Skip to main content
Erschienen in: Die Pathologie 3/2023

Open Access 04.12.2023 | Hauptreferate: Hauptprogramm der DGP

What is new in the classification of peripheral T cell lymphomas?

verfasst von: Prof. Laurence de Leval, MD PhD, Bettina Bisig, MD PhD

Erschienen in: Die Pathologie | Sonderheft 3/2023

Abstract

In this review focus article, we highlight the main modifications introduced in the latest 2022 International Consensus Classification and World Health Organization classification (ICC and WHO-HAEM5) of mature T (and NK) cell neoplasms (PTCLs) and consequent implications for diagnostic practice. The changes result from recent advances in the genomic and molecular characterization of PTCLs and enhanced understanding of their pathobiology. Specifically, consideration is given to the following groups of diseases: Epstein–Barr virus (EBV)-associated neoplasms; follicular helper T cell lymphoma; anaplastic large cell lymphomas; primary intestinal T and NK cell lymphomas and lymphoproliferative disorders; and PTCL, not otherwise specified.
Hinweise
Scan QR code & read article online

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Neoplasms derived from mature NK or T cells (peripheral T cell lymphomas, PTCLs) are rare overall, but encompass diverse clinical presentations of diseases ranging from uncommonly indolent to usually aggressive. The two classifications of lymphoid neoplasms developed in 2022, namely the International Consensus Classification (ICC) [5] and the fifth edition of the World Health Organization (WHO) classification (WHO-HAEM5) [1], represent updates of the 2017 revised fourth WHO classification (WHO-HAEM4R) (Fig. 1), and rely on a multiparametric definition of lymphoma entities. Recent advances in refining the clinicopathologic features and molecular and genomic profiling of PTCLs have translated into adjustments and changes introduced in both proposals which are largely overlapping, overall reflecting similar conceptual shifts, with slight differences.

EBV-associated T cell and NK cell neoplasms

In the group of Epstein–Barr virus (EBV)-driven lymphoproliferative disorders of childhood [21], hydroa vacciniforme lymphoproliferative disorder (LPD) replaces what was previously designated hydroa vacciniforme-like LPD, because essentially all such lesions are associated with EBV infection. The ICC further recognizes two variants: a classic indolent form (limited to the skin) and a systemic aggressive form of the disease, more common in non-Caucasians. Chronic active EBV disease now replaces chronic active EBV infection to denote a pathologic disease condition, in line with the notion that pathogenic mutations indicating a neoplastic process are detected in a subset of patients.
The terminology, definition, and diagnostic criteria of extranodal NK/T cell lymphoma (ENKTCL) nasal type are unchanged in the ICC. Since this lymphoma is known to occur at various extranodal sites besides the nasal area which is involved in typical cases, “nasal type” was dropped in the WHO-HAEM5.
Cases of primary nodal EBV-positive T cell or NK cell lymphoma, formerly considered as a subtype of PTCL, not otherwise specified (NOS), are now categorized as a separate entity, namely primary nodal EBV+ T cell/NK cell lymphoma, provisional in the ICC, or nodal EBV+ T and NK cell lymphoma in the WHO-HAEM5 [21]. This rare disease, most prevalent in East Asia, involves lymph nodes and is frequently disseminated but lacks nasal involvement and tends to occur in elderly adults, in association with HIV infection or immunodeficient conditions [14]. Pathological features distinct from ENKTCL include a monomorphic large cell morphology, less frequent necrosis, negativity for CD56, positivity for CD8, and more frequent derivation from T cells than from NK cells [14, 19]. The tumor is characterized by loss of 14q11.2, upregulation of immune pathways, low genomic instability and recurrent mutations involving the epigenetic modifiers, such as TET2 and DNMT3A, and JAK-STAT pathway genes [27].

