Skip to main content
Erschienen in: BMC Ophthalmology 1/2017

Open Access 01.12.2017 | Research article

Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study

verfasst von: Satoshi Yokota, Yuji Takihara, Yoshihiro Takamura, Masaru Inatani

Erschienen in: BMC Ophthalmology | Ausgabe 1/2017

Abstract

Background

To compare the lamina cribrosa between eyes with and without neovascular glaucoma (NVG) using enhanced depth imaging spectral-domain optical coherence tomography.

Methods

Forty-six patients with proliferative diabetic retinopathy were enrolled in this cross-sectional study. The patients were divided into two groups based on the absence or presence of NVG (the non-NVG group and the NVG group, respectively). The intraocular pressure (IOP), circumpapillary retinal nerve fiber layer (cpRNFL) thickness, anterior lamina cribrosa depth (ALD), and laminar thickness (LT) were compared between the groups.

Results

In the non-NVG group, the mean age was 66.2 ± 2.4 (mean ± standard error) years, mean maximum IOP was 18.8 ± 1.8 mmHg, mean cpRNFL thickness was 91.2 ± 3.9 μm, mean ALD was 407.0 ± 22.9 μm, and mean LT was 155.0 ± 4.7 μm. In the NVG group, the mean age was 61.4 ± 2.1 years, mean maximum IOP was 33.1 ± 1.6 mmHg, mean cpRNFL thickness was 73.6 ± 3.4 μm, mean ALD was 403.9 ± 20.1 μm, and mean LT was 156.9 ± 4.2 μm. The IOP was significantly higher and the cpRNFL was significantly thinner in the NVG group (P < 0.001 and P = 0.002, respectively). However, the age, ALD, and LT were not statistically different between the groups (P = 0.151, 0.919, and 0.757, respectively).

Conclusions

Although the cpRNFL was thinner, the structure of the lamina cribrosa was unchanged in the NVG eyes. Axonal loss of the retinal ganglion cells in NVG patients was prior to lamina cribrosa deformation.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12886-017-0456-9) contains supplementary material, which is available to authorized users.
Abkürzungen
ALD
Anterior Lamina cribrosa depth
cpRNFL
Circumpapillary retinal nerve fiber layer
EDI
Enhanced depth imaging
IOP
Intraocular pressure
LT
Laminar thickness
NVG
Neovascular glaucoma
OCT
Optical coherence tomography
PDR
Proliferative diabetic retionapthy
POAG
Primary open angle glaucoma
RGC
Retinal ganglion cell

Background

The lamina cribrosa is a mesh-like structure at the optic nerve head that surrounds and protects retinal ganglion cell (RGC) axons [13]. The deformation and displacement of the lamina cribrosa causes a blockade of the axoplasmic flow within RGC axons [46]. Therefore, the lamina cribrosa is considered the primary site for axonal injury in glaucomatous optic neuropathy.
Lamina cribrosa deformation to the posterior lamina has been demonstrated in histologic studies using monkey eyes with experimental glaucoma [7]. Deepening of the anterior lamina cribrosa results from a posterior shift and/or thinning of the lamina cribrosa and causes mechanical stress on the optic nerve head.
Recent advances in optical coherence tomography (OCT) have enabled us to visualize the lamina cribrosa in clinical settings [8]. These OCT images have revealed that eyes with primary open-angle glaucoma (POAG) or exfoliation glaucoma are associated with lamina cribrosa deformations such as a deeper anterior lamina cribrosa depth (ALD) and thinner laminar thickness (LT) [911]. If an abnormally high intraocular pressure (IOP) was the major factor in lamina cribrosa deformation, the lamina cribrosa in secondary glaucomatous eyes should also have deeper ALDs and thinner LTs. In contrast, normal-tension glaucomatous eyes have deeper ALDs and thinner LTs than normal eyes or high-tension POAG eyes [9, 12]. The data imply that the individual vulnerability of the lamina cribrosa rather than the high IOP contributes to the deformation of the lamina cribrosa.
Neovascular glaucoma (NVG) is a severe secondary glaucoma associated with a significant risk of blindness due to uncontrolled high IOPs. Visually disturbed patients with NVG often have optic neuropathy. Actually in diabetic retinopathy patients, as the disease gets progressed, retinal nerve fiber layer thickness decreases [13]. However, to date, there has been no study to assess the association the existence of NVG and morphologic change in lamina cribrosa with OCT. If an uncontrolled high IOPs were the major factor for lamina cribrosa deformation, NVG eyes would be associated with a deeper ALD and a thinner LT similar to POAG eyes. Otherwise, only retinal nerve fiber layer thickness would decrease and ALD or LT would be unchanged.
In the present study, we compared the deformation of the lamina cribrosa in NVG eyes to non-NVG eyes in patients with proliferative diabetic retinopathy (PDR).

