Skip to main content
Erschienen in: Neurotherapeutics 3/2021

01.07.2021 | Original Article

The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway

verfasst von: Jun Hyoung Jeon, Tae Rim Oh, Seoyoung Park, Sunghoo Huh, Ji Hyeon Kim, Binh Khanh Mai, Jung Hoon Lee, Se Hyun Kim, Min Jae Lee

Erschienen in: Neurotherapeutics | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Although diverse antipsychotic drugs have been developed for the treatment of schizophrenia, most of their mechanisms of action remain elusive. Regulator of G-protein signaling 4 (RGS4) has been reported to be linked, both genetically and functionally, with schizophrenia and is a physiological substrate of the arginylation branch of the N-degron pathway (Arg/N-degron pathway). Here, we show that the atypical antipsychotic drug clozapine significantly inhibits proteasomal degradation of RGS4 proteins without affecting their transcriptional expression. In addition, the levels of Arg- and Phe-GFP (artificial substrates of the Arg/N-degron pathway) were significantly elevated by clozapine treatment. In silico computational model suggested that clozapine may interact with active sites of N-recognin E3 ubiquitin ligases. Accordingly, treatment with clozapine resulted in reduced polyubiquitylation of RGS4 and Arg-GFP in the test tube and in cultured cells. Clozapine attenuated the activation of downstream effectors of G protein–coupled receptor signaling, such as MEK1 and ERK1, in HEK293 and SH-SY5Y cells. Furthermore, intraperitoneal injection of clozapine into rats significantly stabilized the endogenous RGS4 protein in the prefrontal cortex. Overall, these results reveal an additional therapeutic mechanism of action of clozapine: this drug posttranslationally inhibits the degradation of Arg/N-degron substrates, including RGS4. These findings imply that modulation of protein post-translational modifications, in particular the Arg/N-degron pathway, may be a novel molecular therapeutic strategy against schizophrenia.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McGuffin P, Owen MJ, Gottesman II. Psychiatric genetics and genomics. Oxford University Press: Oxford ; New York; 2002. McGuffin P, Owen MJ, Gottesman II. Psychiatric genetics and genomics. Oxford University Press: Oxford ; New York; 2002.
2.
Zurück zum Zitat Wong AH, Van Tol HH. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27(3):269-306.PubMedCrossRef Wong AH, Van Tol HH. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27(3):269-306.PubMedCrossRef
3.
Zurück zum Zitat Horvath S, Mirnics K. Schizophrenia as a disorder of molecular pathways. Biol Psychiatry. 2015;77(1):22-8.PubMedCrossRef Horvath S, Mirnics K. Schizophrenia as a disorder of molecular pathways. Biol Psychiatry. 2015;77(1):22-8.PubMedCrossRef
4.
Zurück zum Zitat Khavari B, Cairns MJ. Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells. 2020;9(8). Khavari B, Cairns MJ. Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells. 2020;9(8).
5.
Zurück zum Zitat Weinberger DR. Thinking About Schizophrenia in an Era of Genomic Medicine. Am J Psychiatry. 2019;176(1):12-20.PubMedCrossRef Weinberger DR. Thinking About Schizophrenia in an Era of Genomic Medicine. Am J Psychiatry. 2019;176(1):12-20.PubMedCrossRef
6.
Zurück zum Zitat Dean B, Boer S, Gibbons A, Money T, Scarr E. Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr Opin Psychiatry. 2009;22(2):154-60.PubMedCrossRef Dean B, Boer S, Gibbons A, Money T, Scarr E. Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr Opin Psychiatry. 2009;22(2):154-60.PubMedCrossRef
7.
Zurück zum Zitat Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25-38.PubMedCrossRef Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25-38.PubMedCrossRef
8.
Zurück zum Zitat Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev. 2002;54(3):527-59.PubMedCrossRef Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev. 2002;54(3):527-59.PubMedCrossRef
9.