Follicular helper T cell lymphoma

In 2017, the developing concept that follicular helper derivation represents a unifying feature of a large group of nodal CD4+ T cell lymphomas was reflected by the creation of an umbrella term “nodal T cell lymphoma of T follicular helper (TFH) origin” to encompass angioimmunoblastic T cell lymphoma, follicular T cell lymphoma, and nodal PTCL with T follicular helper phenotype. Since then, this notion has been reinforced by additional evidence indicating shared molecular and genetic features [10], and, importantly, clinical data suggest that this grouping might be relevant to treatment decisions, as TFH lymphoma appear more sensitive to epigenetic therapies than non-TFH PTCLs (Fig. 2a; [4]). Therefore, the ICC considers one single disease entity, namely follicular helper T cell lymphoma, comprising three subtypes, angioimmunoblastic, follicular, and NOS (Fig. 2b–d; [11]). This entity by definition excludes primary cutaneous CD4+ T cell lymphoproliferations which also feature a TFH phenotype. The WHO-HAEM5 proposal is more conservative, considering a family of three related entities of nodal T follicular helper cell lymphomas. The TFH immunophenotype is defined by the expression of at least two and ideally three TFH markers out of a panel of at least five markers (CD10, BCL6, PD1, ICOS, CXCL13) that it is now recommended to test for routinely and systematically when a diagnosis of TFH lymphoma is considered or must be excluded [1, 5]. TFH lymphomas frequently carry mutations in TET2, DNMT3A, RHOA, and IDH2, which are rarely seen in combination in other PTCL entities; hence, mutational testing may be diagnostically useful [8, 12].

Anaplastic large cell lymphomas

The four entities of anaplastic large cell lymphomas (ALCLs) are identical in both proposals: ALK-positive (ALK+) and ALK-negative (ALK−) ALCL, primary cutaneous ALCL (within the spectrum of CD30-positive cutaneous T cell lymphoproliferative disorders), and breast implant-associated (BIA-)ALCL. Among ALK− ALCLs, those with DUSP22 rearrangement (25–30% of cases; Fig. 3a–d) differ from those devoid of this alteration, as they usually lack JAK-STAT3 activation and EMA expression, less frequently express cytotoxic molecules, harbor MSC mutations in about one third of cases, and have distinctive transcriptomic signature and methylation profiles [17, 18]. The clinical impact of DUSP22 rearrangement remains controversial: the initially reported markedly superior prognosis of these cases was not confirmed in subsequent studies, while data from more recent cohorts still support an intermediate prognosis of DUSP22-rearranged ALK− ALCL, standing between ALK+ ALCL and DUSP22-non rearranged ALK− ALCL [23, 24]. Taking into account its biological and prognostic peculiarities, the ICC recognizes DUSP22-rearranged ALCL as a genetically defined subtype of the disease and recommends systematic FISH testing for DUSP22 in ALK− ALCL [8]. Other structural aberrations are recurrent in ALK− ALCL but less common. These include TP63 rearrangements, associated with an adverse prognosis [23]; as well as fusion genes involving tyrosine kinases such as JAK2, FRK, ROS1, and TYK2, which may represent potential therapeutic targets [8].
BIA-ALCL (Fig. 3e) is recognized as a definitive entity both in the ICC and WHO-HAEM5. While histopathologically it largely overlaps with systemic ALK− ALCL, the pathogenetic association of BIA-ALCL with the microenvironment of textured breast implants is unique. At the genetic level, a highly characteristic 20q13.13 loss has been reported in two thirds of cases [7], and mutations in epigenetic modifiers such as KMT2C, KMT2D, and CREBBP are also frequently detected [16]. Similar to systemic ALCL, activation of the JAK-STAT3 pathway is a constant feature of BIA-ALCL, most commonly through mutations of STAT3 and/or JAK1 [16]. In contrast, rearrangements of ALK, DUSP22, or TP63 associated with systemic ALCLs are not observed. The prognosis of BIA-ALCL is generally excellent after surgical removal of the periprosthetic fibrous capsule, but is less favorable in cases of infiltration of the adjacent breast parenchyma [15].

