Skip to main content
Erschienen in: Japanese Journal of Ophthalmology 5/2023

04.08.2023 | Forefront Review

Prediction of visual field progression in glaucoma: existing methods and artificial intelligence

verfasst von: Ryo Asaoka, Hiroshi Murata

Erschienen in: Japanese Journal of Ophthalmology | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Timely treatment is essential in the management of glaucoma. However, subjective assessment of visual field (VF) progression is not recommended, because it can be unreliable. There are two types of artificial intelligence (AI) strong and weak (machine learning). Weak AIs can perform specific tasks. Linear regression is a method of weak AI. Using linear regression in the real-world clinic has enabled analyzing and predicting VF progression. However, caution is still required when interpreting the results, because whenever the number of VF data sets investigated is small, the predictions can be inaccurate. Several other non-ordinal, or modern AI methods have been constructed to improve prediction accuracy, such as clustering and more modern AI methods of Analysis with Non-Stationary Weibull Error Regression and Spatial Enhancement (ANSWERS), Variational Bayes Linear Regression (VBLR), Kalman Filter and sparse modeling (The least absolute shrinkage and selection operator regression: Lasso). It is also possible to improve the prediction performance using retinal thickness measured with optical coherence tomography by using machine learning methods, such as multitask learning.
Literatur
1.
3.
Zurück zum Zitat Clement CI, Bhartiya S, Shaarawy T. New perspectives on target intraocular pressure. Surv Ophthalmol. 2014;59:615–26.PubMedCrossRef Clement CI, Bhartiya S, Shaarawy T. New perspectives on target intraocular pressure. Surv Ophthalmol. 2014;59:615–26.PubMedCrossRef
4.
Zurück zum Zitat The Japan Glaucoma Society. The Japan Glaucoma Society Guidelines for Glaucoma (5th edition). Nippon Ganka Gakkai Zasshi. 2022;126:85–177. The Japan Glaucoma Society. The Japan Glaucoma Society Guidelines for Glaucoma  (5th edition). Nippon Ganka Gakkai Zasshi. 2022;126:85–177.
5.
Zurück zum Zitat Kiuchi Y, Inoue T, Shoji N, Nakamura M, Tanito M. Glaucoma Guideline Preparation Committee, Japan Glaucoma Society. The Japan Glaucoma Society Guidelines for glaucoma. Jpn J Ophthalmol. 2023;67:189–254.PubMedCrossRef Kiuchi Y, Inoue T, Shoji N, Nakamura M, Tanito M. Glaucoma Guideline Preparation Committee, Japan Glaucoma Society. The Japan Glaucoma Society Guidelines for glaucoma. Jpn J Ophthalmol. 2023;67:189–254.PubMedCrossRef
6.
Zurück zum Zitat Viswanathan AC, Crabb DP, McNaught AI, Westcott MC, Kamal D, Garway-Heath DF, et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol. 2003;87:726–30.PubMedPubMedCentralCrossRef Viswanathan AC, Crabb DP, McNaught AI, Westcott MC, Kamal D, Garway-Heath DF, et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol. 2003;87:726–30.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.PubMedCrossRef
8.
Zurück zum Zitat Tanna AP, Budenz DL, Bandi J, Feuer WJ, Feldman RM, Herndon LW, et al. Glaucoma progression analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma. Ophthalmology. 2012;119:468–73.PubMedCrossRef Tanna AP, Budenz DL, Bandi J, Feuer WJ, Feldman RM, Herndon LW, et al. Glaucoma progression analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma. Ophthalmology. 2012;119:468–73.PubMedCrossRef
9.
Zurück zum Zitat Anton A, Pazos M, Martin B, Navero JM, Ayala ME, Castany M, et al. Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis. Eur J Ophthalmol. 2013;23:187–95.PubMedCrossRef Anton A, Pazos M, Martin B, Navero JM, Ayala ME, Castany M, et al. Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis. Eur J Ophthalmol. 2013;23:187–95.PubMedCrossRef
10.
Zurück zum Zitat Diaz-Aleman VT, Anton A, de la Rosa MG, Johnson ZK, McLeod S, Azuara-Blanco A. Detection of visual-field deterioration by Glaucoma progression analysis and threshold Noiseless Trend programs. Br J Ophthalmol. 2009;93:322–8.PubMedCrossRef Diaz-Aleman VT, Anton A, de la Rosa MG, Johnson ZK, McLeod S, Azuara-Blanco A. Detection of visual-field deterioration by Glaucoma progression analysis and threshold Noiseless Trend programs. Br J Ophthalmol. 2009;93:322–8.PubMedCrossRef
11.
Zurück zum Zitat Birch MK, Wishart PK, O’Donnell NP. Determining progressive visual field loss in serial Humphrey visual fields. Ophthalmology. 1995;102:1227–34. discussion 34 – 5.PubMedCrossRef Birch MK, Wishart PK, O’Donnell NP. Determining progressive visual field loss in serial Humphrey visual fields. Ophthalmology. 1995;102:1227–34. discussion 34 – 5.PubMedCrossRef
12.
