255–1267PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Zhang Z, Gothe F, Pennamen P et al (2019) Human interleukin-2 receptor β mutations associated with defects in immunity and peripheral tolerance. J Exp Med 216(6):1311–1327PubMedPubMedCentralCrossRef Zhang Z, Gothe F, Pennamen P et al (2019) Human interleukin-2 receptor β mutations associated with defects in immunity and peripheral tolerance. J Exp Med 216(6):1311–1327PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Engelhardt KR, Shah N, Faizura-Yeop I et al (2013) Clinical outcome in IL-10– and IL-10 receptor–deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol 131(3):825–830.e9PubMedCrossRef Engelhardt KR, Shah N, Faizura-Yeop I et al (2013) Clinical outcome in IL-10– and IL-10 receptor–deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol 131(3):825–830.e9PubMedCrossRef
111.
Zurück zum Zitat Shah N, Kammermeier J, Elawad M, Glocker E-O (2012) Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr Allergy Asthma Rep 12(5):373–379PubMedCrossRef Shah N, Kammermeier J, Elawad M, Glocker E-O (2012) Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr Allergy Asthma Rep 12(5):373–379PubMedCrossRef
112.
Zurück zum Zitat Zhou X, Wang J, Shi W et al (2010) Isolation of purified and live Foxp3+ regulatory T cells using FACS sorting on scatter plot. J Mol Cell Biol 2(3):164–169PubMedPubMedCentralCrossRef Zhou X, Wang J, Shi W et al (2010) Isolation of purified and live Foxp3+ regulatory T cells using FACS sorting on scatter plot. J Mol Cell Biol 2(3):164–169PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578PubMedPubMedCentralCrossRef Chaudhry A, Samstein RM, Treuting P et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Sharifinejad N, Zaki-Dizaji M, Sepahvandi R et al (2022) The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol 208(3):281–291PubMedPubMedCentralCrossRef Sharifinejad N, Zaki-Dizaji M, Sepahvandi R et al (2022) The clinical, molecular, and therapeutic features of patients with IL10/IL10R deficiency: a systematic review. Clin Exp Immunol 208(3):281–291PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Russell SM, Keegan AD, Harada N et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262(5141):1880–1883PubMedCrossRef Russell SM, Keegan AD, Harada N et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262(5141):1880–1883PubMedCrossRef
116.
Zurück zum Zitat Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262(5141):1877–1880PubMedCrossRef Noguchi M, Nakamura Y, Russell SM et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262(5141):1877–1880PubMedCrossRef
117.
Zurück zum Zitat Giri JG, Kumaki S, Ahdieh M et al (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14(15):3654–3663PubMedPubMedCentralCrossRef Giri JG, Kumaki S, Ahdieh M et al (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14(15):3654–3663PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Avery DT, Deenick EK, Ma CS et al (2010) B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207(1):155–171PubMedPubMedCentralCrossRef Avery DT, Deenick EK, Ma CS et al (2010) B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207(1):155–171PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Waldmann TA (2015) The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3(3):219–227MathSciNetPubMedPubMedCentralCrossRef Waldmann TA (2015) The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 3(3):219–227MathSciNetPubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386PubMedCrossRef Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386PubMedCrossRef
122.
123.
Zurück zum Zitat Oikonomopoulou C, Goussetis E (2020) Autosomal dominant hyper-IgE syndrome: When hematopoietic stem cell transplantation should be considered? Pediatr. Transplant 24(5):e13699 Oikonomopoulou C, Goussetis E (2020) Autosomal dominant hyper-IgE syndrome: When hematopoietic stem cell transplantation should be considered? Pediatr. Transplant 24(5):e13699
124.
Zurück zum Zitat Flanagan SE, Haapaniemi E, Russell MA et al (2014) Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 46(8):812–814PubMedPubMedCentralCrossRef Flanagan SE, Haapaniemi E, Russell MA et al (2014) Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet 46(8):812–814PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Haapaniemi EM, Kaustio M, Rajala HLM et al (2015) Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125(4):639–648PubMedPubMedCentralCrossRef Haapaniemi EM, Kaustio M, Rajala HLM et al (2015) Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125(4):639–648PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Milner JD, Vogel TP, Forbes L et al (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125(4):591–599PubMedPubMedCentralCrossRef Milner JD, Vogel TP, Forbes L et al (2015) Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125(4):591–599PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Khoury T, Molho-Pessach V, Ramot Y et al (2017) Tocilizumab Promotes Regulatory T-cell Alleviation in STAT3 Gain-of-function-associated Multi-organ Autoimmune Syndrome. Clin Ther 39(2):444–449PubMedCrossRef Khoury T, Molho-Pessach V, Ramot Y et al (2017) Tocilizumab Promotes Regulatory T-cell Alleviation in STAT3 Gain-of-function-associated Multi-organ Autoimmune Syndrome. Clin Ther 39(2):444–449PubMedCrossRef
128.
