Skip to main content

03.05.2024 | RESEARCH

TRPV1 Regulates Proinflammatory Properties of M1 Macrophages in Periodontitis Via NRF2

verfasst von: Yiyang Li, Xiaotong Guo, Peimeng Zhan, Shuheng Huang, Jiayao Chen, Yujie Zhou, Wentao Jiang, Lingling Chen, Zhengmei Lin

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Periodontitis, characterized by progressive alveolar bone destruction, leads to the loss of attachment and stability of the affected teeth. Macrophages, especially the proinflammatory M1 subtype, are key in periodontitis pathogenesis, driving the disease's inflammatory and destructive processes. Despite existing insight into their involvement, comprehensive understanding of the underlying molecular mechanisms remains limited. TRPV1 is a non-selective cation channel protein and is known to regulate cellular function and homeostasis in macrophages. Our research objective was to investigate the impact of TRPV1 on the proinflammatory attributes of M1 macrophages in periodontal tissues, exploring potential mechanistic pathways. A mouse model of periodontitis was established using Porphyromonas gingivalis inoculation and ligature application around the maxillary second molar. Immunohistological analysis showed a significant reduction in macrophage TRPV1 expression in periodontitis-induced mice. Treatment with capsaicin, a TRPV1 agonist, was observed to effectively elevate TRPV1 expression in these macrophages. Furthermore, micro-computed tomography analysis revealed a marked decrease in alveolar bone resorption in the capsaicin -treated group, compared with vehicle and healthy control groups. Our in vitro findings show that capsaicin treatment successfully attenuated LPS-induced TNF-α and IL-6 production in macrophages, mediated through NRF2 activation, consequently reducing intracellular ROS levels. These findings suggest that TRPV1 agonists, through modulating M1 macrophage activity and up-regulating TRPV1, could be a novel therapeutic approach in periodontal disease management.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Papapanou, P.N., M. Sanz, N. Buduneli, T. Dietrich, M. Feres, D.H. Fine, et al. 2018. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. Journal of Periodontology 89 (Suppl 1): S173–S182.PubMed Papapanou, P.N., M. Sanz, N. Buduneli, T. Dietrich, M. Feres, D.H. Fine, et al. 2018. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. Journal of Periodontology 89 (Suppl 1): S173–S182.PubMed
2.
Zurück zum Zitat Jepsen, S., J.G. Caton, J.M. Albandar, N.F. Bissada, P. Bouchard, P. Cortellini, et al. 2018. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Clinical Periodontology 45 (Suppl 20): S219–S229.PubMed Jepsen, S., J.G. Caton, J.M. Albandar, N.F. Bissada, P. Bouchard, P. Cortellini, et al. 2018. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Clinical Periodontology 45 (Suppl 20): S219–S229.PubMed
3.
Zurück zum Zitat Darveau, R.P. 2010. Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology 8 (7): 481–490.PubMedCrossRef Darveau, R.P. 2010. Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology 8 (7): 481–490.PubMedCrossRef
4.
Zurück zum Zitat Iniesta, M., C. Chamorro, N. Ambrosio, M.J. Marín, M. Sanz, and D. Herrera. 2023. Subgingival microbiome in periodontal health, gingivitis and different stages of periodontitis. Journal of Clinical Periodontology 50 (7): 905–920.PubMedCrossRef Iniesta, M., C. Chamorro, N. Ambrosio, M.J. Marín, M. Sanz, and D. Herrera. 2023. Subgingival microbiome in periodontal health, gingivitis and different stages of periodontitis. Journal of Clinical Periodontology 50 (7): 905–920.PubMedCrossRef
5.
