Skip to main content
Erschienen in: Herz 2/2023

26.01.2023 | Schwerpunkt

Mechanoenergetische Defekte bei Herzinsuffizienz

verfasst von: Prof. Dr. Christoph Maack

Erschienen in: Herz | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Herzinsuffizienz ist gekennzeichnet durch Defekte der elektromechanischen Kopplung, energetisches Defizit und oxidativen Stress. Die Bereitstellung von Energie für die kardiale Kontraktion und Relaxation erfolgt in Mitochondrien, deren Funktion eng durch die elektromechanische Kopplung in Herzmuskelzellen reguliert wird. Bei der Herzinsuffizienz mit reduzierter Ejektionsfraktion (HFrEF) beeinträchtigen Veränderungen des Ionenhaushalts in Herzmuskelzellen die mitochondriale Ca2+-Aufnahme und erzeugen so über mangelhafte Zitratzyklusaktivierung energetisches Defizit und oxidativen Stress. Neuere klinische Studien legen nahe, dass bei Herzinsuffizienz mit erhaltener Ejektionsfraktion (HFpEF) – im Gegensatz zu HFrEF – häufig eine Hyperkontraktilität vorliegt, die pathologisch erhöhte systemische und pulmonale Gefäßwiderstände zu kompensieren versucht. Diese Hyperkontraktilität erhöht den kardialen Energie- und Sauerstoffbedarf in Ruhe und reduziert die kontraktile, diastolische und koronare Reserve, wodurch keine adäquate Steigerung des Herzzeitvolumens unter Belastung erfolgen kann. Darüber hinaus verursacht die gesteigerte Kontraktilität langfristig maladaptive Remodelling-Prozesse, die u. a. auf oxidativen Stress und redoxsensible prohypertrophe Signalwege zurückzuführen sind. Da Übergewicht und Diabetes, insbesondere im Zusammenspiel mit hämodynamischer Belastung, wichtige Risikofaktoren für die Entwicklung einer HFpEF sind, könnten insbesondere metabolische Interventionen einen günstigen Einfluss auf die Entstehung und den Verlauf der HFpEF haben.
Literatur
1.
Zurück zum Zitat Groenewegen A, Rutten FH, Mosterd A, Hoes AW (2020) Epidemiology of heart failure. Eur J Heart Fail 22:1342–1356PubMedCrossRef Groenewegen A, Rutten FH, Mosterd A, Hoes AW (2020) Epidemiology of heart failure. Eur J Heart Fail 22:1342–1356PubMedCrossRef
2.
Zurück zum Zitat Ambrosy AP, Fonarow GC, Butler J et al (2014) Gheorghiade, the global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63:1123–1133PubMedCrossRef Ambrosy AP, Fonarow GC, Butler J et al (2014) Gheorghiade, the global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63:1123–1133PubMedCrossRef
3.
Zurück zum Zitat Störk S, Hense HW, Zentgraf C et al (2008) Pharmacotherapy according to treatment guidelines is associated with lower mortality in a community-based sample of patients with chronic heart failure: a prospective cohort study. Eur J Heart Fail 10:1236–1245PubMedCrossRef Störk S, Hense HW, Zentgraf C et al (2008) Pharmacotherapy according to treatment guidelines is associated with lower mortality in a community-based sample of patients with chronic heart failure: a prospective cohort study. Eur J Heart Fail 10:1236–1245PubMedCrossRef
4.
Zurück zum Zitat Conrad N, Judge A, Tran J et al (2018) Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391:572–580PubMedPubMedCentralCrossRef Conrad N, Judge A, Tran J et al (2018) Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391:572–580PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Maack C, Lehrke M, Backs J et al (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 39:4243–4254PubMedPubMedCentralCrossRef Maack C, Lehrke M, Backs J et al (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 39:4243–4254PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Bertero E, Dudek J, Cochain C et al (2021) Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 118:37–52CrossRef Bertero E, Dudek J, Cochain C et al (2021) Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 118:37–52CrossRef
7.
Zurück zum Zitat Ng M, Fleming T, Robinson M et al (2013) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study. Lancet 384(2014):766–781 Ng M, Fleming T, Robinson M et al (2013) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study. Lancet 384(2014):766–781
8.
