Skip to main content
Erschienen in: Rechtsmedizin 1/2024

Open Access 01.12.2023 | COVID-19 | Originalien

Pulmonale Befunde in der postmortalen Computertomographie bei COVID-19-assoziierten Todesfällen

verfasst von: M. Lutter, I. Kniep, B. Ondruschka, A. Heinemann

Erschienen in: Rechtsmedizin | Ausgabe 1/2024

Zusammenfassung

Hintergrund

Es gibt keine größeren Vergleichsstudien zu der Anwendbarkeit etablierter klinisch-diagnostischer Computertomographie (CT)-Kriterien für „Coronavirus Disease 2019“ (COVID-19)-Infektionen auf die postmortale Computertomographie (PMCT).

Methodik

Es wurden 131 PMCT von COVID-19-Verstorbenen im Vergleich mit einer Kontrollgruppe von 39 PMCT „severe acute respiratory syndrome coronavirus type 2“(SARS-CoV-2)-negativer, bekannt lungenkranker Verstorbener analysiert (morphologische Einzelkriterien, modifizierter Total Severity Score (mTSS), „Covid-19 Reporting and Data System“ (CO-RADS-Score).

Ergebnisse

Milchglastrübungen und Konsolidierungen v. a. in dorsalen Lungenabschnitten dominieren als unspezifische Merkmale das postmortale radiologische Bild. Die in der PMCT abgebildeten oft finalen Krankheitsstadien zeigen erwartungsgemäß hohe mTSS-Scores, weniger peripher orientierte Verteilungsmuster, mehr mediastinale Lymphadenopathien und Pleuraergüsse als klinisch beschriebene Stichproben. Die Spezifität der COVID-19-Diagnose ist in Übereinstimmung mit der Ante-mortem-Radiologie auch in der PMCT niedrig. Im Kontrollgruppenvergleich wurden ein CO-RADS Grad 5 und ein bilateral maximal saumartiger Pleuraerguss als diagnostisch wegweisend für eine COVID-19-Infektion in der PMCT identifiziert.

Diskussion

Postmortale Artefakte stellen eine Limitation der Spezifität der pulmonalen PMCT-Bildmorphologie dar. Ein fehlender relevanter Pleuraerguss stellt sich vor dem Hintergrund einer grundsätzlich postmortal bereits artifiziell möglichen Zunahme der Pleuraflüssigkeit als wertvolles Kriterium eines COVID-19-Befunds dar. In einem rechtsmedizinischen Kontext zeigt sich, dass die PMCT in einer pandemischen Situation mit Lungenmanifestationen als Screening-Tool geeignet sein kann.
Hinweise

Data Availability Statement

Die Datensätze, die während der aktuellen Studie generiert und/oder analysiert wurden, sind auf angemessene Anfrage beim entsprechenden Autor (ML, malin.lutter@stud.uke.uni-hamburg.de) verfügbar. The data that support the findings of this study are available from the corresponding author (ML, malin.lutter@stud.uke.uni-hamburg.de) upon reasonable request.
QR-Code scannen & Beitrag online lesen

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Einleitung

Infolge des erstmaligen Nachweises von „severe acute respiratory syndrome coronavirus type 2“ (SARS-CoV‑2) in Wuhan, China, [11, 31] stufte die „World Health Organization“ (WHO) die „Coronavirus Disease 2019“(COVID-19)-Infektion am 11.03.2020 als Pandemie ein [28]. Nach Bekanntwerden der ersten Todesfälle in Deutschland wurde im Institut für Rechtsmedizin des Universitätsklinikums Hamburg-Eppendorf (IfR) im Auftrag der Gesundheitsbehörde bis Ende 2020 eine systematische Evaluation der COVID-19-Gesamtmortalität in Hamburg durchgeführt [8, 14], die durch postmortale computertomographische Diagnostik (PMCT) des Thorax unterstützt wurde, nachdem radiologische Veränderungen sich in der klinischen Diagnostik frühzeitig als sensitiv für COVID-19-Infektionen gezeigt hatten [1, 3].
Die vorliegende Studie untersucht 131 COVID-19-Todesfälle und prüft die Anwendbarkeit von in der klinischen Computertomographie (CT)-Diagnostik etablierten diagnostischen Kriterien bzw. Diagnose-Scores auf die spezielle Situation der postmortalen Befundung. Ein Kontrollgruppenvergleich analysiert mögliche Prädiktoren für die Diagnose COVID-19 in der PMCT.