Zurück zum Zitat Lamont, R.J., H. Koo, and G. Hajishengallis. 2018. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology 16 (12): 745–759.PubMedPubMedCentralCrossRef Lamont, R.J., H. Koo, and G. Hajishengallis. 2018. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology 16 (12): 745–759.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Eke, P.I., L. Wei, W.S. Borgnakke, G. Thornton-Evans, X. Zhang, H. Lu, et al. 2016. Periodontitis prevalence in adults ≥ 65 years of age, in the USA. Periodontology 2000 72 (1): 76–95.PubMedPubMedCentralCrossRef Eke, P.I., L. Wei, W.S. Borgnakke, G. Thornton-Evans, X. Zhang, H. Lu, et al. 2016. Periodontitis prevalence in adults ≥ 65 years of age, in the USA. Periodontology 2000 72 (1): 76–95.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Kassebaum, N.J., E. Bernabé, M. Dahiya, B. Bhandari, C.J. Murray, and W. Marcenes. 2014. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. Journal of Dental Research 93 (11): 1045–1053.PubMedPubMedCentralCrossRef Kassebaum, N.J., E. Bernabé, M. Dahiya, B. Bhandari, C.J. Murray, and W. Marcenes. 2014. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. Journal of Dental Research 93 (11): 1045–1053.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Marruganti, C., M. Romandini, C. Gaeta, E.F. Cagidiaco, N. Discepoli, S. Parrini, et al. 2023. Healthy lifestyles are associated with a better response to periodontal therapy: A prospective cohort study. Journal of Clinical Periodontology 50 (8): 1089–1100.PubMedCrossRef Marruganti, C., M. Romandini, C. Gaeta, E.F. Cagidiaco, N. Discepoli, S. Parrini, et al. 2023. Healthy lifestyles are associated with a better response to periodontal therapy: A prospective cohort study. Journal of Clinical Periodontology 50 (8): 1089–1100.PubMedCrossRef
9.
Zurück zum Zitat Elsadek, M.F., and M.F. Farahat. 2022. Effectiveness of photodynamic therapy as an adjunct to periodontal scaling for treating periodontitis in geriatric patients. European Review for Medical and Pharmacological Sciences 26 (6): 1832–1838.PubMed Elsadek, M.F., and M.F. Farahat. 2022. Effectiveness of photodynamic therapy as an adjunct to periodontal scaling for treating periodontitis in geriatric patients. European Review for Medical and Pharmacological Sciences 26 (6): 1832–1838.PubMed
10.
Zurück zum Zitat Sälzer, S., C. Graetz, C.E. Dörfer, D.E. Slot, and F.A. Van der Weijden. 2020. Contemporary practices for mechanical oral hygiene to prevent periodontal disease. Periodontology 2000 84 (1): 35–44.PubMedCrossRef Sälzer, S., C. Graetz, C.E. Dörfer, D.E. Slot, and F.A. Van der Weijden. 2020. Contemporary practices for mechanical oral hygiene to prevent periodontal disease. Periodontology 2000 84 (1): 35–44.PubMedCrossRef
11.
Zurück zum Zitat Slots, J. 2022. Concise evaluation and therapeutic guidelines for severe periodontitis: A public health perspective. Periodontology 2000 90 (1): 262–265.PubMedPubMedCentralCrossRef Slots, J. 2022. Concise evaluation and therapeutic guidelines for severe periodontitis: A public health perspective. Periodontology 2000 90 (1): 262–265.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Balta, M.G., E. Papathanasiou, I.J. Blix, and T.E. Van Dyke. 2021. Host Modulation and Treatment of Periodontal Disease. Journal of Dental Research 100 (8): 798–809.PubMedPubMedCentralCrossRef Balta, M.G., E. Papathanasiou, I.J. Blix, and T.E. Van Dyke. 2021. Host Modulation and Treatment of Periodontal Disease. Journal of Dental Research 100 (8): 798–809.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Li, X., H. Wang, X. Yu, G. Saha, L. Kalafati, C. Ioannidis, et al. 2022. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185 (10): 1709–1727.PubMedPubMedCentralCrossRef Li, X., H. Wang, X. Yu, G. Saha, L. Kalafati, C. Ioannidis, et al. 2022. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185 (10): 1709–1727.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Carcuac, O., and T. Berglundh. 2014. Composition of human peri-implantitis and periodontitis lesions. Journal of Dental Research 93 (11): 1083–1088.PubMedPubMedCentralCrossRef Carcuac, O., and T. Berglundh. 2014. Composition of human peri-implantitis and periodontitis lesions. Journal of Dental Research 93 (11): 1083–1088.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Liu, H., X. Wu, N. Gang, S. Wang, W. Deng, L. Zan, et al. 2015. Macrophage functional phenotype can be consecutively and reversibly shifted to adapt to microenvironmental changes. International Journal of Clinical and Experimental Medicine 8 (2): 3044–3053.PubMedPubMedCentral Liu, H., X. Wu, N. Gang, S. Wang, W. Deng, L. Zan, et al. 2015. Macrophage functional phenotype can be consecutively and reversibly shifted to adapt to microenvironmental changes. International Journal of Clinical and Experimental Medicine 8 (2): 3044–3053.PubMedPubMedCentral
16.