Primary intestinal T and NK cell lymphomas and lymphoproliferative disorders

The three main aggressive types of primary intestinal T cell lymphomas (enteropathy-associated T cell lymphoma [EATL], monomorphic epitheliotropic intestinal T cell lymphoma (MEITL), and intestinal T cell lymphoma, NOS) are unchanged [9]. EATL occurs in populations with a higher prevalence of HLA haplotypes predisposing to celiac disease, as a complication of celiac disease and refractory celiac disease, or de novo in individuals with no history of malabsorption. The tumors may be multiple and present as ulcers or, less commonly, masses, comprise a polymorphous infiltrate with admixed inflammation, and often pleomorphic to anaplastic lymphoma cells. The typical immunophenotype is CD3+ CD4− CD8− CD30+/− TCR-silent EBV-negative, with expression of cytotoxic molecules. MEITL presents as a tumor mass and spans a morphologic spectrum. While typical cases are monomorphic with little necrosis, other tumors exhibit pleomorphic cytology and/or other atypical features like necrosis, brisk mitotic activity, and angiocentricity [26]. In MEITL, the neoplastic cells are CD3+ CD4− CD8+ CD56+ TCR-positive (gamma-delta more commonly than alpha-beta) EBV-negative. Genomic features may be helpful in differentiating between EATL and MEITL: alterations in the JAK/STAT pathway genes target primarily STAT3 and JAK1 in EATL, and STAT5B and JAK3 in MEITL. Deleterious alterations of the SETD2 gene, translating into reduced H3K36 trimethylation, are almost constant and rather specific to MEITL [22]. Type II refractory celiac disease has been added to the list of entities in the ICC, as this represents an “in situ” neoplastic condition precursor to EATL, and recent works have shown that it often already harbors driving mutations in JAK1 and/or STAT3 similar to those present in EATL [6].
The formerly provisional “indolent T cell LPD of the gastrointestinal tract” is confirmed in the ICC with the addition of “clonal” to emphasize its neoplastic nature. Indeed a variety of somatic genetic alterations have been found in these cases, including a recurrent JAK2::STAT3 fusion in a subset of CD4+ cases [25]. In WHO-HAEM5, the name has been modified to “indolent T cell lymphoma,” given the fact that transformation into a high-grade PTCL has been described in some patients. Both proposals have created a new category to classify the indolent gastrointestinal LPD of NK cells (Fig. 4), which also carry a variety of genetic mutations, including a recurrent JAK3 small in-frame deletion [28]. These T and NK LPDs of the gastrointestinal tract are in general restricted to the mucosa and represent a diagnostic challenge and should not be confused, on the one hand with inflammatory conditions, on the other hand with aggressive lymphomas, since their course is usually indolent despite possible relapses, multifocality, and chronicity, and they do not respond to chemotherapy.

Peripheral T cell lymphomas, not otherwise specified

The group of PTCLs, not otherwise specified (NOS), remains a diagnosis of exclusion (Fig. 5). Cases with a TFH immunophenotype must be excluded, since lymphomas with no morphologic specification but showing a TFH immunophenotype, defined by the expression of two or ideally three TFH markers, are classified as TFH lymphoma, NOS. Moreover, caution must be applied in this scenario to exclude primary cutaneous T cell lymphomas or human T-lymphotropic virus type 1 (HTLV-1)-associated adult T leukemia/lymphoma, as these entities, which are often CD4+, may show expression of TFH markers [20].
Two biological subtypes of PTCL, NOS, namely PTCL-TBX21 and PTCL-GATA3, have been identified by gene expression profiling, and are characterized by overexpression of transcription factors TBX21 or GATA3 and corresponding target genes, with different prognoses and distinct oncogenic pathways ([12, 13]; Table 1). An immunohistochemical algorithm using four markers applied sequentially (TBX21, CXCR3, GATA3, and CCR4) can provide surrogate information on the molecular subtypes [3], and a digital nanostring-based assay has recently been published [2]. However, it is acknowledged that there is currently too little evidence to recommend molecular subtyping of PTCL, NOS, in routine clinical use [3]. PTCL-GATA3 demonstrates high genomic complexity characterized by biallelic deletion/mutation of TP53, CDKN2A/B, or RB1, and carries a worse prognosis compared to PTCL-TBX21, which shows low genomic complexity and few recurrent specific genetic changes.
Table 1
Comparison of PTCL-GATA3 and PTCL-TBX21 subtypes of peripheral T cell lymphomas, not otherwise specified (PTCL, NOS) [3, 12]
 