Zurück zum Zitat Paspalas CD, Selemon LD, Arnsten AF. Mapping the regulator of G protein signaling 4 (RGS4): presynaptic and postsynaptic substrates for neuroregulation in prefrontal cortex. Cereb Cortex. 2009;19(9):2145-55.PubMedPubMedCentralCrossRef Paspalas CD, Selemon LD, Arnsten AF. Mapping the regulator of G protein signaling 4 (RGS4): presynaptic and postsynaptic substrates for neuroregulation in prefrontal cortex. Cereb Cortex. 2009;19(9):2145-55.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Buckholtz JW, Meyer-Lindenberg A, Honea RA, Straub RE, Pezawas L, Egan MF, et al. Allelic variation in RGS4 impacts functional and structural connectivity in the human brain. J Neurosci. 2007;27(7):1584-93.PubMedPubMedCentralCrossRef Buckholtz JW, Meyer-Lindenberg A, Honea RA, Straub RE, Pezawas L, Egan MF, et al. Allelic variation in RGS4 impacts functional and structural connectivity in the human brain. J Neurosci. 2007;27(7):1584-93.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Huang MW, Lin YJ, Chang CW, Lei FJ, Ho EP, Liu RS, et al. RGS4 deficit in prefrontal cortex contributes to the behaviors related to schizophrenia via system xc(-)-mediated glutamatergic dysfunction in mice. Theranostics. 2018;8(17):4781-94.PubMedPubMedCentralCrossRef Huang MW, Lin YJ, Chang CW, Lei FJ, Ho EP, Liu RS, et al. RGS4 deficit in prefrontal cortex contributes to the behaviors related to schizophrenia via system xc(-)-mediated glutamatergic dysfunction in mice. Theranostics. 2018;8(17):4781-94.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293-301.PubMedCrossRef Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293-301.PubMedCrossRef
13.
Zurück zum Zitat Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J, et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004;125B(1):50-3.PubMedCrossRef Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J, et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004;125B(1):50-3.PubMedCrossRef
14.
Zurück zum Zitat Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet. 2002;11(12):1373-80.PubMedCrossRef Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet. 2002;11(12):1373-80.PubMedCrossRef
15.
Zurück zum Zitat Harrison PJ, Owen MJ. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet. 2003;361(9355):417-9.PubMedCrossRef Harrison PJ, Owen MJ. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet. 2003;361(9355):417-9.PubMedCrossRef
16.
Zurück zum Zitat Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG, et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry. 2004;55(2):192-5.PubMedCrossRef Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG, et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry. 2004;55(2):192-5.PubMedCrossRef
17.
Zurück zum Zitat Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet. 2018;177(2):267-73.PubMedCrossRef Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet. 2018;177(2):267-73.PubMedCrossRef
18.
Zurück zum Zitat Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, et al. Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull. 2016;42(2):396-405.PubMedCrossRef Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, et al. Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull. 2016;42(2):396-405.PubMedCrossRef
19.
Zurück zum Zitat Volk DW, Eggan SM, Lewis DA. Alterations in metabotropic glutamate receptor 1alpha and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry. 2010;167(12):1489-98.PubMedPubMedCentralCrossRef Volk DW, Eggan SM, Lewis DA. Alterations in metabotropic glutamate receptor 1alpha and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry. 2010;167(12):1489-98.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Rivero G, Gabilondo AM, Garcia-Sevilla JA, Callado LF, La Harpe R, Morentin B, et al. Brain RGS4 and RGS10 protein expression in schizophrenia and depression. Effect of drug treatment. Psychopharmacology (Berl). 2013;226(1):177-88.CrossRef Rivero G, Gabilondo AM, Garcia-Sevilla JA, Callado LF, La Harpe R, Morentin B, et al. Brain RGS4 and RGS10 protein expression in schizophrenia and depression. Effect of drug treatment. Psychopharmacology (Berl). 2013;226(1):177-88.CrossRef
21.