Methods

Patient selection

All study patients were examined between October 2014 and March 2016 at either the glaucoma or the diabetes service of the ophthalmology department at the University of Fukui, Fukui, Japan. Specific data from the ophthalmic examinations including slit-lamp examinations, Goldmann applanation tonometry values, fundus examinations, autorefractory meter values, and axial lengths were retrospectively obtained from the medical charts.
Patients who had been diagnosed with PDR and treated with conventional panretinal photocoagulation were included. If only one eye had NVG, that eye was analyzed. If both eyes had NVG or if neither had NVG, one of the eyes was randomly selected. Eyes with other ocular diseases that might decrease the image quality of OCT were excluded (e.g., vitreous hemorrhage). The patients were divided into two groups according to the presence of NVG by the retinal or the glaucoma specialist (Y.T. and M.I.). NVG was diagnosed when an abnormally high IOP (more than 21 mmHg) and the existence of neovascularization of the iris or angle were recorded in the medical chart during a visit for an examination. One group had PDR without NVG (non-NVG group), and the other had PDR with NVG (NVG group).

Lamina cribrosa assessment by enhanced depth imaging spectral-domain optical coherence tomography

OCT imaging was performed using Heidelberg Spectralis OCT (Heidelberg Engineering GmbH, Heidelberg, Germany) with an enhanced depth imaging (EDI) mode integrated into the machine. The entire optic nerve disc was subjected to horizontal B-scans at an interval of 50 μm (Fig. 1a). As described in a previous report [10], three frames (center, mid-superior, and mid-inferior) that passed through the optic nerve disc were selected from these B-scans. The ALD, which was defined as the distance between the line connecting both ends of Bruch’s membrane and the anterior border of the lamina cribrosa, was measured. The LT was defined as the distance between the anterior and posterior borders of the lamina cribrosa (Fig. 1b). The anterior and posterior borders of the lamina cribrosa were defined by a highly reflective structure below the optic cup. Both the ALD and LT were measured at the presumed vertical center of each of the three B-scans.
All measurements were obtained using the Spectralis software. All images were independently analyzed by two examiners (S.Y. and Y.T.). The mean of the two readings was adopted. To minimize the variation, the mean data of the three frames (center, mid-superior, and mid-inferior) for the ALD and the LT analyses were considered.
To evaluate the circumpapillary retinal nerve fiber layer (cpRNFL), the scan circle was positioned around the disc by experienced operators, and the image was acquired and saved. With spectral OCT, an automated computer algorithm delineated the anterior and posterior margins of the cpRNFL. The cpRNFL thickness was measured around the disc with 16 averaged circular B-scans (12 degree in a diameter); to acquire the same position, the eye movement tracking system compensated for any eye movement. The cpRNFL thickness was automatically segmented using the Spectralis software and manually corrected in case of poor segmentation.

Statistical analyses

The baseline characteristics were compared between the NVG group and the non-NVG group. Normality was tested by Shapiro-Wilk test before using parametric tests. Parametric data were compared using Student’s t-test and non-parametric data were compared using Wilcoxon’s test. To compare categorical data, the chi-square test was used. A P-value of less than 0.05 was considered significant. Statistical analyses were performed using JMP Pro software version 11.0.0 (SAS Institute Inc., North Carolina).