Zurück zum Zitat Gutiérrez M, Scaglia P, Keselman A et al (2018) Partial growth hormone insensitivity and dysregulatory immune disease associated with de novo germline activating STAT3 mutations. Mol Cell Endocrinol 473:166–177PubMedPubMedCentralCrossRef Gutiérrez M, Scaglia P, Keselman A et al (2018) Partial growth hormone insensitivity and dysregulatory immune disease associated with de novo germline activating STAT3 mutations. Mol Cell Endocrinol 473:166–177PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Cohen AC, Nadeau KC, Tu W et al (2006) Cutting Edge: Decreased Accumulation and Regulatory Function of CD4+CD25high T Cells in Human STAT5b Deficiency1. J Immunol 177(5):2770–2774PubMedCrossRef Cohen AC, Nadeau KC, Tu W et al (2006) Cutting Edge: Decreased Accumulation and Regulatory Function of CD4+CD25high T Cells in Human STAT5b Deficiency1. J Immunol 177(5):2770–2774PubMedCrossRef
130.
Zurück zum Zitat Pelham SJ, Caldirola MS, Avery DT et al (2022) STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 150(4):931–946PubMedCrossRef Pelham SJ, Caldirola MS, Avery DT et al (2022) STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 150(4):931–946PubMedCrossRef
131.
Zurück zum Zitat Passerini L, Allan SE, Battaglia M et al (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol 20(3):421–431PubMedCrossRef Passerini L, Allan SE, Battaglia M et al (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int Immunol 20(3):421–431PubMedCrossRef
132.
Zurück zum Zitat Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. Baltim. Md 1950 178(1):280–290 Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. Baltim. Md 1950 178(1):280–290
133.
Zurück zum Zitat Gutiérrez M (2020) Activating mutations of STAT3: Impact on human growth. Mol Cell Endocrinol 518:110979PubMedCrossRef Gutiérrez M (2020) Activating mutations of STAT3: Impact on human growth. Mol Cell Endocrinol 518:110979PubMedCrossRef
134.
Zurück zum Zitat Kofoed EM, Hwa V, Little B et al (2003) Growth Hormone Insensitivity Associated with a STAT5b Mutation. N Engl J Med 349(12):1139–1147PubMedCrossRef Kofoed EM, Hwa V, Little B et al (2003) Growth Hormone Insensitivity Associated with a STAT5b Mutation. N Engl J Med 349(12):1139–1147PubMedCrossRef
135.
Zurück zum Zitat Bernasconi A, Marino R, Ribas A et al (2006) Characterization of Immunodeficiency in a Patient With Growth Hormone Insensitivity Secondary to a Novel STAT5b Gene Mutation. Pediatrics 118(5):e1584–e1592PubMedCrossRef Bernasconi A, Marino R, Ribas A et al (2006) Characterization of Immunodeficiency in a Patient With Growth Hormone Insensitivity Secondary to a Novel STAT5b Gene Mutation. Pediatrics 118(5):e1584–e1592PubMedCrossRef
136.
Zurück zum Zitat Hwa V, Camacho-Hübner C, Little BM et al (2007) Growth Hormone Insensitivity and Severe Short Stature in Siblings: A Novel Mutation at the Exon 13-Intron 13 Junction of the STAT5b Gene. Horm Res 68(5):218–224PubMed Hwa V, Camacho-Hübner C, Little BM et al (2007) Growth Hormone Insensitivity and Severe Short Stature in Siblings: A Novel Mutation at the Exon 13-Intron 13 Junction of the STAT5b Gene. Horm Res 68(5):218–224PubMed
137.
Zurück zum Zitat Klammt J, Neumann D, Gevers EF et al (2018) Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun 9(1):2105PubMedPubMedCentralCrossRef Klammt J, Neumann D, Gevers EF et al (2018) Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun 9(1):2105PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Wang Y, Ma CS, Ling Y et al (2016) Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213(11):2413–2435PubMedPubMedCentralCrossRef Wang Y, Ma CS, Ling Y et al (2016) Dual T cell– and B cell–intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213(11):2413–2435PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Sorte HS, Osnes LT, Fevang B et al (2016) A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4(6):604–616PubMedPubMedCentralCrossRef Sorte HS, Osnes LT, Fevang B et al (2016) A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4(6):604–616PubMedPubMedCentralCrossRef
142.
143.
144.
145.
Zurück zum Zitat Matsuzaka Y, Okamoto K, Mabuchi T et al (2004) Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 343(2):291–304PubMedCrossRef Matsuzaka Y, Okamoto K, Mabuchi T et al (2004) Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 343(2):291–304PubMedCrossRef
146.
Zurück zum Zitat Roncagalli R, Cucchetti M, Jarmuzynski N et al (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213(11):2437–2457PubMedPubMedCentralCrossRef Roncagalli R, Cucchetti M, Jarmuzynski N et al (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213(11):2437–2457PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Magg T, Shcherbina A, Arslan D et al (2019) CARMIL2 Deficiency Presenting as Very Early Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 25(11):1788–1795PubMedPubMedCentralCrossRef Magg T, Shcherbina A, Arslan D et al (2019) CARMIL2 Deficiency Presenting as Very Early Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 25(11):1788–1795PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Lévy R, Gothe F, Momenilandi M et al (2022) Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 220(2):e20220275PubMedPubMedCentralCrossRef Lévy R, Gothe F, Momenilandi M et al (2022) Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 220(2):e20220275PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Kolukisa B, Baser D, Akcam B et al (2022) Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 77(3):1004–1019PubMedCrossRef Kolukisa B, Baser D, Akcam B et al (2022) Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 77(3):1004–1019PubMedCrossRef
150.