Zurück zum Zitat Lee MJ, Kim DE, Zakrzewska A, Yoo YD, Kim SH, Kim ST, et al. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J Biol Chem. 2012;287(28):24043-52.PubMedPubMedCentralCrossRef Lee MJ, Kim DE, Zakrzewska A, Yoo YD, Kim SH, Kim ST, et al. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J Biol Chem. 2012;287(28):24043-52.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Bodenstein J, Sunahara RK, Neubig RR. N-terminal residues control proteasomal degradation of RGS2, RGS4, and RGS5 in human embryonic kidney 293 cells. Mol Pharmacol. 2007;71(4):1040-50.PubMedCrossRef Bodenstein J, Sunahara RK, Neubig RR. N-terminal residues control proteasomal degradation of RGS2, RGS4, and RGS5 in human embryonic kidney 293 cells. Mol Pharmacol. 2007;71(4):1040-50.PubMedCrossRef
23.
Zurück zum Zitat Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature. 2005;437(7061):981-6.PubMedCrossRef Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature. 2005;437(7061):981-6.PubMedCrossRef
24.
Zurück zum Zitat Krumins AM, Barker SA, Huang C, Sunahara RK, Yu K, Wilkie TM, et al. Differentially regulated expression of endogenous RGS4 and RGS7. J Biol Chem. 2004;279(4):2593-9.PubMedCrossRef Krumins AM, Barker SA, Huang C, Sunahara RK, Yu K, Wilkie TM, et al. Differentially regulated expression of endogenous RGS4 and RGS7. J Biol Chem. 2004;279(4):2593-9.PubMedCrossRef
25.
Zurück zum Zitat Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234(4773):179-86.PubMedCrossRef Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234(4773):179-86.PubMedCrossRef
28.
Zurück zum Zitat Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, et al. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A. 2005;102(42):15030-5.PubMedPubMedCentralCrossRef Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, et al. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A. 2005;102(42):15030-5.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, et al. An essential role of N-terminal arginylation in cardiovascular development. Science. 2002;297(5578):96-9.PubMedCrossRef Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, et al. An essential role of N-terminal arginylation in cardiovascular development. Science. 2002;297(5578):96-9.PubMedCrossRef
30.
Zurück zum Zitat Sjogren B, Parra S, Heath LJ, Atkins KB, Xie ZJ, Neubig RR. Cardiotonic steroids stabilize regulator of G protein signaling 2 protein levels. Mol Pharmacol. 2012;82(3):500-9.PubMedPubMedCentralCrossRef Sjogren B, Parra S, Heath LJ, Atkins KB, Xie ZJ, Neubig RR. Cardiotonic steroids stabilize regulator of G protein signaling 2 protein levels. Mol Pharmacol. 2012;82(3):500-9.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Park SE, Kim JM, Seok OH, Cho H, Wadas B, Kim SY, et al. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science. 2015;347(6227):1249-52.PubMedPubMedCentralCrossRef Park SE, Kim JM, Seok OH, Cho H, Wadas B, Kim SY, et al. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science. 2015;347(6227):1249-52.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Sjogren B, Neubig RR. Thinking outside of the "RGS box": new approaches to therapeutic targeting of regulators of G protein signaling. Mol Pharmacol. 2010;78(4):550-7.PubMedPubMedCentralCrossRef Sjogren B, Neubig RR. Thinking outside of the "RGS box": new approaches to therapeutic targeting of regulators of G protein signaling. Mol Pharmacol. 2010;78(4):550-7.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A. 2006;103(16):6212-7.PubMedPubMedCentralCrossRef An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A. 2006;103(16):6212-7.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Gerber KJ, Squires KE, Hepler JR. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol. 2016;89(2):273-86.PubMedPubMedCentralCrossRef Gerber KJ, Squires KE, Hepler JR. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol. 2016;89(2):273-86.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Meltzer HY, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res. 2008;172:177-97.PubMedCrossRef Meltzer HY, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res. 2008;172:177-97.PubMedCrossRef
37.
Zurück zum Zitat Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11(1):59-67.PubMedCrossRef Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11(1):59-67.PubMedCrossRef
38.
Zurück zum Zitat Miller R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part I. Curr Neuropharmacol. 2009;7(4):302-14.PubMedPubMedCentralCrossRef Miller R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part I. Curr Neuropharmacol. 2009;7(4):302-14.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, et al. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther. 2018;192:20-41.PubMedCrossRef Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, et al. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther. 2018;192:20-41.PubMedCrossRef
41.