Results

Forty-seven patients with PDR who had previously undergone panretinal photocoagulation met the criteria for this cross-sectional study (Additional file 1: Datasets). The non-NVG and NVG groups contained 20 eyes and 26 eyes, respectively. One case in the NVG group was type 1 diabetes, and the others were type 2 or not mentioned in the medical records. The baseline data including age, gender, axial length, and spherical equivalent were not significantly different between the two groups. The maximum IOP from the medical records were statistically higher (P < 0.001) in the NVG group (Table 1 and Additional file 2: Table S1).
Table 1
Patients’ background in both groups
 
Non-NVG group
n = 20
NVG group
n = 26
P value
Age (years)
66.2 ± 2.4
61.4 ± 2.1
0.151*
Gender (male/female)
14/6
20/6
0.597
Axial length (mm)
23.67 ± 0.38
23.79 ± 0.33
0.819*
Spherical equivalent (D)
−1.46 ± 0.59
−2.61 ± 0.49
0.141*
Maximum IOP[range] (mmHg)
18.8 ± 1.8[14-21]
33.1 ± 1.6[23-57]
< 0.001
Numerical data was shown in mean ± standard error. * t-test, chi-square test, Wilcoxon test
The cpRNFL thickness was 91.2 ± 3.9 μm in the non-NVG group and 73.6 ± 3.4 μm in the NVG group; this demonstrated a significantly thinner cpRNFL in the NVG group (P = 0.002). The ALD was 407.0 ± 22.9 μm in the non-NVG group and 403.9 ± 20.1 μm in the NVG group. The LT was 155.0 ± 4.7 μm in the non-NVG group and 156.9 ± 4.2 μm in the NVG group. There were no significant differences in the ALD (P = 0.919) or LT (P = 0.757) between the two groups (Fig. 2). Among the NVG groups, cpRNFL, ALD, or LT was not different by the duration of uncontrolled high IOP (Additional file 3: Figure S1).

Discussion

Our results showed that the cpRNFL was significantly thinner in the NVG eyes of patients with PDR. However, the ALD or LT was not different between the non-NVG and the NVG groups.
Previous reports have shown that patients with POAG or exfoliation glaucoma have thinner cpRNFLs, deeper ALDs, and thinner LTs [911]. Therefore, these findings were consistent with the concept that the lamina cribrosa is the primary site for glaucomatous damage because a thinner lamina cribrosa has fewer protective effects for RGC axons. However, in this study, despite the cpRNFL thickness change, there was no significant difference in the ALD or LT between the non-NVG group and the NVG group. One possible reason is that NVG secondary to PDR rapidly and highly increases the IOP compared with the slow progression associated with POAG or exfoliation glaucoma and that the rapid and high increase can damage the RGCs over the short term but might not have enough time to cause lamina cribrosa deformation. Another possible reason is that the RGCs in NVG eyes are more vulnerable to an IOP insult because of retinal ischemia or photocoagulation. The cpRNFL in diabetic patients is thinner [13]. This factor may contribute to the axonal damage of RGCs prior to lamina cribrosa deformation.
This study has several limitations. This was a cross-sectional, single hospital-based study with a small number of participants. We did not investigate the duration of the diabetes mellitus. It was possible that the cpRNFL may have become thinner due to systemic diabetic neuropathy after longer exposure to diabetes. As OCT depends on light waves, the contrast of the signals from deeper tissue was lower, even after using EDI. Therefore, the deeper border of the lamina cribrosa was highly subjective. For further analysis, a prospective study with a larger number of participants and machinery for conducting deeper tissue analysis will be necessary.

Conclusion

In conclusion, we found that compared with cpRNFL changes, changes in the lamina cribrosa were small in the patients with NVG who had PDR. In patients with NVG, RGCs might have been more vulnerable due to retinal ischemia. This may contribute to the axonal damage of RGCs that precedes lamina cribrosa deformation.

Acknowledgements

The authors would like to thank Enago (www.​enago.​jp) for the English language review.

Funding

This study was funded by the Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan (grant number 16H05486).

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article and its Additional file (Additional file 1: Datasets).

Authors’ contributions

YT and MI designed study. SY, YT, YT, and MI collected data. SY performed statistical analysis. All authors discussed to interpret data. SY and MI drafted the manuscript. All authors read and approved the final version of the manuscript.