Zurück zum Zitat Gonzalez, O.A., S. Kirakodu, L. Nguyen, and J.L. Ebersole. 2023. Macrophage-related gingival transcriptomic patterns and microbiome alterations in experimental periodontitis in nonhuman primates. Journal of Periodontal Research 58 (6): 1148–1170.PubMedCrossRef Gonzalez, O.A., S. Kirakodu, L. Nguyen, and J.L. Ebersole. 2023. Macrophage-related gingival transcriptomic patterns and microbiome alterations in experimental periodontitis in nonhuman primates. Journal of Periodontal Research 58 (6): 1148–1170.PubMedCrossRef
17.
Zurück zum Zitat Garaicoa-Pazmino, C., T. Fretwurst, C.H. Squarize, T. Berglundh, W.V. Giannobile, L. Larsson, et al. 2019. Characterization of macrophage polarization in periodontal disease. Journal of Clinical Periodontology 46 (8): 830–839.PubMedCrossRef Garaicoa-Pazmino, C., T. Fretwurst, C.H. Squarize, T. Berglundh, W.V. Giannobile, L. Larsson, et al. 2019. Characterization of macrophage polarization in periodontal disease. Journal of Clinical Periodontology 46 (8): 830–839.PubMedCrossRef
18.
Zurück zum Zitat Zhou, L.N., C.S. Bi, L.N. Gao, Y. An, F. Chen, and F.M. Chen. 2019. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Disease 25 (1): 265–273.CrossRef Zhou, L.N., C.S. Bi, L.N. Gao, Y. An, F. Chen, and F.M. Chen. 2019. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Disease 25 (1): 265–273.CrossRef
19.
Zurück zum Zitat Huynh, N.C., V. Everts, P. Pavasant, and R.S. Ampornaramveth. 2017. Interleukin-1β induces human cementoblasts to support osteoclastogenesis. International Journal of Oral Science 9 (12): e5.PubMedPubMedCentralCrossRef Huynh, N.C., V. Everts, P. Pavasant, and R.S. Ampornaramveth. 2017. Interleukin-1β induces human cementoblasts to support osteoclastogenesis. International Journal of Oral Science 9 (12): e5.PubMedPubMedCentralCrossRef
20.
21.
22.
Zurück zum Zitat Lv, Z., J. Han, J. Li, H. Guo, Y. Fei, Z. Sun, et al. 2022. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. eBioMedicine 84: 104258.PubMedPubMedCentralCrossRef Lv, Z., J. Han, J. Li, H. Guo, Y. Fei, Z. Sun, et al. 2022. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. eBioMedicine 84: 104258.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Dmitrzak-Węglarz, M., J. Rybakowski, A. Szczepankiewicz, P. Kapelski, M. Lesicka, E. Jabłońska, et al. 2023. Identification of shared disease marker genes and underlying mechanisms between major depression and rheumatoid arthritis. Journal of Psychiatric Research 168: 22–29.PubMedCrossRef Dmitrzak-Węglarz, M., J. Rybakowski, A. Szczepankiewicz, P. Kapelski, M. Lesicka, E. Jabłońska, et al. 2023. Identification of shared disease marker genes and underlying mechanisms between major depression and rheumatoid arthritis. Journal of Psychiatric Research 168: 22–29.PubMedCrossRef
24.
Zurück zum Zitat Li, T., S. Jiang, Y. Zhang, J. Luo, M. Li, H. Ke, et al. 2023. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nature Communication 14 (1): 2498.CrossRef Li, T., S. Jiang, Y. Zhang, J. Luo, M. Li, H. Ke, et al. 2023. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nature Communication 14 (1): 2498.CrossRef
25.
Zurück zum Zitat Chen, C.C., C.H. Ke, C.H. Wu, H.F. Lee, Y. Chao, M.C. Tsai, et al. 2024. Transient receptor potential vanilloid 1 inhibition reduces brain damage by suppressing neuronal apoptosis after intracerebral hemorrhage. Brain Pathology 2: e13244.CrossRef Chen, C.C., C.H. Ke, C.H. Wu, H.F. Lee, Y. Chao, M.C. Tsai, et al. 2024. Transient receptor potential vanilloid 1 inhibition reduces brain damage by suppressing neuronal apoptosis after intracerebral hemorrhage. Brain Pathology 2: e13244.CrossRef
26.