Methodik

Fallkollektiv

Zwischen März und Dezember 2020 wurden im Stadtgebiet Hamburg Verstorbene mit SARS-CoV-2-positivem Status in die zentrale Leichenhalle des Instituts für Rechtsmedizin verbracht. Das Untersuchungskonzept beinhaltete eine abgestufte Diagnostik [8]. Dazu zählten u. a. neben einer nasopharyngealen virologischen Reverse-Transkriptase(RT)-qPCR(quantitative Polymerasekettenreaktion)-Diagnostik Obduktionen sowie PMCT [8].
Aus dem Gesamtkollektiv von 735 SARS-CoV-2-assoziierten Todesfällen mit 411 PMCT wurden für diese Studie primär 157 konsekutive PMCT-Fälle ausgewählt. Einschlusskriterien waren hierfür ein positives RT-qPCR-Ergebnis auf SARS-CoV‑2 in Kombination mit einer klinisch gesicherten COVID-19-Diagnose und/oder positivem Obduktions- bzw. histologischem Befund sowie ein postmortales Intervall (PMI) ≤ 7 Tage. 26 der primär 157 COVID-19-PMCT offenbarten Ausschlusskriterien (nichtausreichende Bildqualität, Fremdkörperartefakte, Pneumothorax über 1 cm Breite, vollständige Konsolidierung oder hochgradige Lungengerüststörungen). Für die Kontrollgruppe wurden 39 konsekutive PMCT aus dem Zeitraum Dezember 2019 bis Juni 2020 eingeschlossen, bei denen als Todesursache oder Komorbidität eine alternative Lungenerkrankung (Pneumonie, exazerbierte COPD, Lungenfibrose, Bronchialkarzinom) in der Todesbescheinigung bzw. Klinikanamnese dokumentiert war und eine SARS-CoV-2-/COVID-19-Infektion virologisch ausgeschlossen worden war [14]. Die PMCT-Scans (Philips Brilliance 16-Zeiler, Philips Medical Systems DMC GmbH, Hamburg, Deutschland) erfolgten in Rückenlage der Verstorbenen (Thorax-Scan: Schichtdicke 0,8 cm; Schichtabstand 0,4 mm; Pitch-Faktor 1,5; Filter/Kernel B; 120 kV; 230–250 mA).
Es wurden Alter, Geschlecht, PMI, Sterbeort und Komorbiditäten dokumentiert (Tab. 1).
Tab. 1
Stichprobenbeschreibung
Charakteristiken
COVID-19-PMCT (n = 131)
Kontrollgruppen-PMCT (n = 39)
Alter
Mittelwert (Jahre)
81,3
75,4
Spannweite (Jahre)
50–100
35–98
Unter 65
12 (9,2 %)
8 (20,5 %)
66–75
17 (13 %)
9 (23,1 %)
76–85
49 (37,4 %)
14 (35,9 %)
86–95
48 (36,6 %)
6 (15,4 %)
Über 95
5 (3,8 %)
2 (5,1 %)
Geschlecht
Männlich
73 (55,7 %)
25 (64,1 %)
Postmortales Intervall
Mittelwert (Tage)
2,4
1
Spannweite (Tage)
0–7
0–3
Sterbeort
Intensivstation
27 (20,6 %)
22 (56,4 %)
Normalstation
47 (35,9 %)
14 (35,9 %)
Seniorenheim/Pflegeheim
38 (29 %)
/
Häuslichkeit
17 (13 %)
/
Anderes/nicht zuordenbara
2 (1,5 %)
3 (7,7 %)
Komorbiditätenb
Kardiovaskulär
88 (67,2 %)
22 (56,4 %)
Pulmonal
50 (38,2 %)
14 (35,9 %)
Neurologisch
53 (40,5 %)
6 (15,4 %)
Renal
43 (32,8 %)
10 (25,6 %)
Onkologisch
21 (16 %)
14 (35,9 %)
Endokrinologisch
23 (17,6 %)
6 (15,4 %)
Keine Angabe
32 (24,4 %)
3 (7,7 %)
COVID-19 „Coronavirus Disease 2019“, PMCT postmortale Computertomographie
aSterbeort Krankenhaus ohne weitere Spezifizierung
bMehrfachnennung möglich