Zurück zum Zitat Roberti G, Michelessi M, Tanga L, Belfonte L, Del Grande LM, Bruno M et al. Glaucoma progression diagnosis: the Agreement between Clinical Judgment and Statistical Software. J Clin Med 2022;11(19):5508PubMedPubMedCentralCrossRef Roberti G, Michelessi M, Tanga L, Belfonte L, Del Grande LM, Bruno M et al. Glaucoma progression diagnosis: the Agreement between Clinical Judgment and Statistical Software. J Clin Med 2022;11(19):5508PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Fitzke FW, Hitchings RA, Poinoosawmy D, McNaught AI, Crabb DP. Analysis of visual field progression in glaucoma. Br J Ophthalmol. 1996;80:40–8.PubMedPubMedCentralCrossRef Fitzke FW, Hitchings RA, Poinoosawmy D, McNaught AI, Crabb DP. Analysis of visual field progression in glaucoma. Br J Ophthalmol. 1996;80:40–8.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Viswanathan AC, Fitzke FW, Hitchings RA. Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2. Br J Ophthalmol. 1997;81:1037–42.PubMedPubMedCentralCrossRef Viswanathan AC, Fitzke FW, Hitchings RA. Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2. Br J Ophthalmol. 1997;81:1037–42.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Smith SD, Katz J, Quigley HA. Analysis of progressive change in automated visual fields in glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1419–28.PubMed Smith SD, Katz J, Quigley HA. Analysis of progressive change in automated visual fields in glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1419–28.PubMed
16.
Zurück zum Zitat Nouri-Mahdavi K, Brigatti L, Weitzman M, Caprioli J. Comparison of methods to detect visual field progression in glaucoma. Ophthalmology. 1997;104:1228–36.PubMedCrossRef Nouri-Mahdavi K, Brigatti L, Weitzman M, Caprioli J. Comparison of methods to detect visual field progression in glaucoma. Ophthalmology. 1997;104:1228–36.PubMedCrossRef
17.
Zurück zum Zitat Mayama C, Araie M, Suzuki Y, Ishida K, Yamamoto T, Kitazawa Y, et al. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma. Ophthalmology. 2004;111:2117–25.PubMedCrossRef Mayama C, Araie M, Suzuki Y, Ishida K, Yamamoto T, Kitazawa Y, et al. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma. Ophthalmology. 2004;111:2117–25.PubMedCrossRef
18.
Zurück zum Zitat Katz J, Sommer A, Gaasterland DE, Anderson DR. Comparison of analytic algorithms for detecting glaucomatous visual field loss. Arch Ophthalmol. 1991;109:1684–9.PubMedCrossRef Katz J, Sommer A, Gaasterland DE, Anderson DR. Comparison of analytic algorithms for detecting glaucomatous visual field loss. Arch Ophthalmol. 1991;109:1684–9.PubMedCrossRef
19.
Zurück zum Zitat Mandava S, Zulauf M, Zeyen T, Caprioli J. An evaluation of clusters in the glaucomatous visual field. Am J Ophthalmol. 1993;116:684–91.PubMedCrossRef Mandava S, Zulauf M, Zeyen T, Caprioli J. An evaluation of clusters in the glaucomatous visual field. Am J Ophthalmol. 1993;116:684–91.PubMedCrossRef
20.
Zurück zum Zitat Gardiner SK, Crabb DP. Examination of different pointwise linear regression methods for determining visual field progression. Invest Ophthalmol Vis Sci. 2002;43:1400–7.PubMed Gardiner SK, Crabb DP. Examination of different pointwise linear regression methods for determining visual field progression. Invest Ophthalmol Vis Sci. 2002;43:1400–7.PubMed
21.
Zurück zum Zitat Gardiner SK, Crabb DP, Fitzke FW, Hitchings RA. Reducing noise in suspected glaucomatous visual fields by using a new spatial filter. Vis Res. 2004;44:839–48.PubMedCrossRef Gardiner SK, Crabb DP, Fitzke FW, Hitchings RA. Reducing noise in suspected glaucomatous visual fields by using a new spatial filter. Vis Res. 2004;44:839–48.PubMedCrossRef
22.
Zurück zum Zitat Strouthidis NG, Scott A, Viswanathan AC, Crabb DP, Garway-Heath DF. Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. Invest Ophthalmol Vis Sci. 2007;48:251–7.PubMedCrossRef Strouthidis NG, Scott A, Viswanathan AC, Crabb DP, Garway-Heath DF. Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. Invest Ophthalmol Vis Sci. 2007;48:251–7.PubMedCrossRef
23.
Zurück zum Zitat Chen A, Nouri-Mahdavi K, Otarola FJ, Yu F, Afifi AA, Caprioli J. Models of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2014;55:7881–7.PubMedCrossRef Chen A, Nouri-Mahdavi K, Otarola FJ, Yu F, Afifi AA, Caprioli J. Models of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2014;55:7881–7.PubMedCrossRef
24.
Zurück zum Zitat Araie M. Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma. Nippon Ganka Gakkai zasshi. 2011;115:213–36.PubMed Araie M. Basic and clinical studies of pressure-independent damaging factors of open angle glaucoma. Nippon Ganka Gakkai zasshi. 2011;115:213–36.PubMed
25.
