Skip to main content
Erschienen in: Neurotherapeutics 3/2021

01.07.2021 | Review

Dravet Syndrome: Novel Approaches for the Most Common Genetic Epilepsy

verfasst von: Lori L. Isom, Kelly G. Knupp

Erschienen in: Neurotherapeutics | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy that is mainly associated with variants in SCN1A. While drug-resistant epilepsy is the most notable feature of this syndrome, numerous symptoms are present that have significant impact on patients’ quality of life. In spite of novel, third-generation anti-seizure treatment options becoming available over the last several years, seizure freedom is often not attained and non-seizure symptoms remain. Precision medicine now offers realistic hope for seizure freedom in DS patients, with several approaches demonstrating preclinical success. Therapeutic approaches such as antisense oligonucleotides (ASO) and adeno-associated virus (AAV)-delivered gene modulation have expanded the potential treatment options for DS, with some of these approaches now transitioning to clinical trials. Several of these treatments may risk the exacerbation of gain-of-function variants and may not be reversible, therefore emphasizing the need for functional testing of new pathogenic variants. The current absence of treatments that address the overall disease, in addition to seizures, exposes the urgent need for reliable, valid measures of the entire complement of symptoms as outcome measures to truly know the impact of treatments on DS. Additionally, with so many treatment options on the horizon, there will be a need to understand how to select appropriate patients for each treatment, whether treatments are complementary or adverse to each other, and long-term risks of the treatment. Nevertheless, precision therapeutics hold tremendous potential to provide long-lasting seizure freedom and even complete cures for this devastating disease.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Depienne, C., et al., Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet, 2009. 46(3): p. 183-91.PubMedCrossRef Depienne, C., et al., Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet, 2009. 46(3): p. 183-91.PubMedCrossRef
3.
Zurück zum Zitat Zuberi, S.M., et al., Genotype-phenotype associations in SCN1A-related epilepsies. Neurology, 2011. 76(7): p. 594-600.PubMedCrossRef Zuberi, S.M., et al., Genotype-phenotype associations in SCN1A-related epilepsies. Neurology, 2011. 76(7): p. 594-600.PubMedCrossRef
4.
Zurück zum Zitat Genton, P., R. Velizarova, and C. Dravet, Dravet syndrome: the long-term outcome. Epilepsia, 2011. 52 Suppl 2: p. 44-9.PubMedCrossRef Genton, P., R. Velizarova, and C. Dravet, Dravet syndrome: the long-term outcome. Epilepsia, 2011. 52 Suppl 2: p. 44-9.PubMedCrossRef
5.
Zurück zum Zitat Wolff, M., C. Casse-Perrot, and C. Dravet, Severe myoclonic epilepsy of infants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia, 2006. 47 Suppl 2: p. 45-8.PubMedCrossRef Wolff, M., C. Casse-Perrot, and C. Dravet, Severe myoclonic epilepsy of infants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia, 2006. 47 Suppl 2: p. 45-8.PubMedCrossRef
6.
Zurück zum Zitat Wirrell, E.C., et al., Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel. Pediatr Neurol, 2017. 68: p. 18–34 e3. Wirrell, E.C., et al., Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel. Pediatr Neurol, 2017. 68: p. 18–34 e3.
7.
Zurück zum Zitat Akiyama, M., et al., A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia, 2010. 51(6): p. 1043-52.PubMedCrossRef Akiyama, M., et al., A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia, 2010. 51(6): p. 1043-52.PubMedCrossRef
8.
Zurück zum Zitat Takayama, R., et al., Long-term course of Dravet syndrome: a study from an epilepsy center in Japan. Epilepsia, 2014. 55(4): p. 528-38.PubMedCrossRef Takayama, R., et al., Long-term course of Dravet syndrome: a study from an epilepsy center in Japan. Epilepsia, 2014. 55(4): p. 528-38.PubMedCrossRef
9.