Deskriptive Bildbewertung

Jeweils 10 Lungenabschnitte (5 Lungenlappen, jeweils ventraler und dorsaler Abschnitt) wurden im Lungenfenster (C −500 HU/: W 1500 HU) getrennt beurteilt. Eine Fachärztin für Radiologie und ein Facharzt für Rechtsmedizin (3 bzw. 12 Jahre Erfahrung in der Auswertung von PMCT) evaluierten – hinsichtlich der Gruppenzugehörigkeit verblindet – die verbleibenden 131 COVID-19-Fälle (n = 1266 Lungenabschnitte) sowie 39 Kontrollfälle (n = 390 Lungenabschnitte). Auftreten und Intensität folgender in der klinischen Literatur zu COVID-19 beschriebener radiologischer Kriterien [9] wurden bewertet: Milchglastrübungen („ground-glass opacities“, GGO) [2, 11, 20, 27, 30], Konsolidierungen [3, 18, 20, 23, 29, 30], „crazy paving pattern“ [3, 20, 29, 30], Halo-Zeichen [3, 30], umgedrehtes Halo-Zeichen [3, 30], zentrilobuläre Noduli [3, 20] und retikuläre interstitielle Muster [3, 23, 25, 29, 30]. Es erfolgte eine topographische semiquantitative Quantifizierung. Bewertet wurden auch eine mediastinale Lymphadenopathie, periphere Gasfüllung der Bronchien sowie ggf. vorhandene Pleuraergüsse (nicht vorhanden/saumartig, \(\leq\)0,5 cm/bis 2 cm/über 2 cm).
Der Total Severity Score (TSS mit 5‑gradiger Skala) etablierte sich klinisch zur Einschätzung des COVID-19-Schweregrades anhand visueller Quantifizierung in der CT [17]. Der TSS ergibt sich aus dem prozentualen Anteil an Läsionen/Inflammation der einzelnen Lungenlappen und wurde hier, modifiziert für ventrale bzw. dorsale Abschnitte eines jeden Lungenlappens, erhoben, um postmortale posteriore Hypostaseeffekte differenzieren zu können [17]. Die Gesamtwertung des TSS resultiert aus der Addition der Einzelscores – in der hier modifizierten Fassung (mTSS) wurde der Mittelwert aus den ventralen und dorsalen Scores pro Lungenlappen gebildet und das TSS-Gesamtergebnis symmetrisch gerundet (Tab. 2). Eine weitere Klassifizierung erfolgte mit dem „COVID-19 Reporting and Data System“ (CO-RADS, 7 Schweregrade [22]). Das CT-Thorax-basierte Bewertungsschema des CO-RADS stellt den Verdachtsgrad für eine pulmonale Beteiligung entsprechend einer mutmaßlichen COVID-19-Infektion dar. Es beruht auf radiologischen Kriterien, die in der Literatur für COVID-19 beschrieben wurden, und zeigt eine sehr gute Leistung bei der Vorhersage von COVID-19 bei Patienten mit moderaten bis schweren Symptomen [22]. Für diese Studie wurde dieser Score zu einer 5‑gradigen Skala modifiziert (1–5, entsprechend 1 = „no“, 2 = „low“, 3 = „indeterminate“, 4 = „high“, 5 = „very high“), da die klinischen Skalenwerte „6“ (positive RT-qPCR) und „0“ (nichtinterpretierbare CT) hier aufgrund der Ausschlusskriterien entfielen.
Tab. 2
Bewertungssystem TSS vs. mTSS
TSS
Modifizierter TSS für die PMCT (mTSS)
Scoring1 pro Lungenlappen
Scoring1 pro ventralem sowie dorsalem Lungenabschnitt (jeweils für alle 5 Lungenlappen)
5 Einzelscorewerte
10 Einzelscorewerte
Summation zu Gesamtscore (0–20)
Mittelung der 2 Einzelscorewerte pro Lungenlappen, dann Summation zu Gesamtscore (0–20)
TSS Total Severity Score, PMCT postmortale Computertomographie
1 Scoring: 0 % = Score 0/bis 25 % = Score 1/bis 50 % = Score 2/bis 75 % = Score 3/bis 100 % = Score 4

Statistische Analyse

Alle Tests wurden mit IBM® SPSS Statistics (Version 27 für Windows) ausgeführt. Es erfolgte eine explorative multivariate Analyse der für diese Studie definierten morphologischen COVID-19-Kriterien.
Im Fall-Kontroll-Vergleich wurden Unterschiede mittels univariater und multivariater Analyse dargestellt.
Als Regressionsmodell wurde ein verallgemeinert lineares gemischtes Modell gewählt, das in der multivariaten Analyse auf die Einflussfaktoren Alter, Geschlecht, PMI und Sterbeort adjustiert wurde. Ein p-Wert < 0,05 wurde als signifikant definiert; „odds ratios“ (OR) wurden in einem 95 %-Konfidenzintervall bestimmt. Für die Regressionsanalyse wurden die mTSS-Einzelscores am Median in „mTSS ≤ 2“/„mTSS > 2“ dichotomisiert. Subgruppenanalysen erfolgten für einen mTSS > 2 und ventrale vs. dorsale Lungenabschnitte. Prozentuale Angaben beziehen sich, wenn nicht anders definiert, auf die Gesamtzahl der analysierten Lungenabschnitte und sind auf eine Nachkommastelle gerundet. Für den Vergleich der Lungenlappenkategorien wurden jeweils rechter und linker Oberlappen sowie rechter und linker Unterlappen zusammengefasst betrachtet.

Ergebnisse

Phänomenologie in der COVID-19-Fallgruppe

Ground-glass opacity und Konsolidierung

Die häufigsten Beobachtungen waren GGO (86,7 %) und Konsolidierungen (64,2 %, Tab. 3 und Abb. 2); 2,7 % der GGO lagen ausschließlich peripher (Abb. 1). Beide Phänomene fanden sich v. a. im Unterlappen und in dorsalen Lungenabschnitten, dagegen seltener im Mittellappen. In der multivariaten Analyse zeigten sich Konsolidierungen – nicht jedoch GGO – signifikant häufiger in dorsalen Lungenabschnitten und in den Unterlappen (unabhängig von ihrer Lokalisation peripher/zentral; OR 5,7; p < 0,001 bzw. OR 1,9; p < 0,001). Im Vergleich zu nichtperipheren GGO liegen periphere GGO und Konsolidierungen signifikant häufiger ventral (OR 4,6; p < 0,001 bzw. OR 1,7; p = 0,26) und im Oberlappen (OR 5,5; p = 0,003 bzw. OR 2,3; p < 0,001); bei peripheren GGO ist auch der Mittellappen (OR 6,8; p = 0,002) eine signifikant häufigere Lokalisation als der Unterlappen. Periphere GGO (OR 13,8; p < 0,001) sowie periphere Konsolidierungen (OR 6,9; p < 0,001) sind im Vergleich zu nichtperipheren in der univariaten Analyse signifikant mit einem mTSS-Score ≤ 2 assoziiert. GGO erwiesen sich stets als bilateral, Konsolidierungen in 94,3 % der Fälle.
Tab. 3
PMCT-Befunde: COVID-19- vs. Kontrollgruppe (n/%)
PMCT-Kriterien
COVID-19
Kontrollgruppe
n = 1266 Lungenabschnitte
n = 390 Lungenabschnitte
Milchglastrübungen (GGO)
Zentral
1063 (84,0 %)
318 (81,5 %)
Nur peripher
34 (2,7 %)
8 (2,1 %)
Keine vorhanden
169 (13,3 %)
64 (16,4 %)
Konsolidierung
Zentral
724 (57,2 %)
214 (54,9 %)
Nur peripher
88 (7 %)
19 (4,9 %)
Keine vorhanden
454 (35,8 %)
157 (40,2 %)
mTSS-Score
≤ 2
525 (41,5 %)
154 (39,5 %)
> 2
741 (58,5 %)
236 (60,5 %)
 