Zurück zum Zitat Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 261(1):116–125PubMedCrossRef Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 261(1):116–125PubMedCrossRef
151.
Zurück zum Zitat Roychoudhuri R, Hirahara K, Mousavi K et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498(7455):506–510PubMedPubMedCentralCrossRef Roychoudhuri R, Hirahara K, Mousavi K et al (2013) BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature 498(7455):506–510PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Tsukumo S, Unno M, Muto A et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci 110(26):10735–10740PubMedPubMedCentralCrossRef Tsukumo S, Unno M, Muto A et al (2013) Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci 110(26):10735–10740PubMedPubMedCentralCrossRef
153.
154.
Zurück zum Zitat Afzali B, Grönholm J, Vandrovcova J et al (2017) BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 18(7):813–823PubMedPubMedCentralCrossRef Afzali B, Grönholm J, Vandrovcova J et al (2017) BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 18(7):813–823PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Kim EH, Gasper DJ, Lee SH et al (2014) Bach2 Regulates Homeostasis of Foxp3+ Regulatory T Cells and Protects against Fatal Lung Disease in Mice. J Immunol 192(3):985–995PubMedCrossRef Kim EH, Gasper DJ, Lee SH et al (2014) Bach2 Regulates Homeostasis of Foxp3+ Regulatory T Cells and Protects against Fatal Lung Disease in Mice. J Immunol 192(3):985–995PubMedCrossRef
157.
Zurück zum Zitat Cipolletta D, Feuerer M, Li A et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553PubMedPubMedCentralCrossRef Cipolletta D, Feuerer M, Li A et al (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Tan TG, Mathis D, Benoist C (2016) Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc Natl Acad Sci U A 113(49):14103–14108CrossRef Tan TG, Mathis D, Benoist C (2016) Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc Natl Acad Sci U A 113(49):14103–14108CrossRef
159.
Zurück zum Zitat Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13(4):243–256PubMedPubMedCentralCrossRef Herold KC, Vignali DA, Cooke A, Bluestone JA (2013) Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 13(4):243–256PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Gregory GA, Robinson TIG, Linklater SE et al (2022) Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol 10(10):741–760PubMedCrossRef Gregory GA, Robinson TIG, Linklater SE et al (2022) Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol 10(10):741–760PubMedCrossRef
161.
Zurück zum Zitat Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC (2020) Update on Worldwide Trends in Occurrence of Childhood Type 1 Diabetes in 2020. Pediatr Endocrinol Rev 17(Suppl 1):198–209PubMed Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC (2020) Update on Worldwide Trends in Occurrence of Childhood Type 1 Diabetes in 2020. Pediatr Endocrinol Rev 17(Suppl 1):198–209PubMed
162.
Zurück zum Zitat Yaciuk JC, Pan Y, Schwarz K et al (2015) Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/Sjogren’s syndrome-B and human La-specific TCR. J Immunol 194(4):1514–1522PubMedCrossRef Yaciuk JC, Pan Y, Schwarz K et al (2015) Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/Sjogren’s syndrome-B and human La-specific TCR. J Immunol 194(4):1514–1522PubMedCrossRef
163.
Zurück zum Zitat Long SA, Buckner JH (2011) CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol 187(5):2061–2066PubMedCrossRef Long SA, Buckner JH (2011) CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol 187(5):2061–2066PubMedCrossRef
164.
Zurück zum Zitat Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA (2007) Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest 36(5–6):607–628PubMedCrossRef Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA (2007) Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest 36(5–6):607–628PubMedCrossRef
165.
Zurück zum Zitat Viisanen T, Gazali AM, Ihantola EL et al (2019) FOXP3+ Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children. Front Immunol 10:19PubMedPubMedCentralCrossRef Viisanen T, Gazali AM, Ihantola EL et al (2019) FOXP3+ Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children. Front Immunol 10:19PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRef Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485PubMedCrossRef
168.
Zurück zum Zitat Markle JG, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088PubMedCrossRef Markle JG, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088PubMedCrossRef
169.
Zurück zum Zitat Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33(1):67–87PubMedCrossRef Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33(1):67–87PubMedCrossRef
170.
Zurück zum Zitat Driver JP, Chen YG, Zhang W, Asrat S, Serreze DV (2011) Unmasking genes in a type 1 diabetes-resistant mouse strain that enhances pathogenic CD8 T-cell responses. Diabetes 60(4):1354–1359PubMedPubMedCentralCrossRef Driver JP, Chen YG, Zhang W, Asrat S, Serreze DV (2011) Unmasking genes in a type 1 diabetes-resistant mouse strain that enhances pathogenic CD8 T-cell responses. Diabetes 60(4):1354–1359PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707PubMedPubMedCentralCrossRef Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedPubMedCentralCrossRef Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Long SA, Cerosaletti K, Wan JY et al (2011) An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun 12(2):116–125PubMedCrossRef Long SA, Cerosaletti K, Wan JY et al (2011) An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun 12(2):116–125PubMedCrossRef
174.
Zurück zum Zitat Yang JH, Cutler AJ, Ferreira RC et al (2015) Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes 64(11):3891–3902PubMedCrossRef Yang JH, Cutler AJ, Ferreira RC et al (2015) Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes 64(11):3891–3902PubMedCrossRef
175.