Zurück zum Zitat Braunwald E, Diabetes (2019) heart failure, and renal dysfunction: The vicious circles. Prog Cardiovasc Dis 62:298–302PubMedCrossRef Braunwald E, Diabetes (2019) heart failure, and renal dysfunction: The vicious circles. Prog Cardiovasc Dis 62:298–302PubMedCrossRef
9.
Zurück zum Zitat Robertson J, Lindgren M, Schaufelberger M et al (2020) Body mass index in young women and risk of cardiomyopathy: A long-term follow-up study in Sweden. Circulation 141:520–529PubMedPubMedCentralCrossRef Robertson J, Lindgren M, Schaufelberger M et al (2020) Body mass index in young women and risk of cardiomyopathy: A long-term follow-up study in Sweden. Circulation 141:520–529PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Robertson J, Schaufelberger M, Lindgren M et al (2019) Higher body mass index in adolescence predicts cardiomyopathy risk in midlife. Circulation 140:117–125PubMedPubMedCentralCrossRef Robertson J, Schaufelberger M, Lindgren M et al (2019) Higher body mass index in adolescence predicts cardiomyopathy risk in midlife. Circulation 140:117–125PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726PubMedCrossRef McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726PubMedCrossRef
13.
Zurück zum Zitat Lupón J, Díez-López C, de Antonio M et al (2017) Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur J Heart Fail 19:1615–1623PubMedCrossRef Lupón J, Díez-López C, de Antonio M et al (2017) Recovered heart failure with reduced ejection fraction and outcomes: a prospective study. Eur J Heart Fail 19:1615–1623PubMedCrossRef
14.
Zurück zum Zitat Lupón J, Gavidia-Bovadilla G, Ferrer E et al (2019) Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ Heart Fail 12:e5652PubMedCrossRef Lupón J, Gavidia-Bovadilla G, Ferrer E et al (2019) Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ Heart Fail 12:e5652PubMedCrossRef
15.
Zurück zum Zitat Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789PubMedCrossRef Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789PubMedCrossRef
16.
Zurück zum Zitat Tschöpe C, Ammirati E, Bozkurt B et al (2021) Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol 18:169–193PubMedCrossRef Tschöpe C, Ammirati E, Bozkurt B et al (2021) Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol 18:169–193PubMedCrossRef
17.
Zurück zum Zitat Pudil R, Mueller C, Čelutkienė J et al (2020) Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail 22:1966–1983PubMedCrossRef Pudil R, Mueller C, Čelutkienė J et al (2020) Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail 22:1966–1983PubMedCrossRef
18.
Zurück zum Zitat Vaduganathan M, Docherty KF, Claggett BL et al (2022) SGLT‑2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400:757–767PubMedCrossRef Vaduganathan M, Docherty KF, Claggett BL et al (2022) SGLT‑2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400:757–767PubMedCrossRef
19.
Zurück zum Zitat Lehman SJ, Crocini C, Leinwand LA (2022) Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol 19:353–363PubMedCrossRef Lehman SJ, Crocini C, Leinwand LA (2022) Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol 19:353–363PubMedCrossRef
20.
Zurück zum Zitat Teerlink JR, Diaz R, Felker GM et al (2021) Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med 384:105–116PubMedCrossRef Teerlink JR, Diaz R, Felker GM et al (2021) Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med 384:105–116PubMedCrossRef
21.
Zurück zum Zitat Teerlink JR, Diaz R, Felker GM et al (2021) Effect of ejection fraction on clinical outcomes in patients treated with omecamtiv mecarbil in GALACTIC-HF. J Am Coll Cardiol 78:97–108PubMedCrossRef Teerlink JR, Diaz R, Felker GM et al (2021) Effect of ejection fraction on clinical outcomes in patients treated with omecamtiv mecarbil in GALACTIC-HF. J Am Coll Cardiol 78:97–108PubMedCrossRef
22.
Zurück zum Zitat Olivotto I, Oreziak A, Barriales-Villa R et al (2020) Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396:759–769PubMedCrossRef Olivotto I, Oreziak A, Barriales-Villa R et al (2020) Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396:759–769PubMedCrossRef
23.
Zurück zum Zitat Spertus JA, Fine JT, Elliott P et al (2021) Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 397:2467–2475PubMedCrossRef Spertus JA, Fine JT, Elliott P et al (2021) Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 397:2467–2475PubMedCrossRef
24.
Zurück zum Zitat Saberi S, Cardim N, Yamani M et al (2021) Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis. Circulation 143:606–608PubMedCrossRef Saberi S, Cardim N, Yamani M et al (2021) Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis. Circulation 143:606–608PubMedCrossRef
25.