Zurück zum Zitat Wirrell, E.C. and R. Nabbout, Recent Advances in the Drug Treatment of Dravet Syndrome. CNS Drugs, 2019. 33(9): p. 867-881.PubMedCrossRef Wirrell, E.C. and R. Nabbout, Recent Advances in the Drug Treatment of Dravet Syndrome. CNS Drugs, 2019. 33(9): p. 867-881.PubMedCrossRef
10.
Zurück zum Zitat Cross, J.H., et al., Dravet syndrome: Treatment options and management of prolonged seizures. Epilepsia, 2019. 60 Suppl 3: p. S39-S48.PubMed Cross, J.H., et al., Dravet syndrome: Treatment options and management of prolonged seizures. Epilepsia, 2019. 60 Suppl 3: p. S39-S48.PubMed
11.
Zurück zum Zitat de Lange, I.M., et al., Outcomes and comorbidities of SCN1A-related seizure disorders. Epilepsy Behav, 2019. 90: p. 252-259.PubMedCrossRef de Lange, I.M., et al., Outcomes and comorbidities of SCN1A-related seizure disorders. Epilepsy Behav, 2019. 90: p. 252-259.PubMedCrossRef
12.
Zurück zum Zitat Licheni, S.H., et al., Sleep problems in Dravet syndrome: a modifiable comorbidity. Dev Med Child Neurol, 2018. 60(2): p. 192-198.PubMedCrossRef Licheni, S.H., et al., Sleep problems in Dravet syndrome: a modifiable comorbidity. Dev Med Child Neurol, 2018. 60(2): p. 192-198.PubMedCrossRef
13.
Zurück zum Zitat Lagae, L., et al., Quality of life and comorbidities associated with Dravet syndrome severity: a multinational cohort survey. Dev Med Child Neurol, 2018. 60(1): p. 63-72.PubMedCrossRef Lagae, L., et al., Quality of life and comorbidities associated with Dravet syndrome severity: a multinational cohort survey. Dev Med Child Neurol, 2018. 60(1): p. 63-72.PubMedCrossRef
14.
Zurück zum Zitat Villas, N., M.A. Meskis, and S. Goodliffe, Dravet syndrome: Characteristics, comorbidities, and caregiver concerns. Epilepsy Behav, 2017. 74: p. 81-86.PubMedCrossRef Villas, N., M.A. Meskis, and S. Goodliffe, Dravet syndrome: Characteristics, comorbidities, and caregiver concerns. Epilepsy Behav, 2017. 74: p. 81-86.PubMedCrossRef
15.
Zurück zum Zitat Olivieri, G., et al., Cognitive-behavioral profiles in teenagers with Dravet syndrome. Brain Dev, 2016. 38(6): p. 554-62.PubMedCrossRef Olivieri, G., et al., Cognitive-behavioral profiles in teenagers with Dravet syndrome. Brain Dev, 2016. 38(6): p. 554-62.PubMedCrossRef
16.
Zurück zum Zitat Connolly, M.B., Dravet Syndrome: Diagnosis and Long-Term Course. Can J Neurol Sci, 2016. 43 Suppl 3: p. S3-8.PubMedCrossRef Connolly, M.B., Dravet Syndrome: Diagnosis and Long-Term Course. Can J Neurol Sci, 2016. 43 Suppl 3: p. S3-8.PubMedCrossRef
17.
Zurück zum Zitat Knupp, K.G., et al., Parental Perception of Comorbidities in Children With Dravet Syndrome. Pediatr Neurol, 2017. 76: p. 60-65.PubMedCrossRef Knupp, K.G., et al., Parental Perception of Comorbidities in Children With Dravet Syndrome. Pediatr Neurol, 2017. 76: p. 60-65.PubMedCrossRef
18.
Zurück zum Zitat Eschbach, K., et al., Growth and endocrine function in children with Dravet syndrome. Seizure, 2017. 52: p. 117-122.PubMedCrossRef Eschbach, K., et al., Growth and endocrine function in children with Dravet syndrome. Seizure, 2017. 52: p. 117-122.PubMedCrossRef
19.