Zurück zum Zitat Lucius, A., S. Chhatwal, M. Valtink, P.S. Reinach, A. Li, U. Pleyer, et al. 2023. L-Carnitine Suppresses Transient Receptor Potential Vanilloid Type 1 Activation in Human Corneal Epithelial Cells. International Journal of Molecular Science 24 (14): 11815.CrossRef Lucius, A., S. Chhatwal, M. Valtink, P.S. Reinach, A. Li, U. Pleyer, et al. 2023. L-Carnitine Suppresses Transient Receptor Potential Vanilloid Type 1 Activation in Human Corneal Epithelial Cells. International Journal of Molecular Science 24 (14): 11815.CrossRef
27.
Zurück zum Zitat Dohnalová, L., P. Lundgren, J.R.E. Carty, N. Goldstein, S.L. Wenski, P. Nanudorn, et al. 2022. A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature 612 (7941): 739–747.PubMedCrossRef Dohnalová, L., P. Lundgren, J.R.E. Carty, N. Goldstein, S.L. Wenski, P. Nanudorn, et al. 2022. A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature 612 (7941): 739–747.PubMedCrossRef
28.
Zurück zum Zitat Yan, S., L. Miao, Y. Lu, and L. Wang. 2019. Sirtuin 1 inhibits TNF-α-mediated osteoclastogenesis of bone marrow-derived macrophages through both ROS generation and TRPV1 activation. Molecular and Cellular Biochemistry 455 (1–2): 135–145.PubMedCrossRef Yan, S., L. Miao, Y. Lu, and L. Wang. 2019. Sirtuin 1 inhibits TNF-α-mediated osteoclastogenesis of bone marrow-derived macrophages through both ROS generation and TRPV1 activation. Molecular and Cellular Biochemistry 455 (1–2): 135–145.PubMedCrossRef
29.
Zurück zum Zitat Limberg, M.M., D. Wiebe, N. Gray, T. Weihrauch, A.U. Bräuer, A.E. Kremer, et al. 2024. Functional expression of TRPV1 in human peripheral blood basophils and its regulation in atopic dermatitis. Allergy 79 (1): 225–228.PubMedCrossRef Limberg, M.M., D. Wiebe, N. Gray, T. Weihrauch, A.U. Bräuer, A.E. Kremer, et al. 2024. Functional expression of TRPV1 in human peripheral blood basophils and its regulation in atopic dermatitis. Allergy 79 (1): 225–228.PubMedCrossRef
30.
Zurück zum Zitat Bertin, S., Y. Aoki-Nonaka, P.R. de Jong, L.L. Nohara, H. Xu, S.R. Stanwood, et al. 2014. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nature Immunology 15 (11): 1055–1063.PubMedPubMedCentralCrossRef Bertin, S., Y. Aoki-Nonaka, P.R. de Jong, L.L. Nohara, H. Xu, S.R. Stanwood, et al. 2014. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nature Immunology 15 (11): 1055–1063.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Tortora, C., A. Di Paola, M. Creoli, et al. 2022. Effects of CB2 and TRPV1 Stimulation on Osteoclast Overactivity Induced by Iron in Pediatric Inflammatory Bowel Disease. Inflammatory Bowel Diseases 28 (8): 1244–1253.PubMedPubMedCentralCrossRef Tortora, C., A. Di Paola, M. Creoli, et al. 2022. Effects of CB2 and TRPV1 Stimulation on Osteoclast Overactivity Induced by Iron in Pediatric Inflammatory Bowel Disease. Inflammatory Bowel Diseases 28 (8): 1244–1253.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Takahashi, N., Y. Matsuda, K. Sato, P.R. de Jong, S. Bertin, K. Tabeta, et al. 2016. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Scientific Report 6: 29294.CrossRef Takahashi, N., Y. Matsuda, K. Sato, P.R. de Jong, S. Bertin, K. Tabeta, et al. 2016. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Scientific Report 6: 29294.CrossRef
33.
Zurück zum Zitat Kim, Y.G., M.O. Kim, S.H. Kim, H.J. Kim, N.K. Pokhrel, J.H. Lee, et al. 2020. 6-Shogaol, an active ingredient of ginger, inhibits osteoclastogenesis and alveolar bone resorption in ligature-induced periodontitis in mice. Journal of Periodontology 91 (6): 809–818.PubMedCrossRef Kim, Y.G., M.O. Kim, S.H. Kim, H.J. Kim, N.K. Pokhrel, J.H. Lee, et al. 2020. 6-Shogaol, an active ingredient of ginger, inhibits osteoclastogenesis and alveolar bone resorption in ligature-induced periodontitis in mice. Journal of Periodontology 91 (6): 809–818.PubMedCrossRef
34.