Zurück zum Zitat Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology 21:380–387PubMedCrossRef Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology 21:380–387PubMedCrossRef
26.
Zurück zum Zitat Mulieri LA, Hasenfuss G, Leavitt B et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743–1750PubMedCrossRef Mulieri LA, Hasenfuss G, Leavitt B et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743–1750PubMedCrossRef
27.
Zurück zum Zitat Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRef Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRef
28.
Zurück zum Zitat Lowes BD, Gilbert EM, Abraham WT et al (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346:1357–1365PubMedCrossRef Lowes BD, Gilbert EM, Abraham WT et al (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346:1357–1365PubMedCrossRef
29.
Zurück zum Zitat De Ferrari GM, Mazzuero A, Agnesina L et al (2008) Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur J Heart Fail 10:550–555PubMedCrossRef De Ferrari GM, Mazzuero A, Agnesina L et al (2008) Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur J Heart Fail 10:550–555PubMedCrossRef
30.
Zurück zum Zitat Tardif JC, O’Meara E, Komajda M et al (2011) Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J 32:2507–2515PubMedPubMedCentralCrossRef Tardif JC, O’Meara E, Komajda M et al (2011) Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J 32:2507–2515PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Murashige D, Jang C, Neinast M et al (2020) Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370:364–368PubMedPubMedCentralCrossRef Murashige D, Jang C, Neinast M et al (2020) Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370:364–368PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Bertero E, Maack C (2018) Calcium signaling and reactive oxygen species in mitochondria. Circ Res 122:1460–1478PubMedCrossRef Bertero E, Maack C (2018) Calcium signaling and reactive oxygen species in mitochondria. Circ Res 122:1460–1478PubMedCrossRef
33.
Zurück zum Zitat Sequeira V, Bertero E, Maack C (2019) Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett 593:1616–1626PubMedCrossRef Sequeira V, Bertero E, Maack C (2019) Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett 593:1616–1626PubMedCrossRef
34.
Zurück zum Zitat Neubauer S (2007) The failing heart—An engine out of fuel. N Engl J Med 356:1140–1151PubMedCrossRef Neubauer S (2007) The failing heart—An engine out of fuel. N Engl J Med 356:1140–1151PubMedCrossRef
35.
Zurück zum Zitat Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457–470PubMedCrossRef Bertero E, Maack C (2018) Metabolic remodelling in heart failure. Nat Rev Cardiol 15:457–470PubMedCrossRef
36.
Zurück zum Zitat Cordero-Reyes AM, Gupte AA, Youker KA et al (2014) Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 68:98–105PubMedPubMedCentralCrossRef Cordero-Reyes AM, Gupte AA, Youker KA et al (2014) Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 68:98–105PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Holzem KM, Vinnakota KC, Ravikumar VK et al (2016) Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J 30:2698–2707PubMedPubMedCentralCrossRef Holzem KM, Vinnakota KC, Ravikumar VK et al (2016) Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J 30:2698–2707PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613PubMedPubMedCentralCrossRef Kohlhaas M, Liu T, Knopp A et al (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Dey S, DeMazumder D, Sidor A et al (2018) Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 123:356–371PubMedPubMedCentralCrossRef Dey S, DeMazumder D, Sidor A et al (2018) Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 123:356–371PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Liu T, Takimoto E, Dimaano VL et al (2014) Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res 115:44–54PubMedPubMedCentralCrossRef Liu T, Takimoto E, Dimaano VL et al (2014) Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res 115:44–54PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Erickson JR, Joiner ML, Guan X et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474PubMedPubMedCentralCrossRef Erickson JR, Joiner ML, Guan X et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Ago T, Liu T, Zhai P et al (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993PubMedCrossRef Ago T, Liu T, Zhai P et al (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993PubMedCrossRef
43.
Zurück zum Zitat Backs J, Song K, Bezprozvannaya S et al (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116:1853–1864PubMedPubMedCentralCrossRef Backs J, Song K, Bezprozvannaya S et al (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116:1853–1864PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Wagner S, Maier LS, Bers DM (2015) Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res 116:1956–1970PubMedPubMedCentralCrossRef Wagner S, Maier LS, Bers DM (2015) Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res 116:1956–1970PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Hegyi B, Pölönen R‑P, Hellgren KT et al (2021) Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 116:58PubMedPubMedCentralCrossRef Hegyi B, Pölönen R‑P, Hellgren KT et al (2021) Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 116:58PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Münzel T, Camici GG, Maack C et al (2017) Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J Am Coll Cardiol 70:212–229PubMedPubMedCentralCrossRef Münzel T, Camici GG, Maack C et al (2017) Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series. J Am Coll Cardiol 70:212–229PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Zannad F, Ferreira JP, Pocock SJ et al (2020) SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396:819–829PubMedCrossRef Zannad F, Ferreira JP, Pocock SJ et al (2020) SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396:819–829PubMedCrossRef
48.