Zurück zum Zitat Berg, A.T., et al., Nonseizure consequences of Dravet syndrome, KCNQ2-DEE, KCNB1-DEE, Lennox-Gastaut syndrome, ESES: A functional framework. Epilepsy Behav, 2020. 111: p. 107287. Berg, A.T., et al., Nonseizure consequences of Dravet syndrome, KCNQ2-DEE, KCNB1-DEE, Lennox-Gastaut syndrome, ESES: A functional framework. Epilepsy Behav, 2020. 111: p. 107287.
20.
Zurück zum Zitat Nabbout, R., et al., Perception of impact of Dravet syndrome on children and caregivers in multiple countries: looking beyond seizures. Dev Med Child Neurol, 2019. 61(10): p. 1229-1236.PubMedCrossRef Nabbout, R., et al., Perception of impact of Dravet syndrome on children and caregivers in multiple countries: looking beyond seizures. Dev Med Child Neurol, 2019. 61(10): p. 1229-1236.PubMedCrossRef
21.
22.
Zurück zum Zitat Shmuely, S., et al., Mortality in Dravet syndrome: A review. Epilepsy Behav, 2016. 64(Pt A): p. 69-74.PubMedCrossRef Shmuely, S., et al., Mortality in Dravet syndrome: A review. Epilepsy Behav, 2016. 64(Pt A): p. 69-74.PubMedCrossRef
23.
Zurück zum Zitat Jansson, J.S., T. Hallböök, and C. Reilly, Intellectual functioning and behavior in Dravet syndrome: A systematic review. Epilepsy Behav, 2020. 108: p. 107079. Jansson, J.S., T. Hallböök, and C. Reilly, Intellectual functioning and behavior in Dravet syndrome: A systematic review. Epilepsy Behav, 2020. 108: p. 107079.
24.
Zurück zum Zitat Brown, A., et al., Cognitive, behavioral, and social functioning in children and adults with Dravet syndrome. Epilepsy Behav, 2020. 112: p. 107319. Brown, A., et al., Cognitive, behavioral, and social functioning in children and adults with Dravet syndrome. Epilepsy Behav, 2020. 112: p. 107319.
25.
Zurück zum Zitat Verheyen, K., et al., Independent walking and cognitive development in preschool children with Dravet syndrome. Dev Med Child Neurol, 2020. Verheyen, K., et al., Independent walking and cognitive development in preschool children with Dravet syndrome. Dev Med Child Neurol, 2020.
26.
Zurück zum Zitat Ceulemans, B., Overall management of patients with Dravet syndrome. Dev Med Child Neurol, 2011. 53 Suppl 2: p. 19-23.PubMedCrossRef Ceulemans, B., Overall management of patients with Dravet syndrome. Dev Med Child Neurol, 2011. 53 Suppl 2: p. 19-23.PubMedCrossRef
27.
Zurück zum Zitat Ishii, A., et al., Clinical implications of SCN1A missense and truncation variants in a large Japanese cohort with Dravet syndrome. Epilepsia, 2017. 58(2): p. 282-290.PubMedCrossRef Ishii, A., et al., Clinical implications of SCN1A missense and truncation variants in a large Japanese cohort with Dravet syndrome. Epilepsia, 2017. 58(2): p. 282-290.PubMedCrossRef
28.
Zurück zum Zitat Riva, D., et al., Progressive neurocognitive decline in two children with Dravet syndrome, de novo SCN1A truncations and different epileptic phenotypes. Am J Med Genet A, 2009. 149a(10): p. 2339–45. Riva, D., et al., Progressive neurocognitive decline in two children with Dravet syndrome, de novo SCN1A truncations and different epileptic phenotypes. Am J Med Genet A, 2009. 149a(10): p. 2339–45.
29.
Zurück zum Zitat Rilstone, J.J., et al., Dravet syndrome: seizure control and gait in adults with different SCN1A mutations. Epilepsia, 2012. 53(8): p. 1421-8.PubMedCrossRef Rilstone, J.J., et al., Dravet syndrome: seizure control and gait in adults with different SCN1A mutations. Epilepsia, 2012. 53(8): p. 1421-8.PubMedCrossRef
30.