Zurück zum Zitat Yoshimoto, T., M. Kittaka, A.A.P. Doan, R. Urata, M. Prideaux, R.E. Rojas, et al. 2022. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nature Communications 13 (1): 6648.PubMedPubMedCentralCrossRef Yoshimoto, T., M. Kittaka, A.A.P. Doan, R. Urata, M. Prideaux, R.E. Rojas, et al. 2022. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nature Communications 13 (1): 6648.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Zhang, L., W. Lu, C. Lu, Y. Guo, X. Chen, J. Chen, et al. 2022. Beneficial effect of capsaicin via TRPV4/EDH signals on mesenteric arterioles of normal and colitis mice. Journal of Advanced Research 39: 291–303.PubMedCrossRef Zhang, L., W. Lu, C. Lu, Y. Guo, X. Chen, J. Chen, et al. 2022. Beneficial effect of capsaicin via TRPV4/EDH signals on mesenteric arterioles of normal and colitis mice. Journal of Advanced Research 39: 291–303.PubMedCrossRef
36.
Zurück zum Zitat Xin, L., F. Zhou, C. Zhang, W. Zhong, S. Xu, X. Jing, et al. 2022. Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system. International Journal of Oral Science 14 (1): 27.PubMedPubMedCentralCrossRef Xin, L., F. Zhou, C. Zhang, W. Zhong, S. Xu, X. Jing, et al. 2022. Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system. International Journal of Oral Science 14 (1): 27.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Yang, M., Z. Shen, X. Zhang, Z. Song, Y. Zhang, Z. Lin, et al. 2023. Ferroptosis of macrophages facilitates bone loss in apical periodontitis via NRF2/FSP1/ROS pathway. Free Radical Biology and Medicine 208: 334–347.PubMedCrossRef Yang, M., Z. Shen, X. Zhang, Z. Song, Y. Zhang, Z. Lin, et al. 2023. Ferroptosis of macrophages facilitates bone loss in apical periodontitis via NRF2/FSP1/ROS pathway. Free Radical Biology and Medicine 208: 334–347.PubMedCrossRef
38.
Zurück zum Zitat Fontana, F., M. Marzagalli, M. Raimondi, V. Zuco, N. Zaffaroni, and P. Limonta. 2021. δ-Tocotrienol sensitizes and re-sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis. Cell Proliferation 54 (11): e13111.PubMedPubMedCentralCrossRef Fontana, F., M. Marzagalli, M. Raimondi, V. Zuco, N. Zaffaroni, and P. Limonta. 2021. δ-Tocotrienol sensitizes and re-sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis. Cell Proliferation 54 (11): e13111.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Sczepanik, F.S.C., M.L. Grossi, M. Casati, M. Goldberg, M. Glogauer, N. Fine, et al. 2020. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontology 2000 84 (1): 45–68.PubMedCrossRef Sczepanik, F.S.C., M.L. Grossi, M. Casati, M. Goldberg, M. Glogauer, N. Fine, et al. 2020. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontology 2000 84 (1): 45–68.PubMedCrossRef
40.
Zurück zum Zitat Weiss-Sadan, T., M. Ge, M. Hayashi, M. Gohar, C.H. Yao, A. de Groot, et al. 2023. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metabolism 35 (3): 487–503.PubMedPubMedCentralCrossRef Weiss-Sadan, T., M. Ge, M. Hayashi, M. Gohar, C.H. Yao, A. de Groot, et al. 2023. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metabolism 35 (3): 487–503.PubMedPubMedCentralCrossRef
41.
42.
Zurück zum Zitat Han, Y., Y. Huang, P. Gao, Q. Yang, L. Jia, Y. Zheng, et al. 2022. Leptin Aggravates Periodontitis by Promoting M1 Polarization via NLRP3. Journal of Dental Research 101 (6): 675–685.PubMedCrossRef Han, Y., Y. Huang, P. Gao, Q. Yang, L. Jia, Y. Zheng, et al. 2022. Leptin Aggravates Periodontitis by Promoting M1 Polarization via NLRP3. Journal of Dental Research 101 (6): 675–685.PubMedCrossRef
43.
Zurück zum Zitat Horwood, N.J. 2016. Macrophage Polarization and Bone Formation: A review. Clinical Reviews in Allergy and Immunology 51 (1): 79–86.PubMedCrossRef Horwood, N.J. 2016. Macrophage Polarization and Bone Formation: A review. Clinical Reviews in Allergy and Immunology 51 (1): 79–86.PubMedCrossRef
44.