Zurück zum Zitat Philippaert K, Kalyaanamoorthy S, Fatehi M et al (2021) Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation 143:2188–2204PubMedPubMedCentralCrossRef Philippaert K, Kalyaanamoorthy S, Fatehi M et al (2021) Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation 143:2188–2204PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Hegyi B, Mira Hernandez J, Shen EY et al (2022) Empagliflozin reverses late Na(+) current enhancement and cardiomyocyte proarrhythmia in a translational murine model of heart failure with preserved ejection fraction. Circulation 145:1029–1031PubMedCrossRef Hegyi B, Mira Hernandez J, Shen EY et al (2022) Empagliflozin reverses late Na(+) current enhancement and cardiomyocyte proarrhythmia in a translational murine model of heart failure with preserved ejection fraction. Circulation 145:1029–1031PubMedCrossRef
50.
Zurück zum Zitat Mustroph J, Wagemann O, Lücht CM et al (2018) Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Fail 5:642–648PubMedPubMedCentralCrossRef Mustroph J, Wagemann O, Lücht CM et al (2018) Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Fail 5:642–648PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Mustroph J, Baier MJ, Pabel S et al (2022) Empagliflozin inhibits cardiac late sodium current by Ca/Calmodulin-dependent kinase II. Circulation 146:1259–1261PubMedPubMedCentralCrossRef Mustroph J, Baier MJ, Pabel S et al (2022) Empagliflozin inhibits cardiac late sodium current by Ca/Calmodulin-dependent kinase II. Circulation 146:1259–1261PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Bhatia RS, Tu JV, Lee DS et al (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269PubMedCrossRef Bhatia RS, Tu JV, Lee DS et al (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269PubMedCrossRef
53.
Zurück zum Zitat Streng KW, Nauta JF, Hillege HL et al (2018) Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 271:132–139PubMedCrossRef Streng KW, Nauta JF, Hillege HL et al (2018) Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 271:132–139PubMedCrossRef
54.
Zurück zum Zitat Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure—Abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959PubMedCrossRef Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure—Abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959PubMedCrossRef
55.
Zurück zum Zitat Aurigemma GP, Zile MR, Gaasch WH (2006) Contractile behavior of the left ventricle in diastolic. Circ Heart Fail 113:296–304 Aurigemma GP, Zile MR, Gaasch WH (2006) Contractile behavior of the left ventricle in diastolic. Circ Heart Fail 113:296–304
56.
Zurück zum Zitat Zile MR, Baicu CF, Ikonomidis JS et al (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259PubMedPubMedCentralCrossRef Zile MR, Baicu CF, Ikonomidis JS et al (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Mishra S, Kass DA (2021) Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 18:400–423PubMedPubMedCentralCrossRef Mishra S, Kass DA (2021) Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 18:400–423PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Caporizzo MA, Chen CY, Bedi K et al (2020) Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation 141:902–915PubMedPubMedCentralCrossRef Caporizzo MA, Chen CY, Bedi K et al (2020) Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation 141:902–915PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Schiattarella GG, Altamirano F, Tong D et al (2019) Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568:351–356PubMedPubMedCentralCrossRef Schiattarella GG, Altamirano F, Tong D et al (2019) Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568:351–356PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Burrage MK, Hundertmark M, Valkovič L et al (2021) Energetic basis for exercise-induced pulmonary congestion in heart failure with preserved ejection fraction. Circulation 144:1664–1678PubMedPubMedCentralCrossRef Burrage MK, Hundertmark M, Valkovič L et al (2021) Energetic basis for exercise-induced pulmonary congestion in heart failure with preserved ejection fraction. Circulation 144:1664–1678PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Rayner JJ, Peterzan MA, Watson WD et al (2020) Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response. Circulation 141:1152–1163PubMedPubMedCentralCrossRef Rayner JJ, Peterzan MA, Watson WD et al (2020) Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response. Circulation 141:1152–1163PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Tan Y, Zhang Z, Zheng C et al (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 17:585–607PubMedPubMedCentralCrossRef Tan Y, Zhang Z, Zheng C et al (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 17:585–607PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Echtay KS, Roussel D, St-Pierre J et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99PubMedCrossRef Echtay KS, Roussel D, St-Pierre J et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99PubMedCrossRef
67.