Zurück zum Zitat Dendrou CA, Wicker LS (2008) The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 28(6):685–696PubMedCrossRef Dendrou CA, Wicker LS (2008) The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 28(6):685–696PubMedCrossRef
176.
Zurück zum Zitat Long SA, Rieck M, Sanda S et al (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes 61(9):2340–2348PubMedPubMedCentralCrossRef Long SA, Rieck M, Sanda S et al (2012) Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes 61(9):2340–2348PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Trotta E, Bessette PH, Silveria SL et al (2018) A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24(7):1005–1014PubMedPubMedCentralCrossRef Trotta E, Bessette PH, Silveria SL et al (2018) A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24(7):1005–1014PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Sockolosky JT, Trotta E, Parisi G et al (2018) Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359(6379):1037–1042PubMedPubMedCentralCrossRef Sockolosky JT, Trotta E, Parisi G et al (2018) Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359(6379):1037–1042PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Ward NC, Lui JB, Hernandez R et al (2020) Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes 69(11):2400–2413PubMedPubMedCentralCrossRef Ward NC, Lui JB, Hernandez R et al (2020) Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes 69(11):2400–2413PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Ohkura N, Yasumizu Y, Kitagawa Y et al (2020) Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity 52(6):1119–1132 e4PubMedCrossRef Ohkura N, Yasumizu Y, Kitagawa Y et al (2020) Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity 52(6):1119–1132 e4PubMedCrossRef
182.
Zurück zum Zitat Hull CM, Peakman M, Tree TIM (2017) Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60(10):1839–1850PubMedPubMedCentralCrossRef Hull CM, Peakman M, Tree TIM (2017) Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60(10):1839–1850PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Lindley S, Dayan CM, Bishop A et al (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54(1):92–99PubMedCrossRef Lindley S, Dayan CM, Bishop A et al (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54(1):92–99PubMedCrossRef
184.
Zurück zum Zitat Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedPubMedCentralCrossRef Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28(5):687–697PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Bettini ML, Pan F, Bettini M et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36(5):717–730PubMedPubMedCentralCrossRef Bettini ML, Pan F, Bettini M et al (2012) Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36(5):717–730PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Baker RL, Jamison BL, Wiles TA et al (2018) CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 67(9):1836–1846PubMedPubMedCentralCrossRef Baker RL, Jamison BL, Wiles TA et al (2018) CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 67(9):1836–1846PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Zhou X, Bailey-Bucktrout SL, Jeker LT et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007PubMedPubMedCentralCrossRef Zhou X, Bailey-Bucktrout SL, Jeker LT et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat McGovern J, Holler A, Thomas S, Stauss HJ (2022) Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J Autoimmun 132:102888PubMedPubMedCentralCrossRef McGovern J, Holler A, Thomas S, Stauss HJ (2022) Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J Autoimmun 132:102888PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Henschel P, Landwehr-Kenzel S, Engels N et al (2023) Supraphysiological FOXP3 expression in human CAR-Tregs results in improved stability, efficacy, and safety of CAR-Treg products for clinical application. J Autoimmun 138:103057PubMedCrossRef Henschel P, Landwehr-Kenzel S, Engels N et al (2023) Supraphysiological FOXP3 expression in human CAR-Tregs results in improved stability, efficacy, and safety of CAR-Treg products for clinical application. J Autoimmun 138:103057PubMedCrossRef
190.
Zurück zum Zitat de Boer YS, van Gerven NM, Zwiers A et al (2014) Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147(2):443–52 (e5)PubMedCrossRef de Boer YS, van Gerven NM, Zwiers A et al (2014) Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 147(2):443–52 (e5)PubMedCrossRef
191.
Zurück zum Zitat Longhi MS, Hussain MJ, Mitry RR et al (2006) Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176(7):4484–4491PubMedCrossRef Longhi MS, Hussain MJ, Mitry RR et al (2006) Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176(7):4484–4491PubMedCrossRef
192.
Zurück zum Zitat Ferri S, Longhi MS, De Molo C et al (2010) A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52(3):999–1007PubMedCrossRef Ferri S, Longhi MS, De Molo C et al (2010) A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52(3):999–1007PubMedCrossRef
193.
Zurück zum Zitat Liberal R, Grant CR, Holder BS et al (2012) The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology 56(2):677–686PubMedCrossRef Liberal R, Grant CR, Holder BS et al (2012) The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology 56(2):677–686PubMedCrossRef
194.
Zurück zum Zitat Peiseler M, Sebode M, Franke B et al (2012) FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol 57(1):125–132PubMedCrossRef Peiseler M, Sebode M, Franke B et al (2012) FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol 57(1):125–132PubMedCrossRef
195.
Zurück zum Zitat Taubert R, Hardtke-Wolenski M, Noyan F et al (2014) Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 61(5):1106–1114PubMedCrossRef Taubert R, Hardtke-Wolenski M, Noyan F et al (2014) Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol 61(5):1106–1114PubMedCrossRef
196.
Zurück zum Zitat Diestelhorst J, Junge N, Schlue J et al (2017) Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS ONE 12(7):e0181107PubMedPubMedCentralCrossRef Diestelhorst J, Junge N, Schlue J et al (2017) Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS ONE 12(7):e0181107PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat John K, Hardtke-Wolenski M, Jaeckel E et al (2017) Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis 8(12):3219PubMedPubMedCentralCrossRef John K, Hardtke-Wolenski M, Jaeckel E et al (2017) Increased apoptosis of regulatory T cells in patients with active autoimmune hepatitis. Cell Death Dis 8(12):3219PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Kido M, Watanabe N, Okazaki T et al (2008) Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology 135(4):1333–1343PubMedCrossRef Kido M, Watanabe N, Okazaki T et al (2008) Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology 135(4):1333–1343PubMedCrossRef
199.