n=131 Fälle
n=39 Fälle
Pleuraerguss
Fehlend oder max. saumartig
73 (55,7 %)
8 (20,5 %)
Mindestens einseitig mehr als saumartig
58 (44,3 %)
31 (79,5 %)
Mediastinale Lymphadenopathie*
Vorliegend
47 (35,9 %)
19 (48,7 %)
CO-RADS Score
1
1 (0,8 %)
1 (2,6 %)
2
4 (3,1 %)
9 (23,1 %)
3
38 (29 %)
18 (46,2 %)
4
50 (38,2 %)
9 (23,1 %)
5
38 (29 %)
2 (5,1 %)
*In Kontrollgruppe n = 1 nicht beurteilbar
GGO „ground-glass opacities“, mTSS Modified Total Severity Score; CO-RADS Score COVID-19 Reporting and Data System by the Dutch Radiological Society [22], PMCT postmortale Computertomographie, COVID-19 „Coronavirus Disease 2019“

Pleuraerguss.

55,7 % der Fälle zeigten keinen oder maximal einen saumartigen Pleuraerguss (Tab. 3). Intensivbehandlung zum Sterbezeitpunkt war häufiger mit mindestens einseitig relevanten (mehr als saumartigen) Pleuraergüssen verbunden (OR 37,4; p < 0,001).

Mediastinale Lymphadenopathie

In 35,9 % der Fälle fand sich eine mediastinale Lymphadenopathie (Tab. 3), die sich mit zunehmendem Alter häufiger beobachten ließ (≤ 65 Jahre: 8,3 %; > 95 Jahre: 60,0 %). Bei onkologischen Komorbiditäten ist der Anteil der mediastinalen Lymphadenopathie erhöht (42,9 % vs. 35,9 %). Beide Beobachtungen erwiesen sich in der multivariaten Analyse als nicht signifikant.

Seltene Morphologien

Radiologische Phänomene, die sich in weniger als 5 % der Lungenabschnitte fanden, wurden wie folgt beobachtet: Halo-Zeichen (2,8 %), „crazy paving pattern“ (1,8 %; Abb. 3), zentrilobuläre Noduli (1,1 %), umgedrehtes Halo-Zeichen (0,6 %) und retikuläres interstitielles Muster (0,2 %).

Belüftung der peripheren Bronchien

Die Bronchien erschienen lappenbezogen in 22,1 % aller Lungenabschnitte bis nach peripher belüftet, signifikant häufiger in Oberlappen (29,6 %, OR 20,5; p < 0,001) und Mittellappen (38,6 %, OR 48,4; p < 0,001) als in den Unterlappen (6,3 %).

Klinische Scores

In der Fallgruppe überwog der mTSS-Score 4 (44,2 %); 6,8 % zeigten keine relevanten Veränderungen (Score 0). In 58,5 % der Lungenabschnitte lag der mTSS-Einzelwert oberhalb des Medians von Score 2.
Ein mTSS > 2 war statistisch assoziiert zur Lokalisation Unterlappen (OR 5,1; p < 0,001), dorsalen Position (OR 4,9; p < 0,001), zu unbelüfteten peripheren Bronchien (OR 2,8; p = 0,001), zentralen i. V. zu fehlenden Konsolidierungen (OR 8,7; p < 0,001) und relevanten Pleuraergüssen (OR 3,4; p = 0,03). Die mTSS-Gesamtscore-Summenwerte streuten zwischen 3 und 20 Punkten (MW 13,6 Punkte, SD ± 4,7 Punkte).
Der CO-RADS wurde am häufigsten (38,2 %) mit dem Score 4 („high“) bewertet, die Scores 1 und 2 wurden kaum vergeben (Tab. 3). In der multivariaten Regressionsanalyse verfehlten alle Prädiktorvariablen für das CO-RADS-Niveau das gewählte Signifikanzniveau.