PTCL-GATA3
30–40%
PTCL-TBX21
50–60%
Gene expression signature
Th1 like
MYC overexpression
High proliferation
PI3K activation
Th2 like
Subset cytotoxic
Enrichment of NF-kappa B pathway
Clinical
Poorer outcome
Better outcome
Cytotoxic phenotype associated with poorer outcome
Morphology and phenotype
Less inflammatory background
GATA3+ and/or CCR4+ (> 50%)
Inflammatory background
TBX21+ and/or CXCR3+ (> 20%)
Genomics and gene expression
Higher genomic complexity
Genomic aberrations include deletions of 17p (TP53), 9p (CDKN2A), and 10p (PTEN)
Fewer genomic aberrations, targeting cytotoxic effector genes
Frequent mutations in epigenetic modulators (e.g., TET2, DNMT3A)

Conclusion

In conclusion, the updated classifications of T and NK cell neoplasms confirm the diversity and complexity of these disorders. Nevertheless, the accumulating knowledge of their biology is translated into more meaningful categories, and an increasing importance of molecular testing for precision diagnosis and tailored therapy.

Declarations

Conflict of interest

L. de Leval and B. Bisig declare that they have no competing interests.
For this article no studies with human participants or animals were performed by any of the authors.
The supplement containing this article is not sponsored by industry.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Pathologie

Print-Titel

  • Umfassende Themenschwerpunkte aus allen
    Bereichen der Pathologie
  • Pitfalls: Fallstricke in der Diagnostik 