Zurück zum Zitat Murray AJ, Anderson RE, Watson GC et al (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788PubMedCrossRef Murray AJ, Anderson RE, Watson GC et al (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788PubMedCrossRef
68.
69.
Zurück zum Zitat Borlaug BA, Kane GC, Melenovsky V, Olson TP (2016) Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J 37:3293–3302PubMedPubMedCentralCrossRef Borlaug BA, Kane GC, Melenovsky V, Olson TP (2016) Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J 37:3293–3302PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19PubMedPubMedCentralCrossRef Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Edelmann F, Gelbrich G, Düngen HD et al (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol 58:1780–1791PubMedCrossRef Edelmann F, Gelbrich G, Düngen HD et al (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol 58:1780–1791PubMedCrossRef
72.
Zurück zum Zitat Bjarnason-Wehrens B, Nebel R, Jensen K et al (2020) Exercise-based cardiac rehabilitation in patients with reduced left ventricular ejection fraction: the cardiac rehabilitation outcome study in heart failure (CROS-HF): a systematic review and meta-analysis. Eur J Prev Cardiol 27:929–952PubMedCrossRef Bjarnason-Wehrens B, Nebel R, Jensen K et al (2020) Exercise-based cardiac rehabilitation in patients with reduced left ventricular ejection fraction: the cardiac rehabilitation outcome study in heart failure (CROS-HF): a systematic review and meta-analysis. Eur J Prev Cardiol 27:929–952PubMedCrossRef
73.
Zurück zum Zitat von Haehling S, Arzt M, Doehner W et al (2021) Improving exercise capacity and quality of life using non-invasive heart failure treatments: evidence from clinical trials. Eur J Heart Fail 23:92–113CrossRef von Haehling S, Arzt M, Doehner W et al (2021) Improving exercise capacity and quality of life using non-invasive heart failure treatments: evidence from clinical trials. Eur J Heart Fail 23:92–113CrossRef
74.
Zurück zum Zitat Nijholt KT, Sánchez-Aguilera PI, Voorrips SN et al (2022) Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure? Eur J Heart Fail 24:287–298PubMedCrossRef Nijholt KT, Sánchez-Aguilera PI, Voorrips SN et al (2022) Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure? Eur J Heart Fail 24:287–298PubMedCrossRef
75.
Zurück zum Zitat Allaf M, Elghazaly H, Mohamed OG et al (2021) Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev 1:Cd13496PubMed Allaf M, Elghazaly H, Mohamed OG et al (2021) Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev 1:Cd13496PubMed
76.
Zurück zum Zitat Bianchi VE (2020) Caloric restriction in heart failure: A systematic review. Clin Nutr ESPEN 38:50–60PubMedCrossRef Bianchi VE (2020) Caloric restriction in heart failure: A systematic review. Clin Nutr ESPEN 38:50–60PubMedCrossRef
77.
Zurück zum Zitat Packer M (2020) Cardioprotective effects of Sirtuin‑1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose Cotransporter 2) inhibitors. Circ Heart Fail 13:e7197PubMedCrossRef Packer M (2020) Cardioprotective effects of Sirtuin‑1 and its downstream effectors: potential role in mediating the heart failure benefits of SGLT2 (sodium-glucose Cotransporter 2) inhibitors. Circ Heart Fail 13:e7197PubMedCrossRef
78.
Zurück zum Zitat van Veldhuisen SL, Gorter TM, van Woerden G et al (2022) Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J 43:1955–1969PubMedPubMedCentralCrossRef van Veldhuisen SL, Gorter TM, van Woerden G et al (2022) Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J 43:1955–1969PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461PubMedCrossRef Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461PubMedCrossRef
80.
Zurück zum Zitat Hundertmark MJ, Agbaje OF, Coleman R et al (2021) Design and rationale of the EMPA-VISION trial: investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Heart Fail 8:2580–2590PubMedPubMedCentralCrossRef Hundertmark MJ, Agbaje OF, Coleman R et al (2021) Design and rationale of the EMPA-VISION trial: investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Heart Fail 8:2580–2590PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17:761–772PubMedCrossRef Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17:761–772PubMedCrossRef
82.