Zurück zum Zitat Hardtke-Wolenski M, Taubert R, Noyan F et al (2015) Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens. Hepatology 61(4):1295–1305PubMedCrossRef Hardtke-Wolenski M, Taubert R, Noyan F et al (2015) Autoimmune hepatitis in a murine autoimmune polyendocrine syndrome type 1 model is directed against multiple autoantigens. Hepatology 61(4):1295–1305PubMedCrossRef
200.
Zurück zum Zitat Bonito AJ, Aloman C, Fiel MI et al (2013) Medullary thymic epithelial cell depletion leads to autoimmune hepatitis. J Clin Invest 123(8):3510–3524PubMedPubMedCentralCrossRef Bonito AJ, Aloman C, Fiel MI et al (2013) Medullary thymic epithelial cell depletion leads to autoimmune hepatitis. J Clin Invest 123(8):3510–3524PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Hardtke-Wolenski M, Fischer K, Noyan F et al (2013) Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4+ T cells. Hepatology 58(2):718–728PubMedCrossRef Hardtke-Wolenski M, Fischer K, Noyan F et al (2013) Genetic predisposition and environmental danger signals initiate chronic autoimmune hepatitis driven by CD4+ T cells. Hepatology 58(2):718–728PubMedCrossRef
202.
Zurück zum Zitat Holdener M, Hintermann E, Bayer M et al (2008) Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med 205(6):1409–1422PubMedPubMedCentralCrossRef Holdener M, Hintermann E, Bayer M et al (2008) Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med 205(6):1409–1422PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Lapierre P, Beland K, Yang R, Alvarez F (2013) Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology 57(1):217–227PubMedCrossRef Lapierre P, Beland K, Yang R, Alvarez F (2013) Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology 57(1):217–227PubMedCrossRef
204.
Zurück zum Zitat Zierden M, Kuhnen E, Odenthal M, Dienes HP (2010) Effects and regulation of autoreactive CD8+ T cells in a transgenic mouse model of autoimmune hepatitis. Gastroenterology 139(3):975–86 (986 e1–3)PubMedCrossRef Zierden M, Kuhnen E, Odenthal M, Dienes HP (2010) Effects and regulation of autoreactive CD8+ T cells in a transgenic mouse model of autoimmune hepatitis. Gastroenterology 139(3):975–86 (986 e1–3)PubMedCrossRef
205.
Zurück zum Zitat Veltkamp C, Anstaett M, Wahl K et al (2011) Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut 60(10):1345–1353PubMedCrossRef Veltkamp C, Anstaett M, Wahl K et al (2011) Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut 60(10):1345–1353PubMedCrossRef
206.
Zurück zum Zitat Mohammadnia-Afrouzi M, Zavaran Hosseini A, Khalili A et al (2015) Decrease of CD4(+) CD25(+) CD127(low) FoxP3(+) regulatory T cells with impaired suppressive function in untreated ulcerative colitis patients. Autoimmunity 48(8):556–561PubMedCrossRef Mohammadnia-Afrouzi M, Zavaran Hosseini A, Khalili A et al (2015) Decrease of CD4(+) CD25(+) CD127(low) FoxP3(+) regulatory T cells with impaired suppressive function in untreated ulcerative colitis patients. Autoimmunity 48(8):556–561PubMedCrossRef
207.
Zurück zum Zitat Sznurkowska K, Luty J, Bryl E et al (2020) Enhancement of Circulating and Intestinal T Regulatory Cells and Their Expression of Helios and Neuropilin-1 in Children with Inflammatory Bowel Disease. J Inflamm Res 13:995–1005PubMedPubMedCentralCrossRef Sznurkowska K, Luty J, Bryl E et al (2020) Enhancement of Circulating and Intestinal T Regulatory Cells and Their Expression of Helios and Neuropilin-1 in Children with Inflammatory Bowel Disease. J Inflamm Res 13:995–1005PubMedPubMedCentralCrossRef
208.
Zurück zum Zitat Fantini MC, Rizzo A, Fina D et al (2009) Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136(4):1308–16 (e1–3)PubMedCrossRef Fantini MC, Rizzo A, Fina D et al (2009) Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136(4):1308–16 (e1–3)PubMedCrossRef
209.
Zurück zum Zitat Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124PubMedPubMedCentralCrossRef Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Luo Y, de Lange KM, Jostins L et al (2017) Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet 49(2):186–192PubMedPubMedCentralCrossRef Luo Y, de Lange KM, Jostins L et al (2017) Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nat Genet 49(2):186–192PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Watanabe T, Asano N, Murray PJ et al (2008) Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118(2):545–559PubMedPubMedCentral Watanabe T, Asano N, Murray PJ et al (2008) Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118(2):545–559PubMedPubMedCentral
212.
Zurück zum Zitat Macho Fernandez E, Valenti V, Rockel C et al (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059PubMedCrossRef Macho Fernandez E, Valenti V, Rockel C et al (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059PubMedCrossRef
213.