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Literatur
1.
Zurück zum Zitat Alaggio R, Amador C, Anagnostopoulos I et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36:1720–1748CrossRefPubMedPubMedCentral Alaggio R, Amador C, Anagnostopoulos I et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36:1720–1748CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Amador C, Bouska A, Wright G et al (2022) Gene expression signatures for the accurate diagnosis of peripheral T‑cell Lymphoma entities in the routine clinical practice. J Clin Oncol 40:4261–4275CrossRefPubMedPubMedCentral Amador C, Bouska A, Wright G et al (2022) Gene expression signatures for the accurate diagnosis of peripheral T‑cell Lymphoma entities in the routine clinical practice. J Clin Oncol 40:4261–4275CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Amador C, Greiner TC, Heavican TB et al (2019) Reproducing the molecular subclassification of peripheral T‑cell lymphoma-NOS by immunohistochemistry. Blood 134:2159–2170CrossRefPubMedPubMedCentral Amador C, Greiner TC, Heavican TB et al (2019) Reproducing the molecular subclassification of peripheral T‑cell lymphoma-NOS by immunohistochemistry. Blood 134:2159–2170CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Bachy E, Camus V, Thieblemont C et al (2022) Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T‑cell Lymphoma: results of the Ro-CHOP phase III study (conducted by LYSA). J Clin Oncol 40:242–251CrossRefPubMed Bachy E, Camus V, Thieblemont C et al (2022) Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T‑cell Lymphoma: results of the Ro-CHOP phase III study (conducted by LYSA). J Clin Oncol 40:242–251CrossRefPubMed
5.
Zurück zum Zitat Campo E, Jaffe ES, Cook JR et al (2022) The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood 140:1229–1253CrossRefPubMedPubMedCentral Campo E, Jaffe ES, Cook JR et al (2022) The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood 140:1229–1253CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Cording S, Lhermitte L, Malamut G et al (2022) Oncogenetic landscape of lymphomagenesis in coeliac disease. Gut 71:497–508 Cording S, Lhermitte L, Malamut G et al (2022) Oncogenetic landscape of lymphomagenesis in coeliac disease. Gut 71:497–508
8.
Zurück zum Zitat de Leval L, Alizadeh AA, Bergsagel PL et al (2022) Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 140:2193–2227CrossRefPubMedPubMedCentral de Leval L, Alizadeh AA, Bergsagel PL et al (2022) Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 140:2193–2227CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat de Leval L, Feldman AL, Pileri S et al (2023) Extranodal T‑ and NK-cell lymphomas. Virchows Arch 482:245–264CrossRefPubMed de Leval L, Feldman AL, Pileri S et al (2023) Extranodal T‑ and NK-cell lymphomas. Virchows Arch 482:245–264CrossRefPubMed
10.
Zurück zum Zitat Dobay MP, Lemonnier F, Missiaglia E et al (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T‑cell lymphoma and other nodal lymphomas of follicular helper T‑cell origin. Haematologica 102:e148–e151CrossRefPubMedPubMedCentral Dobay MP, Lemonnier F, Missiaglia E et al (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T‑cell lymphoma and other nodal lymphomas of follicular helper T‑cell origin. Haematologica 102:e148–e151CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Feldman AL, Laurent C, Narbaitz M et al (2023) Classification and diagnostic evaluation of nodal T‑ and NK-cell lymphomas. Virchows Arch 482:265–279CrossRefPubMed Feldman AL, Laurent C, Narbaitz M et al (2023) Classification and diagnostic evaluation of nodal T‑ and NK-cell lymphomas. Virchows Arch 482:265–279CrossRefPubMed
12.
Zurück zum Zitat Heavican TB, Bouska A, Yu J et al (2019) Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T‑cell lymphoma. Blood 133:1664–1676CrossRefPubMedPubMedCentral Heavican TB, Bouska A, Yu J et al (2019) Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T‑cell lymphoma. Blood 133:1664–1676CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Iqbal J, Wright G, Wang C et al (2014) Gene expression signatures delineate biological and prognostic subgroups in peripheral T‑cell lymphoma. Blood 123:2915–2923CrossRefPubMedPubMedCentral Iqbal J, Wright G, Wang C et al (2014) Gene expression signatures delineate biological and prognostic subgroups in peripheral T‑cell lymphoma. Blood 123:2915–2923CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kato S, Yamashita D, Nakamura S (2020) Nodal EBV+ cytotoxic T‑cell lymphoma: a literature review based on the 2017 WHO classification. J Clin Exp Hematop 60:30–36CrossRefPubMedPubMedCentral Kato S, Yamashita D, Nakamura S (2020) Nodal EBV+ cytotoxic T‑cell lymphoma: a literature review based on the 2017 WHO classification. J Clin Exp Hematop 60:30–36CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Laurent C, Delas A, Gaulard P et al (2016) Breast implant-associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol 27:306–314CrossRefPubMed Laurent C, Delas A, Gaulard P et al (2016) Breast implant-associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol 27:306–314CrossRefPubMed
16.