Competing interest

The authors declare that they have no competing interest.
Not applicable.
All study procedures were approved by the Institutional Review Board of University of Fukui, Japan. Study participants provided informed consent orally before participation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Radius RL, Gonzales M. Anatomy of the lamina cribrosa in human eyes. Arch Ophthalmol. 1981;99:2159–62.CrossRefPubMed Radius RL, Gonzales M. Anatomy of the lamina cribrosa in human eyes. Arch Ophthalmol. 1981;99:2159–62.CrossRefPubMed
3.
Zurück zum Zitat Anderson DR. Ultrastructure of human and monkey lamina Cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.CrossRefPubMed Anderson DR. Ultrastructure of human and monkey lamina Cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.CrossRefPubMed
4.
Zurück zum Zitat Gaasterland D, Tanishima T, Kuwabara T, Light I. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–46.PubMed Gaasterland D, Tanishima T, Kuwabara T, Light I. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–46.PubMed
5.
Zurück zum Zitat Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci. 2015;112:10515–20.CrossRefPubMedPubMedCentral Takihara Y, Inatani M, Eto K, Inoue T, Kreymerman A, Miyake S, et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci. 2015;112:10515–20.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.PubMed Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.PubMed
7.
Zurück zum Zitat Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:7109–21.CrossRefPubMedPubMedCentral Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:7109–21.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lee EJ, Kim T-W, Weinreb RN, Park KH, Kim SH, Kim DM. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:87–95. e1CrossRefPubMed Lee EJ, Kim T-W, Weinreb RN, Park KH, Kim SH, Kim DM. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:87–95. e1CrossRefPubMed
9.
Zurück zum Zitat Park HYL, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119:10–20.CrossRefPubMed Park HYL, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119:10–20.CrossRefPubMed
10.
Zurück zum Zitat Kim S, Sung KR, Lee JR, Lee KS. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging. Ophthalmology. 2013;120:1798–803.CrossRefPubMed Kim S, Sung KR, Lee JR, Lee KS. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging. Ophthalmology. 2013;120:1798–803.CrossRefPubMed
11.
Zurück zum Zitat Park SC, Brumm J, Furlanetto RL, Netto C, Liu Y, Tello C, et al. Lamina Cribrosa depth in different stages of glaucoma. Invest Ophthalmol Vis Sci. 2015;56:2059–64.CrossRefPubMed Park SC, Brumm J, Furlanetto RL, Netto C, Liu Y, Tello C, et al. Lamina Cribrosa depth in different stages of glaucoma. Invest Ophthalmol Vis Sci. 2015;56:2059–64.CrossRefPubMed
12.
Zurück zum Zitat Park HYL, Park CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013;120:745–52.CrossRefPubMed Park HYL, Park CK. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013;120:745–52.CrossRefPubMed
13.
Zurück zum Zitat Takahashi H, Goto T, Shoji T, Tanito M, Park M, Chihara E. Diabetes-associated retinal nerve fiber damage evaluated with scanning laser Polarimetry. Am J Ophthalmol. 2006;142:88–94.CrossRefPubMed Takahashi H, Goto T, Shoji T, Tanito M, Park M, Chihara E. Diabetes-associated retinal nerve fiber damage evaluated with scanning laser Polarimetry. Am J Ophthalmol. 2006;142:88–94.CrossRefPubMed
Metadaten
Titel
Circumpapillary retinal nerve fiber layer thickness, anterior lamina cribrosa depth, and lamina cribrosa thickness in neovascular glaucoma secondary to proliferative diabetic retinopathy: a cross-sectional study
verfasst von
Satoshi Yokota
Yuji Takihara
Yoshihiro Takamura
Masaru Inatani
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2017
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-017-0456-9

Weitere Artikel der Ausgabe 1/2017

BMC Ophthalmology 1/2017 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

CME: Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Wird ein Glaukom chirurgisch behandelt, ist die anschließende Wundheilung von entscheidender Bedeutung. In diesem CME-Kurs lernen Sie, welche Pathomechanismen der Vernarbung zugrunde liegen, wie perioperativ therapiert und Operationsversagen frühzeitig erkannt werden kann.

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.