Zurück zum Zitat Venturi GM, Conway RM, Steeber DA, Tedder TF (2007) CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178(1):291–300PubMedCrossRef Venturi GM, Conway RM, Steeber DA, Tedder TF (2007) CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178(1):291–300PubMedCrossRef
214.
Zurück zum Zitat Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174(9):5444–5455PubMedCrossRef Suffia I, Reckling SK, Salay G, Belkaid Y (2005) A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174(9):5444–5455PubMedCrossRef
215.
Zurück zum Zitat Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6(4):353–360PubMedCrossRef Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6(4):353–360PubMedCrossRef
216.
Zurück zum Zitat Denning TL, Kim G, Kronenberg M (2005) Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J Immunol 174(12):7487–7491PubMedCrossRef Denning TL, Kim G, Kronenberg M (2005) Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J Immunol 174(12):7487–7491PubMedCrossRef
217.
Zurück zum Zitat Pedros C, Gaud G, Bernard I et al (2015) An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development. J Immunol 195(4):1608–1616PubMedCrossRef Pedros C, Gaud G, Bernard I et al (2015) An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development. J Immunol 195(4):1608–1616PubMedCrossRef
218.
219.
Zurück zum Zitat Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A (2007) CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204(4):735–745PubMedPubMedCentralCrossRef Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A (2007) CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204(4):735–745PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Bacchetta R, Bigler M, Touraine JL et al (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179(2):493–502PubMedCrossRef Bacchetta R, Bigler M, Touraine JL et al (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179(2):493–502PubMedCrossRef
221.
Zurück zum Zitat Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177(12):8338–8347PubMedCrossRef Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177(12):8338–8347PubMedCrossRef
222.
Zurück zum Zitat Battaglia M, Stabilini A, Draghici E et al (2006) Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55(6):1571–1580PubMedCrossRef Battaglia M, Stabilini A, Draghici E et al (2006) Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes 55(6):1571–1580PubMedCrossRef
223.
Zurück zum Zitat Roncarolo MG, Gregori S, Bacchetta R, Battaglia M, Gagliani N (2018) The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity 49(6):1004–1019PubMedCrossRef Roncarolo MG, Gregori S, Bacchetta R, Battaglia M, Gagliani N (2018) The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity 49(6):1004–1019PubMedCrossRef
224.
Zurück zum Zitat Hadis U, Wahl B, Schulz O et al (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246PubMedCrossRef Hadis U, Wahl B, Schulz O et al (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246PubMedCrossRef
225.
Zurück zum Zitat Bansal K, Yoshida H, Benoist C, Mathis D (2017) The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol 18(3):263–273PubMedPubMedCentralCrossRef Bansal K, Yoshida H, Benoist C, Mathis D (2017) The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol 18(3):263–273PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Fujikado N, Mann AO, Bansal K et al (2016) Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing gammadelta T Cells to Promote Immunologic Tolerance. Immunity 45(5):999–1012PubMedPubMedCentralCrossRef Fujikado N, Mann AO, Bansal K et al (2016) Aire Inhibits the Generation of a Perinatal Population of Interleukin-17A-Producing gammadelta T Cells to Promote Immunologic Tolerance. Immunity 45(5):999–1012PubMedPubMedCentralCrossRef
227.
Zurück zum Zitat Devoss JJ, Shum AK, Johannes KP et al (2008) Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J Immunol 181(6):4072–4079PubMedCrossRef Devoss JJ, Shum AK, Johannes KP et al (2008) Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J Immunol 181(6):4072–4079PubMedCrossRef
228.
Zurück zum Zitat Anderson MS, Venanzi ES, Klein L et al (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401PubMedCrossRef Anderson MS, Venanzi ES, Klein L et al (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401PubMedCrossRef
229.
Zurück zum Zitat Goldberg R, Scotta C, Cooper D et al (2019) Correction of Defective T-Regulatory Cells From Patients With Crohn’s Disease by Ex Vivo Ligation of Retinoic Acid Receptor-alpha. Gastroenterology 156(6):1775–1787PubMedCrossRef Goldberg R, Scotta C, Cooper D et al (2019) Correction of Defective T-Regulatory Cells From Patients With Crohn’s Disease by Ex Vivo Ligation of Retinoic Acid Receptor-alpha. Gastroenterology 156(6):1775–1787PubMedCrossRef
230.
Zurück zum Zitat Canavan JB, Scotta C, Vossenkamper A et al (2016) Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut 65(4):584–594PubMedCrossRef Canavan JB, Scotta C, Vossenkamper A et al (2016) Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut 65(4):584–594PubMedCrossRef
231.
Zurück zum Zitat Desreumaux P, Foussat A, Allez M et al (2012) Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143(5):1207–1217 (e2)PubMedCrossRef Desreumaux P, Foussat A, Allez M et al (2012) Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143(5):1207–1217 (e2)PubMedCrossRef
232.
Zurück zum Zitat Elinav E, Adam N, Waks T, Eshhar Z (2009) Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology 136(5):1721–1731PubMedCrossRef Elinav E, Adam N, Waks T, Eshhar Z (2009) Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology 136(5):1721–1731PubMedCrossRef
233.
Zurück zum Zitat Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z (2014) Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 22(5):1018–1028PubMedPubMedCentralCrossRef Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z (2014) Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 22(5):1018–1028PubMedPubMedCentralCrossRef
234.