Zurück zum Zitat Molteni R, Calabrese F, Racagni G, Fumagalli F, Riva MA. Antipsychotic drug actions on gene modulation and signaling mechanisms. Pharmacol Ther. 2009;124(1):74-85.PubMedCrossRef Molteni R, Calabrese F, Racagni G, Fumagalli F, Riva MA. Antipsychotic drug actions on gene modulation and signaling mechanisms. Pharmacol Ther. 2009;124(1):74-85.PubMedCrossRef
42.
Zurück zum Zitat Kim SH, Park S, Yu HS, Ko KH, Park HG, Kim YS. The antipsychotic agent clozapine induces autophagy via the AMPK-ULK1-Beclin1 signaling pathway in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:96-104.PubMedCrossRef Kim SH, Park S, Yu HS, Ko KH, Park HG, Kim YS. The antipsychotic agent clozapine induces autophagy via the AMPK-ULK1-Beclin1 signaling pathway in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:96-104.PubMedCrossRef
43.
Zurück zum Zitat Kim MK, Kim SH, Yu HS, Park HG, Kang UG, Ahn YM, et al. The effect of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex. Int J Neuropsychopharmacol. 2012;15(7):907-17.PubMedCrossRef Kim MK, Kim SH, Yu HS, Park HG, Kang UG, Ahn YM, et al. The effect of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex. Int J Neuropsychopharmacol. 2012;15(7):907-17.PubMedCrossRef
44.
Zurück zum Zitat Davydov IV, Varshavsky A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem. 2000;275(30):22931-41.PubMedCrossRef Davydov IV, Varshavsky A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem. 2000;275(30):22931-41.PubMedCrossRef
45.
Zurück zum Zitat Zhou J, Moroi K, Nishiyama M, Usui H, Seki N, Ishida J, et al. Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci. 2001;68(13):1457-69.PubMedCrossRef Zhou J, Moroi K, Nishiyama M, Usui H, Seki N, Ishida J, et al. Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci. 2001;68(13):1457-69.PubMedCrossRef
46.
Zurück zum Zitat Han DH, Na HK, Choi WH, Lee JH, Kim YK, Won C, et al. Direct cellular delivery of human proteasomes to delay tau aggregation. Nat Commun. 2014;5:5633.PubMedCrossRef Han DH, Na HK, Choi WH, Lee JH, Kim YK, Won C, et al. Direct cellular delivery of human proteasomes to delay tau aggregation. Nat Commun. 2014;5:5633.PubMedCrossRef
47.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. (Wallingford, CT, 2016). Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. (Wallingford, CT, 2016).
48.
Zurück zum Zitat Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91.PubMedPubMedCentralCrossRef Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Lee JH, Shin SK, Jiang Y, Choi WH, Hong C, Kim DE, et al. Facilitated tau degradation by USP14 aptamers via enhanced proteasome activity. Sci Rep. 2015;5:10757.PubMedPubMedCentralCrossRef Lee JH, Shin SK, Jiang Y, Choi WH, Hong C, Kim DE, et al. Facilitated tau degradation by USP14 aptamers via enhanced proteasome activity. Sci Rep. 2015;5:10757.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Choi WH, Yun Y, Park S, Jeon JH, Lee J, Lee JH, et al. Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proc Natl Acad Sci U S A. 2020;117(32):19190-200.PubMedPubMedCentralCrossRef Choi WH, Yun Y, Park S, Jeon JH, Lee J, Lee JH, et al. Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proc Natl Acad Sci U S A. 2020;117(32):19190-200.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 2004;13(5):1331-9.PubMedPubMedCentralCrossRef Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 2004;13(5):1331-9.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol. 2000;18(5):538-43.PubMedCrossRef Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol. 2000;18(5):538-43.PubMedCrossRef
53.
Zurück zum Zitat Lee MJ, Pal K, Tasaki T, Roy S, Jiang Y, An JY, et al. Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc Natl Acad Sci U S A. 2008;105(1):100-5.PubMedCrossRef Lee MJ, Pal K, Tasaki T, Roy S, Jiang Y, An JY, et al. Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc Natl Acad Sci U S A. 2008;105(1):100-5.PubMedCrossRef
54.