Zurück zum Zitat Rodda, J.M., et al., Progressive gait deterioration in adolescents with Dravet syndrome. Arch Neurol, 2012. 69(7): p. 873-8.PubMedCrossRef Rodda, J.M., et al., Progressive gait deterioration in adolescents with Dravet syndrome. Arch Neurol, 2012. 69(7): p. 873-8.PubMedCrossRef
32.
Zurück zum Zitat Claes, L., et al., De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet, 2001. 68(6): p. 1327-32.PubMedPubMedCentralCrossRef Claes, L., et al., De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet, 2001. 68(6): p. 1327-32.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Scheffer, I.E. and R. Nabbout, SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 2019. 60 Suppl 3: p. S17-S24.PubMed Scheffer, I.E. and R. Nabbout, SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia, 2019. 60 Suppl 3: p. S17-S24.PubMed
34.
Zurück zum Zitat Catterall, W.A., Dravet Syndrome: A Sodium Channel Interneuronopathy. Curr Opin Physiol, 2018. 2: p. 42-50.PubMedCrossRef Catterall, W.A., Dravet Syndrome: A Sodium Channel Interneuronopathy. Curr Opin Physiol, 2018. 2: p. 42-50.PubMedCrossRef
35.
Zurück zum Zitat Berecki, G., et al., SCN1A gain of function in early infantile encephalopathy. Ann Neurol, 2019. 85(4): p. 514-525.PubMedCrossRef Berecki, G., et al., SCN1A gain of function in early infantile encephalopathy. Ann Neurol, 2019. 85(4): p. 514-525.PubMedCrossRef
36.
Zurück zum Zitat Loscher, W., et al., Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev, 2020. 72(3): p. 606-638.PubMedPubMedCentralCrossRef Loscher, W., et al., Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev, 2020. 72(3): p. 606-638.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Han, Z., et al., Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci Transl Med, 2020. 12(558). Han, Z., et al., Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci Transl Med, 2020. 12(558).
38.
Zurück zum Zitat Lim, K.H., et al., Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun, 2020. 11(1): p. 3501.PubMedPubMedCentralCrossRef Lim, K.H., et al., Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat Commun, 2020. 11(1): p. 3501.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Scharner, J. and I. Aznarez, Clinical Applications of Single-Stranded Oligonucleotides: Current Landscape of Approved and In-Development Therapeutics. Mol Ther, 2021. 29(2): p. 540-554.PubMedCrossRef Scharner, J. and I. Aznarez, Clinical Applications of Single-Stranded Oligonucleotides: Current Landscape of Approved and In-Development Therapeutics. Mol Ther, 2021. 29(2): p. 540-554.PubMedCrossRef
40.
Zurück zum Zitat Carvill, G.L., et al., Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. Am J Hum Genet, 2018. 103(6): p. 1022-1029.PubMedPubMedCentralCrossRef Carvill, G.L., et al., Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. Am J Hum Genet, 2018. 103(6): p. 1022-1029.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mistry, A.M., et al., Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol Dis, 2014. 65: p. 1-11.PubMedPubMedCentralCrossRef Mistry, A.M., et al., Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol Dis, 2014. 65: p. 1-11.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Liau, G., et al., TANGO OLIGONUCLEOTIDES FOR THE TREATMENT OF DRAVET SYNDROME: SAFETY, BIODISTRIBUTION, AND PHARMACOLOGY IN THE NON-HUMAN PRIMATE. AES 2019 Annual Meeting Abstract Database. AESnet.org., 2019. Abstr. 2.195. Liau, G., et al., TANGO OLIGONUCLEOTIDES FOR THE TREATMENT OF DRAVET SYNDROME: SAFETY, BIODISTRIBUTION, AND PHARMACOLOGY IN THE NON-HUMAN PRIMATE. AES 2019 Annual Meeting Abstract Database. AESnet.org., 2019. Abstr. 2.195.