Zurück zum Zitat Maliar A, Servais C, Waks T et al (2012) Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143(5):1375–1384 e5PubMedCrossRef Maliar A, Servais C, Waks T et al (2012) Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143(5):1375–1384 e5PubMedCrossRef
235.
Zurück zum Zitat Elinav E, Waks T, Eshhar Z (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134(7):2014–2024PubMedCrossRef Elinav E, Waks T, Eshhar Z (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134(7):2014–2024PubMedCrossRef
236.
Zurück zum Zitat Wu AJ, Hua H, Munson SH, McDevitt HO (2002) Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U A 99(19):12287–12292CrossRef Wu AJ, Hua H, Munson SH, McDevitt HO (2002) Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U A 99(19):12287–12292CrossRef
237.
Zurück zum Zitat Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191–201PubMedPubMedCentralCrossRef Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191–201PubMedPubMedCentralCrossRef
238.
239.
Zurück zum Zitat Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477PubMedPubMedCentralCrossRef Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199(11):1467–1477PubMedPubMedCentralCrossRef
240.
Zurück zum Zitat Jaeckel E, Lipes MA, von Boehmer H (2004) Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5(10):1028–1035PubMedCrossRef Jaeckel E, Lipes MA, von Boehmer H (2004) Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5(10):1028–1035PubMedCrossRef
241.
Zurück zum Zitat Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465PubMedPubMedCentralCrossRef Tang Q, Henriksen KJ, Bi M et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465PubMedPubMedCentralCrossRef
242.
Zurück zum Zitat Masteller EL, Warner MR, Tang Q et al (2005) Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 175(5):3053–3059PubMedCrossRef Masteller EL, Warner MR, Tang Q et al (2005) Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 175(5):3053–3059PubMedCrossRef
243.
Zurück zum Zitat Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H (2003) Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J Exp Med 197(12):1635–1644PubMedPubMedCentralCrossRef Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H (2003) Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J Exp Med 197(12):1635–1644PubMedPubMedCentralCrossRef
244.
Zurück zum Zitat Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2014) Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol 153(1):23–30PubMedCrossRef Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2014) Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol 153(1):23–30PubMedCrossRef
245.
Zurück zum Zitat Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2012) Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35(9):1817–1820PubMedPubMedCentralCrossRef Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A et al (2012) Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35(9):1817–1820PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Bluestone JA, Buckner JH, Fitch M et al (2015) Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med 7(315):315ra189PubMedPubMedCentralCrossRef Bluestone JA, Buckner JH, Fitch M et al (2015) Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med 7(315):315ra189PubMedPubMedCentralCrossRef
247.
Zurück zum Zitat Marek-Trzonkowska N, Mysliwiec M, Iwaszkiewicz-Grzes D et al (2016) Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med 14(1):332PubMedPubMedCentralCrossRef Marek-Trzonkowska N, Mysliwiec M, Iwaszkiewicz-Grzes D et al (2016) Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med 14(1):332PubMedPubMedCentralCrossRef
248.
Zurück zum Zitat Herold KC, Gitelman SE, Ehlers MR et al (2013) Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62(11):3766–3774PubMedPubMedCentralCrossRef Herold KC, Gitelman SE, Ehlers MR et al (2013) Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62(11):3766–3774PubMedPubMedCentralCrossRef
249.
Zurück zum Zitat Rigby MR, Harris KM, Pinckney A et al (2015) Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest 125(8):3285–3296PubMedPubMedCentralCrossRef Rigby MR, Harris KM, Pinckney A et al (2015) Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest 125(8):3285–3296PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Rigby MR, DiMeglio LA, Rendell MS et al (2013) Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol 1(4):284–294PubMedPubMedCentralCrossRef Rigby MR, DiMeglio LA, Rendell MS et al (2013) Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol 1(4):284–294PubMedPubMedCentralCrossRef
253.
Zurück zum Zitat Kremer J, Henschel P, Simon D et al (2022) Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors. Front Immunol 13:1005582PubMedPubMedCentralCrossRef Kremer J, Henschel P, Simon D et al (2022) Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors. Front Immunol 13:1005582PubMedPubMedCentralCrossRef
254.
Zurück zum Zitat Grinberg-Bleyer Y, Baeyens A, You S et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207(9):1871–1878PubMedPubMedCentralCrossRef Grinberg-Bleyer Y, Baeyens A, You S et al (2010) IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207(9):1871–1878PubMedPubMedCentralCrossRef
255.
Zurück zum Zitat Rosenzwajg M, Salet R, Lorenzon R et al (2020) Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63(9):1808–1821PubMedCrossRef Rosenzwajg M, Salet R, Lorenzon R et al (2020) Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a Phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63(9):1808–1821PubMedCrossRef
256.
Zurück zum Zitat Rosenzwajg M, Lorenzon R, Cacoub P et al (2019) Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 78(2):209–217PubMedCrossRef Rosenzwajg M, Lorenzon R, Cacoub P et al (2019) Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 78(2):209–217PubMedCrossRef
257.
Zurück zum Zitat Saadoun D, Rosenzwajg M, Joly F et al (2011) Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 365(22):2067–2077PubMedCrossRef Saadoun D, Rosenzwajg M, Joly F et al (2011) Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 365(22):2067–2077PubMedCrossRef
258.