Zurück zum Zitat Blazer LL, Zhang H, Casey EM, Husbands SM, Neubig RR. A nanomolar-potency small molecule inhibitor of regulator of G-protein signaling proteins. Biochemistry. 2011;50(15):3181-92.PubMedCrossRef Blazer LL, Zhang H, Casey EM, Husbands SM, Neubig RR. A nanomolar-potency small molecule inhibitor of regulator of G-protein signaling proteins. Biochemistry. 2011;50(15):3181-92.PubMedCrossRef
55.
Zurück zum Zitat Kim SH, Yu HS, Park HG, Park S, Seo MS, Jeon WJ, et al. Role of MKP-1 (DUSP1) in clozapine-induced effects on the ERK1/2 signaling pathway in the rat frontal cortex. Psychopharmacology (Berl). 2013;230(3):425-37.PubMedCrossRef Kim SH, Yu HS, Park HG, Park S, Seo MS, Jeon WJ, et al. Role of MKP-1 (DUSP1) in clozapine-induced effects on the ERK1/2 signaling pathway in the rat frontal cortex. Psychopharmacology (Berl). 2013;230(3):425-37.PubMedCrossRef
56.
Zurück zum Zitat Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1081-90.PubMedCrossRef Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1081-90.PubMedCrossRef
57.
Zurück zum Zitat Jiang Y, Lee J, Lee JH, Lee JW, Kim JH, Choi WH, et al. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins. Autophagy. 2016;12(11):2197-212.PubMedPubMedCentralCrossRef Jiang Y, Lee J, Lee JH, Lee JW, Kim JH, Choi WH, et al. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins. Autophagy. 2016;12(11):2197-212.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT. The substrate recognition domains of the N-end rule pathway. J Biol Chem. 2009;284(3):1884-95.PubMedPubMedCentralCrossRef Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT. The substrate recognition domains of the N-end rule pathway. J Biol Chem. 2009;284(3):1884-95.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem. 2008;283(43):28958-68.PubMedPubMedCentralCrossRef Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem. 2008;283(43):28958-68.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Lee JH, Jiang Y, Kwon YT, Lee MJ. Pharmacological Modulation of the N-End Rule Pathway and Its Therapeutic Implications. Trends Pharmacol Sci. 2015;36(11):782-97.PubMedPubMedCentralCrossRef Lee JH, Jiang Y, Kwon YT, Lee MJ. Pharmacological Modulation of the N-End Rule Pathway and Its Therapeutic Implications. Trends Pharmacol Sci. 2015;36(11):782-97.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Jiang Y, Choi WH, Lee JH, Han DH, Kim JH, Chung YS, et al. A neurostimulant para-chloroamphetamine inhibits the arginylation branch of the N-end rule pathway. Sci Rep. 2014;4:6344.PubMedPubMedCentralCrossRef Jiang Y, Choi WH, Lee JH, Han DH, Kim JH, Chung YS, et al. A neurostimulant para-chloroamphetamine inhibits the arginylation branch of the N-end rule pathway. Sci Rep. 2014;4:6344.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Sriram S, Lee JH, Mai BK, Jiang Y, Kim Y, Yoo YD, et al. Development and characterization of monomeric N-end rule inhibitors through in vitro model substrates. J Med Chem. 2013;56(6):2540-6.PubMedCrossRef Sriram S, Lee JH, Mai BK, Jiang Y, Kim Y, Yoo YD, et al. Development and characterization of monomeric N-end rule inhibitors through in vitro model substrates. J Med Chem. 2013;56(6):2540-6.PubMedCrossRef
63.
Zurück zum Zitat Choi WH, de Poot SA, Lee JH, Kim JH, Han DH, Kim YK, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963.PubMedPubMedCentralCrossRef Choi WH, de Poot SA, Lee JH, Kim JH, Han DH, Kim YK, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res. 2005;65(14):6275-81.PubMedCrossRef Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res. 2005;65(14):6275-81.PubMedCrossRef
65.