Zurück zum Zitat Caprioli J, de Leon JM, Azarbod P, Chen A, Morales E, Nouri-Mahdavi K, et al. Trabeculectomy can improve long-term visual function in Glaucoma. Ophthalmology. 2016;123:117–28.PubMedCrossRef Caprioli J, de Leon JM, Azarbod P, Chen A, Morales E, Nouri-Mahdavi K, et al. Trabeculectomy can improve long-term visual function in Glaucoma. Ophthalmology. 2016;123:117–28.PubMedCrossRef
26.
Zurück zum Zitat Taketani Y, Murata H, Fujino Y, Mayama C, Asaoka R. How many visual Fields are required to precisely predict future test results in Glaucoma patients when using different Trend analyses? Invest Ophthalmol Vis Sci. 2015;56:4076–82.PubMedCrossRef Taketani Y, Murata H, Fujino Y, Mayama C, Asaoka R. How many visual Fields are required to precisely predict future test results in Glaucoma patients when using different Trend analyses? Invest Ophthalmol Vis Sci. 2015;56:4076–82.PubMedCrossRef
27.
Zurück zum Zitat Bryan SR, Vermeer KA, Eilers PH, Lemij HG, Lesaffre EM. Robust and censored modeling and prediction of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2013;54:6694–700.PubMedCrossRef Bryan SR, Vermeer KA, Eilers PH, Lemij HG, Lesaffre EM. Robust and censored modeling and prediction of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci. 2013;54:6694–700.PubMedCrossRef
28.
Zurück zum Zitat Omoto T, Asaoka R, Akagi T, Oishi A, Miyata M, Murata H, et al. The number of examinations required for the accurate prediction of the progression of the central 10-degree visual field test in glaucoma. Sci Rep. 2022;12:18843.PubMedPubMedCentralCrossRef Omoto T, Asaoka R, Akagi T, Oishi A, Miyata M, Murata H, et al. The number of examinations required for the accurate prediction of the progression of the central 10-degree visual field test in glaucoma. Sci Rep. 2022;12:18843.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Flammer J, Drance SM, Fankhauser F, Augustiny L. Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation. Arch Ophthalmol. 1984;102:876–9.PubMedCrossRef Flammer J, Drance SM, Fankhauser F, Augustiny L. Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation. Arch Ophthalmol. 1984;102:876–9.PubMedCrossRef
30.
Zurück zum Zitat Flammer J, Drance SM, Zulauf M. Differential light threshold. Short- and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Arch Ophthalmol. 1984;102:704–6.PubMedCrossRef Flammer J, Drance SM, Zulauf M. Differential light threshold. Short- and long-term fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. Arch Ophthalmol. 1984;102:704–6.PubMedCrossRef
31.
Zurück zum Zitat Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Invest Ophthalmol Vis Sci. 2000;41:2201–4.PubMed Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Invest Ophthalmol Vis Sci. 2000;41:2201–4.PubMed
32.
Zurück zum Zitat Henson DB, Evans J, Chauhan BC, Lane C. Influence of fixation accuracy on threshold variability in patients with open angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37:444–50.PubMed Henson DB, Evans J, Chauhan BC, Lane C. Influence of fixation accuracy on threshold variability in patients with open angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37:444–50.PubMed
33.
Zurück zum Zitat Artes PH. Progression: things we need to remember but often forget to think about. Optom Vis Sci. 2008;85:380–5.PubMedCrossRef Artes PH. Progression: things we need to remember but often forget to think about. Optom Vis Sci. 2008;85:380–5.PubMedCrossRef
34.
Zurück zum Zitat Krakau CE. A statistical trap in the evaluation of visual field decay. Acta Ophthalmol Suppl. 1985;173:19–21.PubMed Krakau CE. A statistical trap in the evaluation of visual field decay. Acta Ophthalmol Suppl. 1985;173:19–21.PubMed
35.
Zurück zum Zitat Holmin C, Krakau CE. Regression analysis of the central visual field in chronic glaucoma cases. A follow-up study using automatic perimetry. Acta Ophthalmol (Copenh). 1982;60:267–74.PubMedCrossRef Holmin C, Krakau CE. Regression analysis of the central visual field in chronic glaucoma cases. A follow-up study using automatic perimetry. Acta Ophthalmol (Copenh). 1982;60:267–74.PubMedCrossRef
36.
Zurück zum Zitat Spry PG, Bates AB, Johnson CA, Chauhan BC. Simulation of longitudinal threshold visual field data. Invest Ophthalmol Vis Sci. 2000;41:2192–200.PubMed Spry PG, Bates AB, Johnson CA, Chauhan BC. Simulation of longitudinal threshold visual field data. Invest Ophthalmol Vis Sci. 2000;41:2192–200.PubMed
37.
Zurück zum Zitat Asman P, Heijl A. Arcuate cluster analysis in glaucoma perimetry. J Glaucoma. 1993;2:13–20.PubMedCrossRef Asman P, Heijl A. Arcuate cluster analysis in glaucoma perimetry. J Glaucoma. 1993;2:13–20.PubMedCrossRef
38.