Zurück zum Zitat Koreth J, Kim HT, Jones KT et al (2017) Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128(1):130–138CrossRef Koreth J, Kim HT, Jones KT et al (2017) Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128(1):130–138CrossRef
259.
Zurück zum Zitat Castela E, Duff FL, Butori C et al (2014) Effects of Low-Dose Recombinant Interleukin 2 to Promote T-Regulatory Cells in Alopecia Areata. JAMA Dermatol 150(7):748–751PubMedCrossRef Castela E, Duff FL, Butori C et al (2014) Effects of Low-Dose Recombinant Interleukin 2 to Promote T-Regulatory Cells in Alopecia Areata. JAMA Dermatol 150(7):748–751PubMedCrossRef
260.
Zurück zum Zitat Rosenzwajg M, Churlaud G, Mallone R et al (2015) Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun 58:48–58PubMedPubMedCentralCrossRef Rosenzwajg M, Churlaud G, Mallone R et al (2015) Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun 58:48–58PubMedPubMedCentralCrossRef
261.
Zurück zum Zitat Hartemann A, Bensimon G, Payan CA et al (2013) Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1(4):295–305PubMedCrossRef Hartemann A, Bensimon G, Payan CA et al (2013) Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1(4):295–305PubMedCrossRef
263.
264.
Zurück zum Zitat Tenspolde M, Zimmermann K, Weber LC et al (2019) Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 103:102289PubMedCrossRef Tenspolde M, Zimmermann K, Weber LC et al (2019) Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 103:102289PubMedCrossRef
265.
Zurück zum Zitat Chung YY, Rahim MN, Heneghan MA (2022) Autoimmune hepatitis and pregnancy: considerations for the clinician. Expert Rev Clin Immunol 18(4):325–333PubMedCrossRef Chung YY, Rahim MN, Heneghan MA (2022) Autoimmune hepatitis and pregnancy: considerations for the clinician. Expert Rev Clin Immunol 18(4):325–333PubMedCrossRef
266.
Zurück zum Zitat Buitrago-Molina LE, Pietrek J, Noyan F et al (2021) Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J Autoimmun 117:102591PubMedCrossRef Buitrago-Molina LE, Pietrek J, Noyan F et al (2021) Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J Autoimmun 117:102591PubMedCrossRef
267.
Zurück zum Zitat Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E et al (2021) Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 10(6):1471. https://doi.org/10.3390/cells10061471 Buitrago-Molina LE, Dywicki J, Noyan F, Schepergerdes L, Pietrek J, Lieber M, Schlue J, Manns MP, Wedemeyer H, Jaeckel E et al (2021) Anti-CD20 Therapy Alters the Protein Signature in Experimental Murine AIH, but Not Exclusively towards Regeneration. Cells 10(6):1471. https://​doi.​org/​10.​3390/​cells10061471
268.
Zurück zum Zitat Marceau G, Yang R, Lapierre P, Beland K, Alvarez F (2015) Low-dose anti-CD3 antibody induces remission of active autoimmune hepatitis in xenoimmunized mice. Liver Int 35(1):275–284PubMedCrossRef Marceau G, Yang R, Lapierre P, Beland K, Alvarez F (2015) Low-dose anti-CD3 antibody induces remission of active autoimmune hepatitis in xenoimmunized mice. Liver Int 35(1):275–284PubMedCrossRef
269.
Zurück zum Zitat Fransson M, Piras E, Burman J et al (2012) CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 9:112PubMedPubMedCentralCrossRef Fransson M, Piras E, Burman J et al (2012) CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 9:112PubMedPubMedCentralCrossRef
270.
Zurück zum Zitat Saetzler V, Riet T, Schienke A, Henschel P, Freitag K, Haake A, Heppner FL, Buitrago-Molina LE, Noyan F, Jaeckel E et al (2023) Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer’s Disease. Cells 12(16):2115. https://doi.org/10.3390/cells12162115 Saetzler V, Riet T, Schienke A, Henschel P, Freitag K, Haake A, Heppner FL, Buitrago-Molina LE, Noyan F, Jaeckel E et al (2023) Development of Beta-Amyloid-Specific CAR-Tregs for the Treatment of Alzheimer’s Disease. Cells 12(16):2115. https://​doi.​org/​10.​3390/​cells12162115
Metadaten
Titel
Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both?
verfasst von
Matthias Hardtke-Wolenski
Sybille Landwehr-Kenzel
Publikationsdatum
01.12.2024
Verlag
Springer International Publishing
Erschienen in
Molecular and Cellular Pediatrics / Ausgabe 1/2024
Elektronische ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-024-00176-8

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Häufigste Gründe für Brustschmerzen bei Kindern

06.05.2024 Pädiatrische Diagnostik Nachrichten

Akute Brustschmerzen sind ein Alarmsymptom par exellence, schließlich sind manche Auslöser lebensbedrohlich. Auch Kinder klagen oft über Schmerzen in der Brust. Ein Studienteam ist den Ursachen nachgegangen.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Durch übermäßige Internetnutzung wird oft die Schule verpasst

Häufige Fehlzeiten in der Schule können durch physische und psychische Probleme verursacht werden. Wie in einer Studie aus Finnland nun belegt wird, führt auch die exzessive Nutzung des Internets gehäuft zu Abwesenheiten.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.