Zurück zum Zitat Erdely HA, Lahti RA, Lopez MB, Myers CS, Roberts RC, Tamminga CA, et al. Regional expression of RGS4 mRNA in human brain. Eur J Neurosci. 2004;19(11):3125-8.PubMedCrossRef Erdely HA, Lahti RA, Lopez MB, Myers CS, Roberts RC, Tamminga CA, et al. Regional expression of RGS4 mRNA in human brain. Eur J Neurosci. 2004;19(11):3125-8.PubMedCrossRef
66.
Zurück zum Zitat Shrader TE, Tobias JW, Varshavsky A. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. J Bacteriol. 1993;175(14):4364-74.PubMedPubMedCentralCrossRef Shrader TE, Tobias JW, Varshavsky A. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. J Bacteriol. 1993;175(14):4364-74.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Tobias JW, Shrader TE, Rocap G, Varshavsky A. The N-end rule in bacteria. Science. 1991;254(5036):1374-7.PubMedCrossRef Tobias JW, Shrader TE, Rocap G, Varshavsky A. The N-end rule in bacteria. Science. 1991;254(5036):1374-7.PubMedCrossRef
68.
Zurück zum Zitat Kim E, Kim S, Lee JH, Kwon YT, Lee MJ. Ablation of Arg-tRNA-protein transferases results in defective neural tube development. BMB Rep. 2016;49(8):443-8.PubMedPubMedCentralCrossRef Kim E, Kim S, Lee JH, Kwon YT, Lee MJ. Ablation of Arg-tRNA-protein transferases results in defective neural tube development. BMB Rep. 2016;49(8):443-8.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry. 2020;7(6):528-37.PubMedCrossRef Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry. 2020;7(6):528-37.PubMedCrossRef
70.
Zurück zum Zitat Thomas EA. Molecular profiling of antipsychotic drug function - Convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol. 2006;34(2):109-28.PubMedCrossRef Thomas EA. Molecular profiling of antipsychotic drug function - Convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol. 2006;34(2):109-28.PubMedCrossRef
71.
Zurück zum Zitat Bousman CA, Luza S, Mancuso SG, Kang D, Opazo CM, Mostaid MS, et al. Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia. Sci Rep. 2019;9(1):2307.PubMedPubMedCentralCrossRef Bousman CA, Luza S, Mancuso SG, Kang D, Opazo CM, Mostaid MS, et al. Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia. Sci Rep. 2019;9(1):2307.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Rubio MD, Wood K, Haroutunian V, Meador-Woodruff JH. Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology. 2013;38(10):1910-20.PubMedPubMedCentralCrossRef Rubio MD, Wood K, Haroutunian V, Meador-Woodruff JH. Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology. 2013;38(10):1910-20.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Jafari S, Fernandez-Enright F, Huang XF. Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. Journal of Neurochemistry. 2012;120(3):371-84.PubMedCrossRef Jafari S, Fernandez-Enright F, Huang XF. Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. Journal of Neurochemistry. 2012;120(3):371-84.PubMedCrossRef
74.
Zurück zum Zitat Dos Santos Pereira JN, Tadjerpisheh S, Abu Abed M, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16(6):1247-58.PubMedPubMedCentralCrossRef Dos Santos Pereira JN, Tadjerpisheh S, Abu Abed M, Saadatmand AR, Weksler B, Romero IA, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J. 2014;16(6):1247-58.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Kim HS, Song M, Yumkham S, Choi JH, Lee T, Kwon J, et al. Identification of a new functional target of haloperidol metabolite: implications for a receptor-independent role of 3-(4-fluorobenzoyl) propionic acid. J Neurochem. 2006;99(2):458-69.PubMedCrossRef Kim HS, Song M, Yumkham S, Choi JH, Lee T, Kwon J, et al. Identification of a new functional target of haloperidol metabolite: implications for a receptor-independent role of 3-(4-fluorobenzoyl) propionic acid. J Neurochem. 2006;99(2):458-69.PubMedCrossRef
76.