Fall-Kontroll-Vergleich

Im univariaten Fall-Kontroll-Vergleich zeigte sich ein beidseits fehlender bis maximal saumartiger Pleuraerguss mit einer COVID-19-PMCT assoziiert (OR = 19,5; p < 0,001). CO-RADS-Scores von 2 oder 3 sprachen dagegen für einen Kontrollfall (OR = 0,001; p < 0,001 bzw. 0,025; p = 0,003). Höhere CO-RADS-Werte waren signifikant mit einer COVID-19-PMCT assoziiert. In der multivariaten Analyse des Fall-Kontroll-Vergleichs zeigten sich PMI, Sterbeort, CO-RADS und Pleuraerguss als signifikante Prädiktoren für das Vorliegen von COVID-19 in der PMCT. Statistische Alternativmodelle mit Limitierung der Stichprobe auf ausschließlich ventrale Lungenabschnitte (zur Neutralisierung postmortaler Hypostase-Effekte in Rückenlage) sowie die Limitierung der Stichprobe auf Lungenabschnitte mit mTSS ≤ 2 (zur Reduzierung der Fälle mit fortgeschrittener Konsolidierung) zeigten vergleichbar signifikante Analyseergebnisse.

Diskussion

GGO und Konsolidierungen zeigen sich in der PMCT erwartungsgemäß als regelmäßige, wenn auch grundsätzlich wenig spezifische Merkmale bei COVID-19-Verstorbenen in der Lunge. Häufiger in posterioren und inferioren Lungenabschnitten vorkommend, war der rechte Mittellappen gering betroffen, was sich im mTSS spiegelt. In einem klinischen COVID-19-Kollektiv fand sich für die Unterlappen sowie den Mittellappen die gleiche Verteilung [13]. Klinisch sind bilaterale GGO mit oder ohne Konsolidierungen in dorsalen und peripheren Lungenabschnitten radiologisches Hauptmerkmal von COVID-19. Postmortale und klinische Übereinstimmungen bestehen somit offensichtlich trotz postmortaler hypostasebedingter Überlagerung [7, 10, 12, 15, 24].
Klinisch häufen sich mit zunehmendem Krankheitsverlauf Konsolidierungen, und GGO sind zunehmend diffus und bilateral verteilt und konfluieren [2, 3, 20, 21, 23, 25], nachdem sie in früheren Krankheitsstadien (0 bis 4 Tage nach Symptombeginn) zunächst typisch peripher gelegen sind [20]. Diese periphere Betonung ist in der PMCT zugunsten zentraler oder kombinierter Lokalisationen selten und zeigt sich bevorzugt in weniger stark betroffenen Lungenabschnitten. Die postmortale Bildgebung bildet naturgemäß häufiger finale Krankheitsstadien ab [15, 16].
In der klinischen Literatur zur CT-Diagnostik von COVID-19 wird die hohe Sensitivität bei jedoch mangelnder Spezifität der Befundmuster GGO und Konsolidierung hervorgehoben [3, 23]; insbesondere andere Viruspneumonien zeigen Ähnlichkeiten [3, 5, 13, 23]. Auch finden sich klinisch erhebliche Streuweiten (65–98 % für GGO; 2–64 % für Konsolidierungen [3, 30]). Die radiologischen Phänomene retikuläres Muster (1–22 % [1, 5, 18, 23, 25]) und Crazy paving pattern (5–36 % [2, 5, 18, 20, 23, 29]) wurden klinisch dagegen als COVID-19-spezifischer beschrieben. Halo-Zeichen und umgedrehtes Halo-Zeichen wurden nur vereinzelt beobachtet [3, 30]. In der vorliegenden PMCT-Studie konnten diese Phänomene in der Prädiktorenanalyse statistisch nicht berücksichtigt werden.
Als Prädiktoren für einen mTSS > 2 (mittlere bis schwere Betroffenheit eines Abschnitts) im Fallkollektiv ließen sich Lokalisation im Unterlappen, posteriore Position, unbelüftete periphere Bronchien, zentrale Konsolidierungen und ein relevanter Pleuraerguss identifizieren – also Kriterien, die als Risikofaktoren für einen schweren Verlauf oder Anzeichen für einen fortschreitenden Krankheitsprozess bekannt sind [18, 20, 25, 30].
Die visuelle Quantifizierung des Schweregrades durch den TSS erweist sich auch in der PMCT als sinnvoll. Der mTSS-Mittelwert lag mit 13,6 Punkten deutlich höher als in klinischen Studien, die wesentlich niedrigere Mediane von 3,0 bis 9,9 beschreiben, teils aber auch höhere Mittelwerte in späteren Erkrankungsstadien [2, 5]. Mediastinale Lymphadenopathien, die im vorliegendem Kollektiv bei hoher Gesamtprävalenz (35,9 %) mit aufsteigender Altersgruppe in ihrer Häufigkeit zunehmen, wurden für klinische COVID-19-Stichproben in der CT in nur 4–8 % der Patienten beschrieben und als Risikofaktor für einen schweren Verlauf identifiziert [3, 18, 23, 29].
Bei zeitlich konsekutiven Stichprobenziehungen können bezüglich Alter, Geschlecht, PMI und Sterbeorten Intergruppenvarianzen bestehen. Sterbeort und PMI zeigten univariat signifikante Gruppenunterschiede: Die inkludierten COVID-19-Fälle waren erheblich seltener Intensivpatienten und hatten ein durchschnittlich längeres PMI, da sie dem Ort der Studie teils verzögert zugeführt wurden. Im uni- wie im multivariaten Kontrollgruppenvergleich zeigten sich Pleuraerguss und CO-RADS als signifikante Gruppenunterschiede. Wenn auch der Maximalscore von 5 in der Fallgruppe erwartungsgemäß signifikant häufiger ist, gab es auf Skalenniveau keinen klaren „cut off“ für die Abgrenzung zu dem gravierend pulmonal vorerkrankten Vergleichskollektiv.
Die Prädiktionsqualität eines postmortal fehlenden bzw. maximal saumartigen Pleuraergusses ist bemerkenswert, da Pleuraergüsse im PMI bekanntermaßen eher zunehmen können [7, 10, 12, 15, 24]. Da Pleuraergüsse klinisch mit einem kardiopulmonal schwereren bzw. therapierefraktären Krankheitsverlauf assoziiert sind [19], finden sie sich bei Verstorbenen mit 44,3 % deutlich häufiger als in der allgemeinen Diagnoserate von 1–8 % [2, 23, 25, 27, 29]. Umso bemerkenswerter bleibt festzuhalten, dass das (oft weitgehende) Fehlen von Pleuraergüssen sich postmortal weiterhin als signifikanter Prädiktor für COVID-19 im gewählten Fall-Kontroll-Vergleich erwies.
Subgruppenanalysen zeigten im Regressionsmodell unter Ausschluss der von Hypostase betroffenen dorsalen Lungenabschnitte (sowie alternativ aller Abschnitte mit mTSS > 2) vergleichbare statistische Ergebnisse, sind also insofern resistent gegen postmortale Einflüsse, die Kernkriterien wie GGO oder Konsolidierungen überlagern können [4, 15, 24].
Die Ergebnisse zeigen insgesamt, dass die PMCT als Screening-Tool am Beispiel von COVID-19 für epidemische Situationen mit Lungenmanifestationen für epidemiologische Zwecke empfohlen werden kann – ein Beispiel für den systematischen PMCT-Einsatz in der Rechtsmedizin als Screeningverfahren in besonderen epidemiologischen Situationen.