Zurück zum Zitat Baartscheer A, Schumacher CA, Wüst RC et al (2017) Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia 60:568–573PubMedCrossRef Baartscheer A, Schumacher CA, Wüst RC et al (2017) Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia 60:568–573PubMedCrossRef
83.
Zurück zum Zitat Dyck JRB, Sossalla S, Hamdani N et al (2022) Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 167:17–31PubMedCrossRef Dyck JRB, Sossalla S, Hamdani N et al (2022) Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 167:17–31PubMedCrossRef
84.
Zurück zum Zitat Muskiet MHA, Tonneijck L, Smits MM et al (2017) GLP‑1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13:605–628PubMedCrossRef Muskiet MHA, Tonneijck L, Smits MM et al (2017) GLP‑1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13:605–628PubMedCrossRef
85.
Zurück zum Zitat Shi Q, Wang Y, Hao Q et al (2022) Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet 399:259–269PubMedCrossRef Shi Q, Wang Y, Hao Q et al (2022) Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet 399:259–269PubMedCrossRef
86.
Zurück zum Zitat Pi-Sunyer X, Astrup A, Fujioka K et al (2015) A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med 373:11–22PubMedCrossRef Pi-Sunyer X, Astrup A, Fujioka K et al (2015) A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med 373:11–22PubMedCrossRef
87.
Zurück zum Zitat Sattar N, Lee MMY, Kristensen SL et al (2021) Cardiovascular, mortality, and kidney outcomes with GLP‑1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 9:653–662PubMedCrossRef Sattar N, Lee MMY, Kristensen SL et al (2021) Cardiovascular, mortality, and kidney outcomes with GLP‑1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 9:653–662PubMedCrossRef
88.
Zurück zum Zitat Wehner GJ, Jing L, Haggerty CM et al (2020) Routinely reported ejection fraction and mortality in clinical practice: Where does the nadir of risk lie? Eur Heart J 41:1249–1257PubMedCrossRef Wehner GJ, Jing L, Haggerty CM et al (2020) Routinely reported ejection fraction and mortality in clinical practice: Where does the nadir of risk lie? Eur Heart J 41:1249–1257PubMedCrossRef
89.
Zurück zum Zitat Pitt B, Pfeffer MA, Assmann SF et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392PubMedCrossRef Pitt B, Pfeffer MA, Assmann SF et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392PubMedCrossRef
90.
Zurück zum Zitat Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620PubMedCrossRef Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620PubMedCrossRef
91.
Zurück zum Zitat Butler J, Packer M, Filippatos G et al (2022) Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J 43:416–426PubMedCrossRef Butler J, Packer M, Filippatos G et al (2022) Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J 43:416–426PubMedCrossRef
92.
Zurück zum Zitat Jones E, Randall EB, Hummel SL et al (2021) Phenotyping heart failure using model-based analysis and physiology-informed machine learning. J Physiol 599:4991–5013PubMedCrossRef Jones E, Randall EB, Hummel SL et al (2021) Phenotyping heart failure using model-based analysis and physiology-informed machine learning. J Physiol 599:4991–5013PubMedCrossRef
93.
Zurück zum Zitat Rosch S, Kresoja K‑P, Besler C et al (2022) Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation 146:506–518PubMedCrossRef Rosch S, Kresoja K‑P, Besler C et al (2022) Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation 146:506–518PubMedCrossRef
94.
Zurück zum Zitat AbouEzzeddine OF, Kemp BJ, Borlaug BA et al (2019) Myocardial energetics in heart failure with preserved ejection fraction. Circ Heart Fail 12:e6240PubMedPubMedCentralCrossRef AbouEzzeddine OF, Kemp BJ, Borlaug BA et al (2019) Myocardial energetics in heart failure with preserved ejection fraction. Circ Heart Fail 12:e6240PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Nickel AG, von Hardenberg A, Hohl M et al (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484PubMedCrossRef Nickel AG, von Hardenberg A, Hohl M et al (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484PubMedCrossRef
96.
Zurück zum Zitat Reil JC, Reil GH, Kovács Á et al (2020) CaMKII activity contributes to homeometric autoregulation of the heart: A novel mechanism for the Anrep effect. J Physiol 598:3129–3153PubMedCrossRef Reil JC, Reil GH, Kovács Á et al (2020) CaMKII activity contributes to homeometric autoregulation of the heart: A novel mechanism for the Anrep effect. J Physiol 598:3129–3153PubMedCrossRef
97.