43.
Zurück zum Zitat Laux, L., et al., SAFETY AND PHARMACOKINETICS OF ANTISENSE OLIGONUCLEOTIDE STK-001 IN CHILDREN AND ADOLESCENTS WITH DRAVET SYNDROME: SINGLE ASCENDING DOSE DESIGN FOR THE OPEN-LABEL PHASE 1/2A MONARCH STUDY. AES 2020 Annual Meeting Abstract Database. AESnet.org., 2020. Abstr. 344. Laux, L., et al., SAFETY AND PHARMACOKINETICS OF ANTISENSE OLIGONUCLEOTIDE STK-001 IN CHILDREN AND ADOLESCENTS WITH DRAVET SYNDROME: SINGLE ASCENDING DOSE DESIGN FOR THE OPEN-LABEL PHASE 1/2A MONARCH STUDY. AES 2020 Annual Meeting Abstract Database. AESnet.org., 2020. Abstr. 344.
44.
45.
Zurück zum Zitat Sadleir, L.G., et al., Not all SCN1A epileptic encephalopathies are Dravet syndrome: Early profound Thr226Met phenotype. Neurology, 2017. 89(10): p. 1035-1042.PubMedPubMedCentralCrossRef Sadleir, L.G., et al., Not all SCN1A epileptic encephalopathies are Dravet syndrome: Early profound Thr226Met phenotype. Neurology, 2017. 89(10): p. 1035-1042.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Martin, M.S., et al., The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum Mol Genet, 2007. 16(23): p. 2892-9.PubMedCrossRef Martin, M.S., et al., The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum Mol Genet, 2007. 16(23): p. 2892-9.PubMedCrossRef
48.
Zurück zum Zitat Lenk, G.M., et al., Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Ann Neurol, 2020. 87(3): p. 339-346.PubMedPubMedCentralCrossRef Lenk, G.M., et al., Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Ann Neurol, 2020. 87(3): p. 339-346.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Wu, Z., H. Yang, and P. Colosi, Effect of genome size on AAV vector packaging. Mol Ther, 2010. 18(1): p. 80-6.PubMedCrossRef Wu, Z., H. Yang, and P. Colosi, Effect of genome size on AAV vector packaging. Mol Ther, 2010. 18(1): p. 80-6.PubMedCrossRef
50.
Zurück zum Zitat Ricobaraza, A., et al., High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci, 2020. 21(10). Ricobaraza, A., et al., High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci, 2020. 21(10).
51.
Zurück zum Zitat Yu, F.H., et al., Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci, 2006. 9(9): p. 1142-9.PubMedCrossRef Yu, F.H., et al., Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci, 2006. 9(9): p. 1142-9.PubMedCrossRef
53.
Zurück zum Zitat AN, Y., et al., A GABA-Selective AAV Vector-Based Approach to Up-Regulate Endogenous Scn1a Expression Reverses Key Phenotypes in a Mouse Model of Dravet Syndrome. Molecular Therapy, 2019. 27(4S1): p. Abstract 915. AN, Y., et al., A GABA-Selective AAV Vector-Based Approach to Up-Regulate Endogenous Scn1a Expression Reverses Key Phenotypes in a Mouse Model of Dravet Syndrome. Molecular Therapy, 2019. 27(4S1): p. Abstract 915.
54.
Zurück zum Zitat Belle, A., et al., ETX101, A GABAERGIC INTERNEURON SELECTIVE AAV-MEDIATED GENE THERAPY FOR THE TREATMENT OF SCN1A+ DRAVET SYNDROME: BIODISTRIBUTION AND SAFETY IN NON-HUMAN PRIMATES. AES 2020 Annual Meeting Abstract Database. AESnet.org., 2020. Abst. 391. Belle, A., et al., ETX101, A GABAERGIC INTERNEURON SELECTIVE AAV-MEDIATED GENE THERAPY FOR THE TREATMENT OF SCN1A+ DRAVET SYNDROME: BIODISTRIBUTION AND SAFETY IN NON-HUMAN PRIMATES. AES 2020 Annual Meeting Abstract Database. AESnet.org., 2020. Abst. 391.