Limitationen

Die hier dargestellte Verfahrensvalidität ist eng an den Rahmen einer die aktuell prävalente Lungenpathologie weitgehend bestimmenden Pandemie gebunden. Während der Pandemiezeit reduzierte sich auch in Deutschland die Inzidenz anderer respiratorischer Viren markant [6, 26]. Nichtabgrenzbare mögliche bakterielle Superinfektionen dürften zur Überlagerung der Bildmanifestation einer reinen atypischen COVID-19-Pneumonie geführt haben [15, 16]. Die Definition der Kontrollgruppe als SARS-CoV-2-negativ mit vorbestehender Lungenerkrankung statt der möglichen Alternative aller SARS-CoV-2-negativen Eingänge reduzierte die Fallzahl, entsprach aber einem konservativen Ansatz mit Beschränkung auf die Gruppe von phänomenologisch normabweichenden Lungenbildern. Ein negatives RT-qPCR-Testergebnis schließt eine akute SARS-CoV-2-Infektion mit hoher Wahrscheinlichkeit aus, allerdings sind bei nichtausschließbarer vorausgegangener COVID-19-Infektion Überlagerungen mit der Lungenpathologie durch COVID-19-Folgeschäden möglich.

Fazit für die Praxis

  • Der Einsatz der postmortalen Computertomographie (PMCT) am Beispiel „Coronavirus Disease 2019“ (COVID-19) hat sich als alternatives Screening-Tool in epi- bzw. pandemischen Situationen mit Lungenmanifestationen für epidemiologische Zwecke als empfehlenswert erwiesen.
  • In der Rechtsmedizin kann der systematische PMCT-Einsatz in besonderen epidemiologischen Situationen bei fehlender mikrobiologischer Diagnostik und ungeklärter Todesursache vor Obduktionen gezielte arbeitsschutzrelevante sowie infektiologisch-diagnostische Maßnahmen einleiten.

Förderung

Die Studie wurde von der Behörde für Gesundheit und Verbraucherschutz in Hamburg sowie vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der universitären Netzwerkprojekte Defeat Pandemics und NATON (Förderkennzeichen 01KX2021 und 01KX2121) gefördert.

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Lutter, I. Kniep, B. Ondruschka und A. Heinemann geben an, dass kein Interessenkonflikt besteht.
Für diese Studie wurde die Genehmigung der unabhängigen Ethikkommission der Ärztekammer Hamburg eingeholt (Kennziffer 2020-10353-BO-ff und PV7311). Die Studie entspricht den Grundsätzen der Deklaration von Helsinki.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de.