Zurück zum Zitat Chauhan BC, Drance SM, Lai C. A cluster analysis for threshold perimetry. Graefes Arch Clin Exp Ophthalmol. 1989;227:216–20.PubMedCrossRef Chauhan BC, Drance SM, Lai C. A cluster analysis for threshold perimetry. Graefes Arch Clin Exp Ophthalmol. 1989;227:216–20.PubMedCrossRef
39.
Zurück zum Zitat Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma. Ophthalmology. 1993;100:69–75.PubMedCrossRef Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma. Ophthalmology. 1993;100:69–75.PubMedCrossRef
40.
Zurück zum Zitat Nouri-Mahdavi K, Mock D, Hosseini H, Bitrian E, Yu F, Afifi A, et al. Pointwise rates of visual field progression cluster according to retinal nerve fiber layer bundles. Invest Ophthalmol Vis Sci. 2012;53:2390–4.PubMedCrossRef Nouri-Mahdavi K, Mock D, Hosseini H, Bitrian E, Yu F, Afifi A, et al. Pointwise rates of visual field progression cluster according to retinal nerve fiber layer bundles. Invest Ophthalmol Vis Sci. 2012;53:2390–4.PubMedCrossRef
41.
Zurück zum Zitat Hirasawa K, Murata H, Hirasawa H, Mayama C, Asaoka R. Clustering visual field test points based on rates of progression to improve the prediction of future damage. Invest Ophthalmol Vis Sci. 2014;55:7681–5.PubMedCrossRef Hirasawa K, Murata H, Hirasawa H, Mayama C, Asaoka R. Clustering visual field test points based on rates of progression to improve the prediction of future damage. Invest Ophthalmol Vis Sci. 2014;55:7681–5.PubMedCrossRef
42.
Zurück zum Zitat Hirasawa K, Murata H, Asaoka R. Revalidating the usefulness of a “Sector-Wise Regression” Approach to predict glaucomatous visual function progression. Invest Ophthalmol Vis Sci. 2015;56:4332–5.PubMedCrossRef Hirasawa K, Murata H, Asaoka R. Revalidating the usefulness of a “Sector-Wise Regression” Approach to predict glaucomatous visual function progression. Invest Ophthalmol Vis Sci. 2015;56:4332–5.PubMedCrossRef
43.
Zurück zum Zitat Van der Laan MJ, Pollard KS. A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap. J Stat Plan Inference. 2003;117:275–303.CrossRef Van der Laan MJ, Pollard KS. A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap. J Stat Plan Inference. 2003;117:275–303.CrossRef
44.
Zurück zum Zitat Rousseeuw PJ, Silhouettes. A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.CrossRef Rousseeuw PJ, Silhouettes. A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.CrossRef
45.
Zurück zum Zitat Pollard KS, Van der Laan MJ. A method to identify significant clusters in gene expression data. Proc SCI 2002. 2002;2:318–25. Pollard KS, Van der Laan MJ. A method to identify significant clusters in gene expression data. Proc SCI 2002. 2002;2:318–25.
46.
Zurück zum Zitat Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.PubMedCrossRef Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.PubMedCrossRef
47.
Zurück zum Zitat Weber J, Dannheim F, Dannheim D. The topographical relationship between optic disc and visual field in glaucoma. Acta Ophthalmol (Copenh). 1990;68:568–74.PubMedCrossRef Weber J, Dannheim F, Dannheim D. The topographical relationship between optic disc and visual field in glaucoma. Acta Ophthalmol (Copenh). 1990;68:568–74.PubMedCrossRef
48.
Zurück zum Zitat Asman P, Heijl A. Glaucoma hemifield test. Automated visual field evaluation. Arch Ophthalmol. 1992;110:812–9.PubMedCrossRef Asman P, Heijl A. Glaucoma hemifield test. Automated visual field evaluation. Arch Ophthalmol. 1992;110:812–9.PubMedCrossRef
49.
Zurück zum Zitat Rokach L, Maimon O. Chapter 15: clustering methods. In: Maimon O, Rokach L, editors. Data Mining and Knowledge Discovery Handbook. Boston, MA: Springer; 2005. pp. 325–52. Rokach L, Maimon O. Chapter 15: clustering methods. In: Maimon O, Rokach L, editors. Data Mining and Knowledge Discovery Handbook. Boston, MA: Springer; 2005. pp. 325–52.
50.
Zurück zum Zitat Omoto T, Murata H, Fujino Y, Matsuura M, Yamashita T, Miki A, et al. Validating the usefulness of sectorwise regression of visual field in the central 10 degrees. Br J Ophthalmol. 2022;106:497–501.PubMedCrossRef Omoto T, Murata H, Fujino Y, Matsuura M, Yamashita T, Miki A, et al. Validating the usefulness of sectorwise regression of visual field in the central 10 degrees. Br J Ophthalmol. 2022;106:497–501.PubMedCrossRef
51.
Zurück zum Zitat White HA. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48:817–38.CrossRef White HA. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48:817–38.CrossRef
52.