Zurück zum Zitat Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circ Res 8:1077–1091PubMedCrossRef Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circ Res 8:1077–1091PubMedCrossRef
98.
Zurück zum Zitat Saks V, Dzeja P, Schlattner U et al (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273PubMedPubMedCentralCrossRef Saks V, Dzeja P, Schlattner U et al (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840PubMedCrossRef Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840PubMedCrossRef
100.
Zurück zum Zitat Wang W, Zhu W, Wang S et al (2004) Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95:798–806PubMedCrossRef Wang W, Zhu W, Wang S et al (2004) Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95:798–806PubMedCrossRef
101.
Zurück zum Zitat Lovelock JD, Monasky MM, Jeong EM et al (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110:841–850PubMedPubMedCentralCrossRef Lovelock JD, Monasky MM, Jeong EM et al (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110:841–850PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Flagg TP, Cazorla O, Remedi MS et al (2009) Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy. Circ Res 104:95–103PubMedCrossRef Flagg TP, Cazorla O, Remedi MS et al (2009) Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy. Circ Res 104:95–103PubMedCrossRef
103.
Zurück zum Zitat van der Velden J, Klein LJ, Zaremba R et al (2001) Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts. Circulation 104:1140–1146PubMedCrossRef van der Velden J, Klein LJ, Zaremba R et al (2001) Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts. Circulation 104:1140–1146PubMedCrossRef
104.
Zurück zum Zitat van der Velden J, Papp Z, Zaremba R et al (2003) Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res 57:37–47PubMedCrossRef van der Velden J, Papp Z, Zaremba R et al (2003) Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res 57:37–47PubMedCrossRef
105.
Zurück zum Zitat Sequeira V, Najafi A, Wijnker PJ et al (2015) ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 112:E7003–7012PubMedPubMedCentralCrossRef Sequeira V, Najafi A, Wijnker PJ et al (2015) ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 112:E7003–7012PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat v. Heerebeek L, Borbély A, Niessen HWM et al (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973PubMedCrossRef v. Heerebeek L, Borbély A, Niessen HWM et al (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973PubMedCrossRef
107.
Zurück zum Zitat Harper AR, Goel A, Grace C et al (2021) Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 53:135–142PubMedPubMedCentralCrossRef Harper AR, Goel A, Grace C et al (2021) Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 53:135–142PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Tadros R, Francis C, Xu X et al (2021) Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet 53:128–134PubMedPubMedCentralCrossRef Tadros R, Francis C, Xu X et al (2021) Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet 53:128–134PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Böhm M, Bewarder Y, Kindermann I (2020) Ejection fraction in heart failure revisited—Where does the evidence start? Eur Heart J 41:2363–2365PubMedCrossRef Böhm M, Bewarder Y, Kindermann I (2020) Ejection fraction in heart failure revisited—Where does the evidence start? Eur Heart J 41:2363–2365PubMedCrossRef
110.
Zurück zum Zitat Lam CSP, Solomon SD (2021) Classification of heart failure according to ejection fraction: JACC review topic of the week. J Am Coll Cardiol 77:3217–3225PubMedCrossRef Lam CSP, Solomon SD (2021) Classification of heart failure according to ejection fraction: JACC review topic of the week. J Am Coll Cardiol 77:3217–3225PubMedCrossRef
Metadaten
Titel
Mechanoenergetische Defekte bei Herzinsuffizienz
verfasst von
Prof. Dr. Christoph Maack
Publikationsdatum
26.01.2023
Verlag
Springer Medizin
Erschienen in
Herz / Ausgabe 2/2023
Print ISSN: 0340-9937
Elektronische ISSN: 1615-6692
DOI
https://doi.org/10.1007/s00059-022-05161-3

Weitere Artikel der Ausgabe 2/2023

Herz 2/2023 Zur Ausgabe

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Shunt-Therapie bei Herzinsuffizienz: Kein Anzug, der allen passt

13.05.2024 Chronische Herzinsuffizienz Nachrichten

Die Anlage eines interatrialen Shunts zur Reduktion des linksatrialen Drucks ist ein neuer Therapieansatz bei Herzinsuffizienz. Viele Patienten sprechen darauf an, andere jedoch nicht. 

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.