Zurück zum Zitat Laurent C, Nicolae A, Laurent C et al (2020) Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 135:360–370PubMedPubMedCentral Laurent C, Nicolae A, Laurent C et al (2020) Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 135:360–370PubMedPubMedCentral
17.
Zurück zum Zitat Luchtel RA, Dasari S, Oishi N et al (2018) Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:1386–1398CrossRefPubMedPubMedCentral Luchtel RA, Dasari S, Oishi N et al (2018) Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:1386–1398CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Luchtel RA, Zimmermann MT, Hu G et al (2019) Recurrent MSC (E116K) mutations in ALK-negative anaplastic large cell lymphoma. Blood 133:2776–2789CrossRefPubMedPubMedCentral Luchtel RA, Zimmermann MT, Hu G et al (2019) Recurrent MSC (E116K) mutations in ALK-negative anaplastic large cell lymphoma. Blood 133:2776–2789CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Nicolae A, Bouilly J, Lara D et al (2022) Nodal cytotoxic peripheral T‑cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations. Mod Pathol 35:1126–1136CrossRefPubMed Nicolae A, Bouilly J, Lara D et al (2022) Nodal cytotoxic peripheral T‑cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations. Mod Pathol 35:1126–1136CrossRefPubMed
20.
Zurück zum Zitat Ondrejka SL, Amador C, Climent F et al (2023) Follicular helper T‑cell lymphomas: disease spectrum, relationship with clonal hematopoiesis, and mimics—a report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 483:349–365 Ondrejka SL, Amador C, Climent F et al (2023) Follicular helper T‑cell lymphomas: disease spectrum, relationship with clonal hematopoiesis, and mimics—a report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 483:349–365
21.
Zurück zum Zitat Quintanilla-Martinez L, Swerdlow SH, Tousseyn T et al (2023) New concepts in EBV-associated B, T, and NK cell lymphoproliferative disorders. Virchows Arch 482:227–244CrossRefPubMed Quintanilla-Martinez L, Swerdlow SH, Tousseyn T et al (2023) New concepts in EBV-associated B, T, and NK cell lymphoproliferative disorders. Virchows Arch 482:227–244CrossRefPubMed
22.
Zurück zum Zitat Roberti A, Dobay MP, Bisig B et al (2016) Type II enteropathy-associated T‑cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun 7:12602CrossRefPubMedPubMedCentral Roberti A, Dobay MP, Bisig B et al (2016) Type II enteropathy-associated T‑cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun 7:12602CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Savage KJ, Slack GW (2023) DUSP22-rearranged ALK-negative anaplastic large cell lymphoma is a pathogenetically distinct disease but can have variable clinical outcome. Haematologica 108:1463–1467CrossRefPubMed Savage KJ, Slack GW (2023) DUSP22-rearranged ALK-negative anaplastic large cell lymphoma is a pathogenetically distinct disease but can have variable clinical outcome. Haematologica 108:1463–1467CrossRefPubMed
24.
Zurück zum Zitat Sibon D, Bisig B, Bonnet C et al (2023) ALK-negative anaplastic large cell lymphoma with DUSP22 rearrangement has distinctive disease characteristics with better progression-free survival: a LYSA study. Haematologica 108:1590–1603CrossRefPubMed Sibon D, Bisig B, Bonnet C et al (2023) ALK-negative anaplastic large cell lymphoma with DUSP22 rearrangement has distinctive disease characteristics with better progression-free survival: a LYSA study. Haematologica 108:1590–1603CrossRefPubMed
25.
Zurück zum Zitat Soderquist CR, Patel N, Murty VV et al (2020) Genetic and phenotypic characterization of indolent T‑cell lymphoproliferative disorders of the gastrointestinal tract. Haematologica 105:1895–1906CrossRefPubMedPubMedCentral Soderquist CR, Patel N, Murty VV et al (2020) Genetic and phenotypic characterization of indolent T‑cell lymphoproliferative disorders of the gastrointestinal tract. Haematologica 105:1895–1906CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Veloza L, Cavalieri D, Missiaglia E et al (2023) Monomorphic epitheliotropic intestinal T‑cell lymphoma comprises morphologic and genomic heterogeneity impacting outcome. Haematologica 108:181–195CrossRefPubMed Veloza L, Cavalieri D, Missiaglia E et al (2023) Monomorphic epitheliotropic intestinal T‑cell lymphoma comprises morphologic and genomic heterogeneity impacting outcome. Haematologica 108:181–195CrossRefPubMed
27.
Zurück zum Zitat Wai CMM, Chen S, Phyu T et al (2022) Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica 107:1864–1879CrossRefPubMedPubMedCentral Wai CMM, Chen S, Phyu T et al (2022) Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica 107:1864–1879CrossRefPubMedPubMedCentral
Metadaten
Titel
What is new in the classification of peripheral T cell lymphomas?
verfasst von
Prof. Laurence de Leval, MD PhD
Bettina Bisig, MD PhD
Publikationsdatum
04.12.2023
Verlag
Springer Medizin
Erschienen in
Die Pathologie / Ausgabe Sonderheft 3/2023
Print ISSN: 2731-7188
Elektronische ISSN: 2731-7196
DOI
https://doi.org/10.1007/s00292-023-01260-y

Weitere Artikel der Sonderheft 3/2023

Die Pathologie 3/2023 Zur Ausgabe

Referate: Preisträgerinnen und Preisträger – Forschungspreis der DGP

Somatische Malignitäten des Hodens

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.