Zurück zum Zitat Crabb DP, Russell RA, Malik R, Anand N, Baker H, Boodhna T, et al. editors. Frequency of visual field testing when monitoring patients newly diagnosed with glaucoma: mixed methods and modelling. Southampton (UK): NIHR Journals Library; 2014. Crabb DP, Russell RA, Malik R, Anand N, Baker H, Boodhna T, et al. editors. Frequency of visual field testing when monitoring patients newly diagnosed with glaucoma: mixed methods and modelling. Southampton (UK): NIHR Journals Library; 2014.
53.
Zurück zum Zitat Zeyen TG, Zulauf M, Caprioli J. Priority of test locations for automated perimetry in glaucoma. Ophthalmology. 1993;100:518–22.PubMedCrossRef Zeyen TG, Zulauf M, Caprioli J. Priority of test locations for automated perimetry in glaucoma. Ophthalmology. 1993;100:518–22.PubMedCrossRef
54.
Zurück zum Zitat Suzuki Y, Kitazawa Y, Araie M, Yamagami J, Yamamoto T, Ishida K, et al. Mathematical and optimal clustering of test points of the central 30-degree visual field of glaucoma. J Glaucoma. 2001;10:121–8.PubMedCrossRef Suzuki Y, Kitazawa Y, Araie M, Yamagami J, Yamamoto T, Ishida K, et al. Mathematical and optimal clustering of test points of the central 30-degree visual field of glaucoma. J Glaucoma. 2001;10:121–8.PubMedCrossRef
55.
Zurück zum Zitat Zhu H, Russell RA, Saunders LJ, Ceccon S, Garway-Heath DF, Crabb DP. Detecting changes in retinal function: analysis with Non-Stationary Weibull Error regression and spatial enhancement (ANSWERS). PLoS ONE. 2014;9:e85654.PubMedPubMedCentralCrossRef Zhu H, Russell RA, Saunders LJ, Ceccon S, Garway-Heath DF, Crabb DP. Detecting changes in retinal function: analysis with Non-Stationary Weibull Error regression and spatial enhancement (ANSWERS). PLoS ONE. 2014;9:e85654.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat O’Leary N, Chauhan BC, Artes PH. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR). Invest Ophthalmol Vis Sci. 2012;53:6776–84.PubMedCrossRef O’Leary N, Chauhan BC, Artes PH. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR). Invest Ophthalmol Vis Sci. 2012;53:6776–84.PubMedCrossRef
57.
Zurück zum Zitat Garway-Heath DF, Lascaratos G, Bunce C, Crabb DP, Russell RA, Shah A, et al. The United Kingdom Glaucoma treatment study: a multicenter, randomized, placebo-controlled clinical trial: design and methodology. Ophthalmology. 2013;120:68–76.PubMedCrossRef Garway-Heath DF, Lascaratos G, Bunce C, Crabb DP, Russell RA, Shah A, et al. The United Kingdom Glaucoma treatment study: a multicenter, randomized, placebo-controlled clinical trial: design and methodology. Ophthalmology. 2013;120:68–76.PubMedCrossRef
58.
Zurück zum Zitat Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–304.PubMedCrossRef Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–304.PubMedCrossRef
59.
Zurück zum Zitat Zhu H, Crabb DP, Ho T, Garway-Heath DF. More Accurate modeling of visual field progression in Glaucoma: ANSWERS. Invest Ophthalmol Vis Sci. 2015;56:6077–83.PubMedCrossRef Zhu H, Crabb DP, Ho T, Garway-Heath DF. More Accurate modeling of visual field progression in Glaucoma: ANSWERS. Invest Ophthalmol Vis Sci. 2015;56:6077–83.PubMedCrossRef
60.
Zurück zum Zitat Murata H, Araie M, Asaoka R. A new approach to measure visual field progression in glaucoma patients using variational bayes linear regression. Invest Ophthalmol Vis Sci. 2014;55:8386–92.PubMedCrossRef Murata H, Araie M, Asaoka R. A new approach to measure visual field progression in glaucoma patients using variational bayes linear regression. Invest Ophthalmol Vis Sci. 2014;55:8386–92.PubMedCrossRef
61.
Zurück zum Zitat Murata H, Zangwill LM, Fujino Y, Matsuura M, Miki A, Hirasawa K, et al. Validating Variational Bayes Linear Regression Method with Multi-Central Datasets. Invest Ophthalmol Vis Sci. 2018;59:1897–904.PubMedPubMedCentralCrossRef Murata H, Zangwill LM, Fujino Y, Matsuura M, Miki A, Hirasawa K, et al. Validating Variational Bayes Linear Regression Method with Multi-Central Datasets. Invest Ophthalmol Vis Sci. 2018;59:1897–904.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997;75:368–75.PubMedCrossRef Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997;75:368–75.PubMedCrossRef
63.
Zurück zum Zitat Murata H, Asaoka R, Fujino Y, Matsuura M, Hirasawa K, Shimada S, et al. Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the swedish interactive thresholding algorithm. Br J Ophthalmol. 2022;106:660–6.PubMedCrossRef Murata H, Asaoka R, Fujino Y, Matsuura M, Hirasawa K, Shimada S, et al. Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the swedish interactive thresholding algorithm. Br J Ophthalmol. 2022;106:660–6.PubMedCrossRef
65.