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Unsere Produktempfehlungen

Rechtsmedizin

Print-Titel

• Einzige deutschsprachige Zeitschrift für Rechtsmedizinerinnen und Rechtsmediziner

• Ausgewählte Übersichtsbeiträge zu aktuellen Themenschwerpunkten

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2):E32–E40CrossRefPubMed Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2):E32–E40CrossRefPubMed
2.
Zurück zum Zitat Bernheim A, Mei X, Huang M et al (2020) Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 295(3):685–691CrossRef Bernheim A, Mei X, Huang M et al (2020) Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 295(3):685–691CrossRef
3.
Zurück zum Zitat Carotti M, Salaffi F, Sarzi-Puttini P et al (2020) Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: key points for radiologists. Radiol Med 125(7):636–646CrossRefPubMedPubMedCentral Carotti M, Salaffi F, Sarzi-Puttini P et al (2020) Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: key points for radiologists. Radiol Med 125(7):636–646CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Christe A, Flach P, Ross S et al (2010) Clinical radiology and postmortem imaging (virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 12(5):215–222CrossRefPubMed Christe A, Flach P, Ross S et al (2010) Clinical radiology and postmortem imaging (virtopsy) are not the same: specific and unspecific postmortem signs. Leg Med (Tokyo) 12(5):215–222CrossRefPubMed
5.
Zurück zum Zitat Chung M, Bernheim A, Mei X et al (2020) CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295(1):202–207CrossRefPubMed Chung M, Bernheim A, Mei X et al (2020) CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295(1):202–207CrossRefPubMed
6.
Zurück zum Zitat Costanza G, Paba P, Ciotti M et al (2022) Infection rate of respiratory viruses in the pandemic SARS-CoV‑2 period considering symptomatic patients: two years of ongoing observations. Biomolecules 12(7):987CrossRefPubMedPubMedCentral Costanza G, Paba P, Ciotti M et al (2022) Infection rate of respiratory viruses in the pandemic SARS-CoV‑2 period considering symptomatic patients: two years of ongoing observations. Biomolecules 12(7):987CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Durlacher SH, Banfield WG, Bergner AD (1950) Post-mortem pulmonary edema. Yale J Biol Med 22(6):565–572PubMedPubMedCentral Durlacher SH, Banfield WG, Bergner AD (1950) Post-mortem pulmonary edema. Yale J Biol Med 22(6):565–572PubMedPubMedCentral
8.
Zurück zum Zitat Fitzek A, Schädler J, Dietz E et al (2021) Prospective postmortem evaluation of 735 consecutive SARS-CoV-2-associated death cases. Sci Rep 11(1):19342CrossRefPubMedPubMedCentral Fitzek A, Schädler J, Dietz E et al (2021) Prospective postmortem evaluation of 735 consecutive SARS-CoV-2-associated death cases. Sci Rep 11(1):19342CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722CrossRefPubMed Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722CrossRefPubMed
10.
Zurück zum Zitat Heinemann A (2021) Sequentielle Analyse frühpostmortaler Veränderungen der menschlichen Leiche in der Computertomographie. Habilitationsschrift, Universität Hamburg Heinemann A (2021) Sequentielle Analyse frühpostmortaler Veränderungen der menschlichen Leiche in der Computertomographie. Habilitationsschrift, Universität Hamburg
11.
Zurück zum Zitat Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506CrossRefPubMedPubMedCentral Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Hyodoh H, Shimizu J, Watanabe S et al (2015) Time-related course of pleural space fluid collection and pulmonary aeration on postmortem computed tomography (PMCT). Leg Med (Tokyo) 17(4):221–225CrossRefPubMed Hyodoh H, Shimizu J, Watanabe S et al (2015) Time-related course of pleural space fluid collection and pulmonary aeration on postmortem computed tomography (PMCT). Leg Med (Tokyo) 17(4):221–225CrossRefPubMed
13.
Zurück zum Zitat Karimian M, Azami M (2021) Chest computed tomography scan findings of coronavirus disease 2019 (COVID-19) patients: a comprehensive systematic review and meta-analysis. Pol J Radiol 86:e31–e49CrossRefPubMedPubMedCentral Karimian M, Azami M (2021) Chest computed tomography scan findings of coronavirus disease 2019 (COVID-19) patients: a comprehensive systematic review and meta-analysis. Pol J Radiol 86:e31–e49CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Klein A, Langenwalder F, Heinrich F et al (2021) SARS-CoV-2-Zufallsentdeckungen bei Hamburger Todesfällen: Ein epidemiologisches Monitoring während des dynamischen Infektionsgeschehens im Frühjahr 2020. Rechtsmedizin 31(5):427–433CrossRefPubMed Klein A, Langenwalder F, Heinrich F et al (2021) SARS-CoV-2-Zufallsentdeckungen bei Hamburger Todesfällen: Ein epidemiologisches Monitoring während des dynamischen Infektionsgeschehens im Frühjahr 2020. Rechtsmedizin 31(5):427–433CrossRefPubMed
15.
16.
Zurück zum Zitat Kniep I, Heinemann A, Edler C et al (2021) COVID-19 lungs in post-mortem computed tomography. Rechtsmedizin 31(2):145–147CrossRefPubMed Kniep I, Heinemann A, Edler C et al (2021) COVID-19 lungs in post-mortem computed tomography. Rechtsmedizin 31(2):145–147CrossRefPubMed
17.
Zurück zum Zitat Li K, Fang Y, Li W et al (2020) CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol 30(8):4407–4416CrossRefPubMedPubMedCentral Li K, Fang Y, Li W et al (2020) CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol 30(8):4407–4416CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Li K, Wu J, Wu F et al (2020) The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol 55(6):327–331CrossRefPubMed Li K, Wu J, Wu F et al (2020) The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol 55(6):327–331CrossRefPubMed
19.
Zurück zum Zitat Mo P, Xing Y, Xiao Y et al (2021) Clinical characteristics of refractory coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 73(11):e4208–e4213CrossRefPubMed Mo P, Xing Y, Xiao Y et al (2021) Clinical characteristics of refractory coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 73(11):e4208–e4213CrossRefPubMed
20.
Zurück zum Zitat Pan F, Ye T, Sun P et al (2020) Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology 295(3):715–721CrossRefPubMed Pan F, Ye T, Sun P et al (2020) Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology 295(3):715–721CrossRefPubMed
21.
Zurück zum Zitat Pan Y, Guan H, Zhou S et al (2020) Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol 30(6):3306–3309CrossRefPubMedPubMedCentral Pan Y, Guan H, Zhou S et al (2020) Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol 30(6):3306–3309CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Prokop M, van Everdingen W, van Rees Vellinga T et al (2020) CO-RADS: a categorical CT assessment ccheme for patients suspected of having COVID-19-definition and evaluation. Radiology 296(2):E97–E104CrossRefPubMed Prokop M, van Everdingen W, van Rees Vellinga T et al (2020) CO-RADS: a categorical CT assessment ccheme for patients suspected of having COVID-19-definition and evaluation. Radiology 296(2):E97–E104CrossRefPubMed
23.
Zurück zum Zitat Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434CrossRefPubMedPubMedCentral Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Shiotani S, Kohno M, Ohashi N et al (2004) Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int 139(1):39–48CrossRefPubMed Shiotani S, Kohno M, Ohashi N et al (2004) Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int 139(1):39–48CrossRefPubMed
25.
Zurück zum Zitat Song F, Shi N, Shan F et al (2020) Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 297(3):E346CrossRefPubMed Song F, Shi N, Shan F et al (2020) Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 297(3):E346CrossRefPubMed
26.
Zurück zum Zitat Tanislav C, Kostev K (2022) Fewer non-COVID-19 respiratory tract infections and gastrointestinal infections during the COVID-19 pandemic. J Med Virol 94(1):298–302CrossRefPubMed Tanislav C, Kostev K (2022) Fewer non-COVID-19 respiratory tract infections and gastrointestinal infections during the COVID-19 pandemic. J Med Virol 94(1):298–302CrossRefPubMed
27.
Zurück zum Zitat Wang Y, Dong C, Hu Y et al (2020) Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology 296(2):E55–E64CrossRefPubMed Wang Y, Dong C, Hu Y et al (2020) Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology 296(2):E55–E64CrossRefPubMed
28.
Zurück zum Zitat World Health Organization (2020) WHO director-general’s opening remarks at the media briefing on COVID-19—11 march 2020. WHO World Health Organization (2020) WHO director-general’s opening remarks at the media briefing on COVID-19—11 march 2020. WHO
29.
Zurück zum Zitat Wu J, Wu X, Zeng W et al (2020) Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Invest Radiol 55(5):257–261CrossRefPubMedPubMedCentral Wu J, Wu X, Zeng W et al (2020) Chest CT findings in patients with coronavirus disease 2019 and its relationship with clinical features. Invest Radiol 55(5):257–261CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Ye Z, Zhang Y, Wang Y et al (2020) Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol 30(8):4381–4389CrossRefPubMedPubMedCentral Ye Z, Zhang Y, Wang Y et al (2020) Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol 30(8):4381–4389CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733CrossRefPubMedPubMedCentral Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733CrossRefPubMedPubMedCentral
Metadaten
Titel
Pulmonale Befunde in der postmortalen Computertomographie bei COVID-19-assoziierten Todesfällen
verfasst von
M. Lutter
I. Kniep
B. Ondruschka
A. Heinemann
Publikationsdatum
01.12.2023
Verlag
Springer Medizin
Erschienen in
Rechtsmedizin / Ausgabe 1/2024
Print ISSN: 0937-9819
Elektronische ISSN: 1434-5196
DOI
https://doi.org/10.1007/s00194-023-00667-4