Zurück zum Zitat Schrader JM, Irving CM, Octeau JC, Christian JA, Aballo TJ, Kareemo DJ, et al. The differential actions of clozapine and other antipsychotic drugs on the translocation of dopamine D2 receptors to the cell surface. J Biol Chem. 2019;294(14):5604-15.PubMedPubMedCentralCrossRef Schrader JM, Irving CM, Octeau JC, Christian JA, Aballo TJ, Kareemo DJ, et al. The differential actions of clozapine and other antipsychotic drugs on the translocation of dopamine D2 receptors to the cell surface. J Biol Chem. 2019;294(14):5604-15.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Lassen JB. The effect of p-chloroamphetamine on motility in rats after inhibition of monoamine synthesis, storage, uptake and receptor interaction. Psychopharmacologia. 1974;34(3):243-54.PubMedCrossRef Lassen JB. The effect of p-chloroamphetamine on motility in rats after inhibition of monoamine synthesis, storage, uptake and receptor interaction. Psychopharmacologia. 1974;34(3):243-54.PubMedCrossRef
78.
Zurück zum Zitat Taymans JM, Leysen JE, Langlois X. Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J Neurochem. 2003;84(5):1118-27.PubMedCrossRef Taymans JM, Leysen JE, Langlois X. Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J Neurochem. 2003;84(5):1118-27.PubMedCrossRef
79.
Zurück zum Zitat Gu Z, Jiang Q, Yan Z. RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction in a rat model of schizophrenia. Mol Pharmacol. 2007;71(4):1030-9.PubMedCrossRef Gu Z, Jiang Q, Yan Z. RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction in a rat model of schizophrenia. Mol Pharmacol. 2007;71(4):1030-9.PubMedCrossRef
80.
Zurück zum Zitat Saugstad JA, Marino MJ, Folk JA, Hepler JR, Conn PJ. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci. 1998;18(3):905-13.PubMedPubMedCentralCrossRef Saugstad JA, Marino MJ, Folk JA, Hepler JR, Conn PJ. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci. 1998;18(3):905-13.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Wang HY, MacDonald ML, Borgmann-Winter KE, Banerjee A, Sleiman P, Tom A, et al. mGluR5 hypofunction is integral to glutamatergic dysregulation in schizophrenia. Mol Psychiatry. 2020;25(4):750-60.PubMedCrossRef Wang HY, MacDonald ML, Borgmann-Winter KE, Banerjee A, Sleiman P, Tom A, et al. mGluR5 hypofunction is integral to glutamatergic dysregulation in schizophrenia. Mol Psychiatry. 2020;25(4):750-60.PubMedCrossRef
82.
Zurück zum Zitat Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet. 2019;394(10202):939-51.PubMedPubMedCentralCrossRef Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet. 2019;394(10202):939-51.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat McEvoy JP, Lieberman JA, Stroup TS, Davis SM, Meltzer HY, Rosenheck RA, et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry. 2006;163(4):600-10.PubMedCrossRef McEvoy JP, Lieberman JA, Stroup TS, Davis SM, Meltzer HY, Rosenheck RA, et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry. 2006;163(4):600-10.PubMedCrossRef
84.
Zurück zum Zitat Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev. 2020;61:101078.PubMedCrossRef Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev. 2020;61:101078.PubMedCrossRef
85.
Zurück zum Zitat Brower CS, Piatkov KI, Varshavsky A. Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol Cell. 2013;50(2):161-71.PubMedPubMedCentralCrossRef Brower CS, Piatkov KI, Varshavsky A. Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol Cell. 2013;50(2):161-71.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Brower CS, Varshavsky A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One. 2009;4(11):e7757.PubMedPubMedCentralCrossRef Brower CS, Varshavsky A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One. 2009;4(11):e7757.PubMedPubMedCentralCrossRef
Metadaten
Titel
The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway
verfasst von
Jun Hyoung Jeon
Tae Rim Oh
Seoyoung Park
Sunghoo Huh
Ji Hyeon Kim
Binh Khanh Mai
Jung Hoon Lee
Se Hyun Kim
Min Jae Lee
Publikationsdatum
01.07.2021
Verlag
Springer International Publishing
Erschienen in
Neurotherapeutics / Ausgabe 3/2021
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-021-01039-0

Weitere Artikel der Ausgabe 3/2021

Neurotherapeutics 3/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.