Zurück zum Zitat Lefferts EJ, Markley FL, Shuster MD. Kalman Filtering for Spacecraft attitude estimation. J Guid Control Dyn. 1982;5:417–29.CrossRef Lefferts EJ, Markley FL, Shuster MD. Kalman Filtering for Spacecraft attitude estimation. J Guid Control Dyn. 1982;5:417–29.CrossRef
66.
Zurück zum Zitat Kalman RE. A New Approach to Linear filtering and prediction problems. J Basic Eng. 1960;82:35–45.CrossRef Kalman RE. A New Approach to Linear filtering and prediction problems. J Basic Eng. 1960;82:35–45.CrossRef
67.
Zurück zum Zitat Catlin DE. The Discrete Kalman Filter. Estimation, control, and the Discrete Kalman Filter. 71st ed. Springer Science & Business Media; 2012:133–63. Catlin DE. The Discrete Kalman Filter. Estimation, control, and the Discrete Kalman Filter. 71st ed. Springer Science & Business Media; 2012:133–63.
68.
Zurück zum Zitat Ederer F, Gaasterland DE, Sullivan EK, Investigators A. The advanced Glaucoma intervention study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials. 1994;15:299–325.PubMedCrossRef Ederer F, Gaasterland DE, Sullivan EK, Investigators A. The advanced Glaucoma intervention study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials. 1994;15:299–325.PubMedCrossRef
69.
Zurück zum Zitat Musch DC, Lichter PR, Guire KE, Standardi CL. The collaborative initial Glaucoma treatment study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology. 1999;106:653–62.PubMedCrossRef Musch DC, Lichter PR, Guire KE, Standardi CL. The collaborative initial Glaucoma treatment study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology. 1999;106:653–62.PubMedCrossRef
70.
Zurück zum Zitat Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK, Investigators CS. Visual field progression in the collaborative initial Glaucoma treatment study the impact of treatment and other baseline factors. Ophthalmology. 2009;116:200–7.PubMedCrossRef Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK, Investigators CS. Visual field progression in the collaborative initial Glaucoma treatment study the impact of treatment and other baseline factors. Ophthalmology. 2009;116:200–7.PubMedCrossRef
71.
Zurück zum Zitat Garcia GP, Nitta K, Lavieri MS, Andrews C, Liu X, Lobaza E, et al. Using Kalman Filtering to Forecast Disease Trajectory for patients with normal tension Glaucoma. Am J Ophthalmol. 2019;199:111–9.PubMedCrossRef Garcia GP, Nitta K, Lavieri MS, Andrews C, Liu X, Lobaza E, et al. Using Kalman Filtering to Forecast Disease Trajectory for patients with normal tension Glaucoma. Am J Ophthalmol. 2019;199:111–9.PubMedCrossRef
74.
Zurück zum Zitat Aggarwal CC. Neural networks and deep learning: a Textbook. Springer; 2018. p. 207–13.CrossRef Aggarwal CC. Neural networks and deep learning: a Textbook. Springer; 2018. p. 207–13.CrossRef
75.
Zurück zum Zitat Shaojie C, Meng Z, Zhao Q, Electrocardiogram recognization based on variational AutoEncoder. In: Machine learning and biometrics. IntechOpen; 2018 Shaojie C, Meng Z, Zhao Q, Electrocardiogram recognization based on variational AutoEncoder. In: Machine learning and biometrics. IntechOpen; 2018
76.
Zurück zum Zitat Asaoka R, Murata H, Matsuura M, Fujino Y, Yanagisawa M, Yamashita T. Improving structure-function relationship in glaucomatous visual fields by using a deep learning-based noise reduction approach. Ophthalmol Glaucoma. 2020;3:210–7.PubMedCrossRef Asaoka R, Murata H, Matsuura M, Fujino Y, Yanagisawa M, Yamashita T. Improving structure-function relationship in glaucomatous visual fields by using a deep learning-based noise reduction approach. Ophthalmol Glaucoma. 2020;3:210–7.PubMedCrossRef
77.
Zurück zum Zitat Asaoka R, Murata H, Asano S, Matsuura M, Fujino Y, Miki A, et al. The usefulness of the deep learning method of variational autoencoder to reduce measurement noise in glaucomatous visual fields. Sci Rep. 2020;10:7893.PubMedPubMedCentralCrossRef Asaoka R, Murata H, Asano S, Matsuura M, Fujino Y, Miki A, et al. The usefulness of the deep learning method of variational autoencoder to reduce measurement noise in glaucomatous visual fields. Sci Rep. 2020;10:7893.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Berchuck SI, Mukherjee S, Medeiros FA. Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma using a deep Variational Autoencoder. Sci Rep. 2019;9:18113.PubMedPubMedCentralCrossRef Berchuck SI, Mukherjee S, Medeiros FA. Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma using a deep Variational Autoencoder. Sci Rep. 2019;9:18113.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Methodological. 1996;58:267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Methodological. 1996;58:267–88.
80.
81.
Zurück zum Zitat Fujino Y, Murata H, Mayama C, Asaoka R. Applying “Lasso” regression to predict future visual field progression in Glaucoma patients. Invest Ophthalmol Vis Sci. 2015;56:2334–9.PubMedCrossRef Fujino Y, Murata H, Mayama C, Asaoka R. Applying “Lasso” regression to predict future visual field progression in Glaucoma patients. Invest Ophthalmol Vis Sci. 2015;56:2334–9.PubMedCrossRef
82.