55.
57.
Zurück zum Zitat Niibori, Y., et al., Sexually Divergent Mortality and Partial Phenotypic Rescue After Gene Therapy in a Mouse Model of Dravet Syndrome. Hum Gene Ther, 2020. 31(5-6): p. 339-351.PubMedPubMedCentralCrossRef Niibori, Y., et al., Sexually Divergent Mortality and Partial Phenotypic Rescue After Gene Therapy in a Mouse Model of Dravet Syndrome. Hum Gene Ther, 2020. 31(5-6): p. 339-351.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Doudna, J.A. and E. Charpentier, Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014. 346(6213): p. 1258096. Doudna, J.A. and E. Charpentier, Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014. 346(6213): p. 1258096.
59.
60.
Zurück zum Zitat Gasiunas, G., et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012. 109(39): p. E2579-86.PubMedPubMedCentralCrossRef Gasiunas, G., et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012. 109(39): p. E2579-86.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Yamagata, T., et al., CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis, 2020. 141: p. 104954. Yamagata, T., et al., CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis, 2020. 141: p. 104954.
62.
Zurück zum Zitat Colasante, G., et al., dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Mol Ther, 2020. 28(1): p. 235-253.PubMedCrossRef Colasante, G., et al., dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Mol Ther, 2020. 28(1): p. 235-253.PubMedCrossRef
63.
Zurück zum Zitat Ogiwara, I., et al., Na(v)1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci, 2007. 27(22): p. 5903–14. Ogiwara, I., et al., Na(v)1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci, 2007. 27(22): p. 5903–14.
64.
Zurück zum Zitat Wilson, J.M., Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab, 2009. 96(4): p. 151-7.PubMedCrossRef Wilson, J.M., Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab, 2009. 96(4): p. 151-7.PubMedCrossRef
65.
Zurück zum Zitat Grimm, D., et al., Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006. 441(7092): p. 537-41.PubMedCrossRef Grimm, D., et al., Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 2006. 441(7092): p. 537-41.PubMedCrossRef
66.
Zurück zum Zitat Bevan, A.K., et al., Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther, 2011. 19(11): p. 1971-80.PubMedPubMedCentralCrossRef Bevan, A.K., et al., Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther, 2011. 19(11): p. 1971-80.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Chand, D., et al., Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol, 2021. 74(3): p. 560-566.PubMedCrossRef Chand, D., et al., Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol, 2021. 74(3): p. 560-566.PubMedCrossRef
68.
Zurück zum Zitat Feldman, A.G., et al., Subacute Liver Failure Following Gene Replacement Therapy for Spinal Muscular Atrophy Type 1. J Pediatr, 2020. 225: p. 252–258 e1. Feldman, A.G., et al., Subacute Liver Failure Following Gene Replacement Therapy for Spinal Muscular Atrophy Type 1. J Pediatr, 2020. 225: p. 252–258 e1.
69.
Zurück zum Zitat Hinderer, C., et al., Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther, 2018. 29(3): p. 285-298.PubMedPubMedCentralCrossRef Hinderer, C., et al., Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther, 2018. 29(3): p. 285-298.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Stevens, D., et al., Onasemnogene Abeparvovec-xioi: Gene Therapy for Spinal Muscular Atrophy. Ann Pharmacother, 2020. 54(10): p. 1001-1009.PubMedCrossRef Stevens, D., et al., Onasemnogene Abeparvovec-xioi: Gene Therapy for Spinal Muscular Atrophy. Ann Pharmacother, 2020. 54(10): p. 1001-1009.PubMedCrossRef
71.
Zurück zum Zitat Waldrop, M.A., et al., Gene Therapy for Spinal Muscular Atrophy: Safety and Early Outcomes. Pediatrics, 2020. 146(3). Waldrop, M.A., et al., Gene Therapy for Spinal Muscular Atrophy: Safety and Early Outcomes. Pediatrics, 2020. 146(3).