Weitere Artikel der Ausgabe 1/2024

Rechtsmedizin 1/2024 Zur Ausgabe

Mitteilungen der Deutschen Gesellschaft für Rechtsmedizin

Mitteilungen der Deutschen Gesellschaft für Rechtsmedizin

Passend zum Thema

ANZEIGE

IPD-Fallzahlen & Pneumokokken-Impfung bei Kindern in Deutschland

Das Niveau der postpandemischen Fallzahlen für invasive Pneumokokken-Erkrankungen (IPD) ist aus Sicht des Referenz-Zentrums für Streptokokken in Aachen alarmierend [1]. Wie sich die monatlichen IPD-Fallzahlen bei Kindern und Jugendlichen von Juli 2015 bis März 2023 entwickelt haben, lesen Sie hier.

ANZEIGE

HPV-Impfung: Auch für junge Erwachsene sinnvoll und wichtig

Auch nach dem 18. Lebensjahr kann eine HPV-Impfung sinnvoll und wichtig sein. Viele gesetzliche Krankenkassen übernehmen die Kosten auch zu einem späteren Zeitpunkt noch.

ANZEIGE

Impfstoffe – Krankheiten vorbeugen, bevor sie entstehen

Seit mehr als 130 Jahren entwickelt und produziert MSD Impfstoffe für alle Altersgruppen. Hier finden Sie nützliche Informationen und Praxismaterialien rund um das Thema Impfen.

MSD Sharp & Dohme GmbH