Zurück zum Zitat Asaoka R. Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and ‘lasso regression’. PLoS ONE. 2013;8:e72199.PubMedPubMedCentralCrossRef Asaoka R. Measuring visual field progression in the central 10 degrees using additional information from central 24 degrees visual fields and ‘lasso regression’. PLoS ONE. 2013;8:e72199.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39:23–42.PubMedCrossRef Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39:23–42.PubMedCrossRef
85.
Zurück zum Zitat Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology. 2009;116:2110–8.PubMedCrossRef Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology. 2009;116:2110–8.PubMedCrossRef
86.
Zurück zum Zitat Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol. 2009;127:1250–6.PubMedPubMedCentralCrossRef Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol. 2009;127:1250–6.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Miki A, Medeiros FA, Weinreb RN, Jain S, He F, Sharpsten L, et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology. 2014;121:1350–8.PubMedCrossRef Miki A, Medeiros FA, Weinreb RN, Jain S, He F, Sharpsten L, et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology. 2014;121:1350–8.PubMedCrossRef
88.
Zurück zum Zitat Wadhwani M, Bali SJ, Satyapal R, Angmo D, Sharma R, Pandey V, et al. Test-retest variability of retinal nerve fiber layer thickness and macular ganglion cell-inner plexiform layer thickness measurements using spectral-domain optical coherence tomography. J Glaucoma. 2015;24:e109–15.PubMedCrossRef Wadhwani M, Bali SJ, Satyapal R, Angmo D, Sharma R, Pandey V, et al. Test-retest variability of retinal nerve fiber layer thickness and macular ganglion cell-inner plexiform layer thickness measurements using spectral-domain optical coherence tomography. J Glaucoma. 2015;24:e109–15.PubMedCrossRef
89.
Zurück zum Zitat Francoz M, Fenolland JR, Giraud JM, El Chehab H, Sendon D, May F, et al. Reproducibility of macular ganglion cell-inner plexiform layer thickness measurement with cirrus HD-OCT in normal, hypertensive and glaucomatous eyes. Br J Ophthalmol. 2014;98:322–8.PubMedCrossRef Francoz M, Fenolland JR, Giraud JM, El Chehab H, Sendon D, May F, et al. Reproducibility of macular ganglion cell-inner plexiform layer thickness measurement with cirrus HD-OCT in normal, hypertensive and glaucomatous eyes. Br J Ophthalmol. 2014;98:322–8.PubMedCrossRef
90.
Zurück zum Zitat Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.PubMedPubMedCentralCrossRef Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8323–9.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma. 2015;24:55–63.PubMedCrossRef Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J Glaucoma. 2015;24:55–63.PubMedCrossRef
92.
Zurück zum Zitat Garway-Heath DF, Zhu H, Cheng Q, Morgan K, Frost C, Crabb DP, et al. Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study. Health Technol Assess. 2018;22:1–106.PubMedPubMedCentralCrossRef Garway-Heath DF, Zhu H, Cheng Q, Morgan K, Frost C, Crabb DP, et al. Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study. Health Technol Assess. 2018;22:1–106.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Zheng Y, Xu L, Kiwaki T, Wang J, Murata H, Asaoka R et al. Glaucoma Progression Prediction Using Retinal Thickness via Latent Space Linear Regression. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). 2019: 2278-86. Zheng Y, Xu L, Kiwaki T, Wang J, Murata H, Asaoka R et al. Glaucoma Progression Prediction Using Retinal Thickness via Latent Space Linear Regression. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). 2019: 2278-86.
94.
Zurück zum Zitat Zhang Y, Yang Q. A survey on multi-task learning. Natl Sci Rev. 2018;5:30–43.CrossRef Zhang Y, Yang Q. A survey on multi-task learning. Natl Sci Rev. 2018;5:30–43.CrossRef
96.
Zurück zum Zitat Hashimoto Y, Asaoka R, Kiwaki T, Sugiura H, Asano S, Murata H, et al. Deep learning model to predict visual field in central 10 degrees from optical coherence tomography measurement in glaucoma. Br J Ophthalmol. 2021;105:507–13.PubMedCrossRef Hashimoto Y, Asaoka R, Kiwaki T, Sugiura H, Asano S, Murata H, et al. Deep learning model to predict visual field in central 10 degrees from optical coherence tomography measurement in glaucoma. Br J Ophthalmol. 2021;105:507–13.PubMedCrossRef
97.