72.
Zurück zum Zitat Darras, B.T., et al., An Integrated Safety Analysis of Infants and Children with Symptomatic Spinal Muscular Atrophy (SMA) Treated with Nusinersen in Seven Clinical Trials. CNS Drugs, 2019. 33(9): p. 919-932.PubMedPubMedCentralCrossRef Darras, B.T., et al., An Integrated Safety Analysis of Infants and Children with Symptomatic Spinal Muscular Atrophy (SMA) Treated with Nusinersen in Seven Clinical Trials. CNS Drugs, 2019. 33(9): p. 919-932.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Jason, T.L., J. Koropatnick, and R.W. Berg, Toxicology of antisense therapeutics. Toxicol Appl Pharmacol, 2004. 201(1): p. 66-83.PubMedCrossRef Jason, T.L., J. Koropatnick, and R.W. Berg, Toxicology of antisense therapeutics. Toxicol Appl Pharmacol, 2004. 201(1): p. 66-83.PubMedCrossRef
74.
Zurück zum Zitat Chan, J.H., S. Lim, and W.S. Wong, Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol, 2006. 33(5-6): p. 533-40.PubMedCrossRef Chan, J.H., S. Lim, and W.S. Wong, Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol, 2006. 33(5-6): p. 533-40.PubMedCrossRef
75.
Zurück zum Zitat Connock, M., et al., Will the US$5 million onasemnogene abeparvosec treatment for spinal muscular atrophy represent 'value for money' for the NHS? A rapid inquiry into suggestions that it may be cost-effective. Expert Opin Biol Ther, 2020. 20(7): p. 823-827.PubMedCrossRef Connock, M., et al., Will the US$5 million onasemnogene abeparvosec treatment for spinal muscular atrophy represent 'value for money' for the NHS? A rapid inquiry into suggestions that it may be cost-effective. Expert Opin Biol Ther, 2020. 20(7): p. 823-827.PubMedCrossRef
76.
Zurück zum Zitat Dangouloff, T., et al., Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments. Orphanet J Rare Dis, 2021. 16(1): p. 47.PubMedPubMedCentralCrossRef Dangouloff, T., et al., Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments. Orphanet J Rare Dis, 2021. 16(1): p. 47.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Campbell, J.D., et al., Assessing the impact of caring for a child with Dravet syndrome: Results of a caregiver survey. Epilepsy Behav, 2018. 80: p. 152-156.PubMedCrossRef Campbell, J.D., et al., Assessing the impact of caring for a child with Dravet syndrome: Results of a caregiver survey. Epilepsy Behav, 2018. 80: p. 152-156.PubMedCrossRef
78.
Zurück zum Zitat Jensen, M.P., et al., The humanistic and economic burden of Dravet syndrome on caregivers and families: Implications for future research. Epilepsy Behav, 2017. 70(Pt A): p. 104-109.PubMedCrossRef Jensen, M.P., et al., The humanistic and economic burden of Dravet syndrome on caregivers and families: Implications for future research. Epilepsy Behav, 2017. 70(Pt A): p. 104-109.PubMedCrossRef
79.
Zurück zum Zitat Whittington, M.D., et al., The direct and indirect costs of Dravet Syndrome. Epilepsy Behav, 2018. 80: p. 109-113.PubMedCrossRef Whittington, M.D., et al., The direct and indirect costs of Dravet Syndrome. Epilepsy Behav, 2018. 80: p. 109-113.PubMedCrossRef
Metadaten
Titel
Dravet Syndrome: Novel Approaches for the Most Common Genetic Epilepsy
verfasst von
Lori L. Isom
Kelly G. Knupp
Publikationsdatum
01.07.2021
Verlag
Springer International Publishing
Erschienen in
Neurotherapeutics / Ausgabe 3/2021
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-021-01095-6

Weitere Artikel der Ausgabe 3/2021

Neurotherapeutics 3/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.