Zurück zum Zitat Hashimoto Y, Kiwaki T, Sugiura H, Asano S, Murata H, Fujino Y, et al. Predicting 10 – 2 visual field from optical coherence tomography in Glaucoma using deep learning corrected with 24 – 2/30 – 2 visual field. Transl Vis Sci Technol. 2021;10:28.PubMedPubMedCentralCrossRef Hashimoto Y, Kiwaki T, Sugiura H, Asano S, Murata H, Fujino Y, et al. Predicting 10 – 2 visual field from optical coherence tomography in Glaucoma using deep learning corrected with 24 – 2/30 – 2 visual field. Transl Vis Sci Technol. 2021;10:28.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Xu L, Asaoka R, Kiwaki T, Murata H, Fujino Y, Matsuura M, et al. Predicting the Glaucomatous Central 10-Degree Visual Field from Optical Coherence Tomography using Deep Learning and Tensor Regression. Am J Ophthalmol. 2020;218:304–13.PubMedCrossRef Xu L, Asaoka R, Kiwaki T, Murata H, Fujino Y, Matsuura M, et al. Predicting the Glaucomatous Central 10-Degree Visual Field from Optical Coherence Tomography using Deep Learning and Tensor Regression. Am J Ophthalmol. 2020;218:304–13.PubMedCrossRef
99.
Zurück zum Zitat Asano S, Asaoka R, Murata H, Hashimoto Y, Miki A, Mori K, et al. Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images. Sci Rep. 2021;11:2214.PubMedPubMedCentralCrossRef Asano S, Asaoka R, Murata H, Hashimoto Y, Miki A, Mori K, et al. Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images. Sci Rep. 2021;11:2214.PubMedPubMedCentralCrossRef
100.
101.
Zurück zum Zitat Asaoka R, Xu L, Murata H, Kiwaki T, Matsuura M, Fujino Y, et al. A joint Multitask Learning Model for cross-sectional and longitudinal predictions of Visual Field using OCT. Ophthalmol Sci. 2021;1:100055.PubMedPubMedCentralCrossRef Asaoka R, Xu L, Murata H, Kiwaki T, Matsuura M, Fujino Y, et al. A joint Multitask Learning Model for cross-sectional and longitudinal predictions of Visual Field using OCT. Ophthalmol Sci. 2021;1:100055.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Detry-Morel M, Jamart J, Hautenauven F, Pourjavan S. Comparison of the corneal biomechanical properties with the Ocular Response Analyzer(R) (ORA) in african and caucasian normal subjects and patients with glaucoma. Acta Ophthalmol. 2012;90:e118–24.PubMedCrossRef Detry-Morel M, Jamart J, Hautenauven F, Pourjavan S. Comparison of the corneal biomechanical properties with the Ocular Response Analyzer(R) (ORA) in african and caucasian normal subjects and patients with glaucoma. Acta Ophthalmol. 2012;90:e118–24.PubMedCrossRef
103.
Zurück zum Zitat Susanna CN, Diniz-Filho A, Daga FB, Susanna BN, Zhu F, Ogata NG, et al. A prospective longitudinal study to investigate corneal hysteresis as a risk factor for Predicting Development of Glaucoma. Am J Ophthalmol. 2018;187:148–52.PubMedPubMedCentralCrossRef Susanna CN, Diniz-Filho A, Daga FB, Susanna BN, Zhu F, Ogata NG, et al. A prospective longitudinal study to investigate corneal hysteresis as a risk factor for Predicting Development of Glaucoma. Am J Ophthalmol. 2018;187:148–52.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Hirasawa K, Matsuura M, Murata H, Nakakura S, Nakao Y, Kiuchi Y, et al. Association between corneal Biomechanical Properties with Ocular Response Analyzer and also CorvisST Tonometry, and Glaucomatous Visual Field Severity. Transl Vis Sci Technol. 2017;6:18.PubMedPubMedCentralCrossRef Hirasawa K, Matsuura M, Murata H, Nakakura S, Nakao Y, Kiuchi Y, et al. Association between corneal Biomechanical Properties with Ocular Response Analyzer and also CorvisST Tonometry, and Glaucomatous Visual Field Severity. Transl Vis Sci Technol. 2017;6:18.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120:1533–40.PubMedCrossRef Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120:1533–40.PubMedCrossRef
106.
Zurück zum Zitat De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21:209–13.PubMedCrossRef De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21:209–13.PubMedCrossRef
107.
Zurück zum Zitat Matsuura M, Hirasawa K, Murata H, Nakakura S, Kiuchi Y, Asaoka R. The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma. Sci Rep. 2017;7:40798.PubMedPubMedCentralCrossRef Matsuura M, Hirasawa K, Murata H, Nakakura S, Kiuchi Y, Asaoka R. The usefulness of CorvisST Tonometry and the Ocular Response Analyzer to assess the progression of glaucoma. Sci Rep. 2017;7:40798.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1:67.CrossRef Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1:67.CrossRef
Metadaten
Titel
Prediction of visual field progression in glaucoma: existing methods and artificial intelligence
verfasst von
Ryo Asaoka
Hiroshi Murata
Publikationsdatum
04.08.2023
Verlag
Springer Japan
Erschienen in
Japanese Journal of Ophthalmology / Ausgabe 5/2023
Print ISSN: 0021-5155
Elektronische ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-023-01009-3

Weitere Artikel der Ausgabe 5/2023

Japanese Journal of Ophthalmology 5/2023 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

CME: Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Wird ein Glaukom chirurgisch behandelt, ist die anschließende Wundheilung von entscheidender Bedeutung. In diesem CME-Kurs lernen Sie, welche Pathomechanismen der Vernarbung zugrunde liegen, wie perioperativ therapiert und Operationsversagen frühzeitig erkannt werden kann.

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.