Zurück zum Zitat Champagne, C.M., J. Takebe, S. Offenbacher, and L.F. Cooper. 2002. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30 (1): 26–31.PubMedCrossRef Champagne, C.M., J. Takebe, S. Offenbacher, and L.F. Cooper. 2002. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30 (1): 26–31.PubMedCrossRef
45.
Zurück zum Zitat Sun, X., K. Li, M. Hase, R. Zha, Y. Feng, B.Y. Li, and H. Yokota. 2022. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling. Theranostics 12 (2): 929–943.PubMedPubMedCentralCrossRef Sun, X., K. Li, M. Hase, R. Zha, Y. Feng, B.Y. Li, and H. Yokota. 2022. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling. Theranostics 12 (2): 929–943.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Lu, L.Y., F. Loi, K. Nathan, T.H. Lin, J. Pajarinen, E. Gibon, et al. 2017. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. Journal of Orthopaedic Research 35 (11): 2378–2385.PubMedPubMedCentralCrossRef Lu, L.Y., F. Loi, K. Nathan, T.H. Lin, J. Pajarinen, E. Gibon, et al. 2017. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. Journal of Orthopaedic Research 35 (11): 2378–2385.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Wang, C., Q. Zhao, C. Chen, J. Li, J. Zhang, S. Qu, et al. 2023. CD301b+ macrophage: The new booster for activating bone regeneration in periodontitis treatment. International Journal of Oral Science 15 (1): 19.PubMedPubMedCentralCrossRef Wang, C., Q. Zhao, C. Chen, J. Li, J. Zhang, S. Qu, et al. 2023. CD301b+ macrophage: The new booster for activating bone regeneration in periodontitis treatment. International Journal of Oral Science 15 (1): 19.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Wu, Q., X. Zhou, D. Huang, Y. Ji, and F. Kang. 2017. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry 41 (4): 1360–1369.PubMedCrossRef Wu, Q., X. Zhou, D. Huang, Y. Ji, and F. Kang. 2017. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular Physiology and Biochemistry 41 (4): 1360–1369.PubMedCrossRef
49.
Zurück zum Zitat Kimura, S., A. Nagai, T. Onitsuka, T. Koga, T. Fujiwara, H. Kaya, et al. 2000. Induction of experimental periodontitis in mice with Porphyromonas gingivalis-adhered ligatures. Journal of Periodontology 71 (7): 1167–1173.PubMedCrossRef Kimura, S., A. Nagai, T. Onitsuka, T. Koga, T. Fujiwara, H. Kaya, et al. 2000. Induction of experimental periodontitis in mice with Porphyromonas gingivalis-adhered ligatures. Journal of Periodontology 71 (7): 1167–1173.PubMedCrossRef
50.
Zurück zum Zitat Nagasaki, A., K. Nagasaki, B.D. Kear, W.D. Tadesse, V. Thumbigere-Math, J.L. Millán, et al. 2021. Delivery of alkaline phosphatase promotes periodontal regeneration in mice. Journal of Dental Research 100 (9): 993–1001.PubMedPubMedCentralCrossRef Nagasaki, A., K. Nagasaki, B.D. Kear, W.D. Tadesse, V. Thumbigere-Math, J.L. Millán, et al. 2021. Delivery of alkaline phosphatase promotes periodontal regeneration in mice. Journal of Dental Research 100 (9): 993–1001.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Jin, S.S., D.Q. He, Y. Wang, T. Zhang, H.J. Yu, Z.X. Li, et al. 2020. Mechanical force modulates periodontal ligament stem cell characteristics during bone remodelling via TRPV4. Cell Proliferation 53 (10): e12912.PubMedPubMedCentralCrossRef Jin, S.S., D.Q. He, Y. Wang, T. Zhang, H.J. Yu, Z.X. Li, et al. 2020. Mechanical force modulates periodontal ligament stem cell characteristics during bone remodelling via TRPV4. Cell Proliferation 53 (10): e12912.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Liu, K., X. Gao, C. Hu, Y. Gui, S. Gui, Q. Ni, et al. 2022. Capsaicin ameliorates diabetic retinopathy by inhibiting poldip2-induced oxidative stress. Redox Biology 56: 102460.PubMedPubMedCentralCrossRef Liu, K., X. Gao, C. Hu, Y. Gui, S. Gui, Q. Ni, et al. 2022. Capsaicin ameliorates diabetic retinopathy by inhibiting poldip2-induced oxidative stress. Redox Biology 56: 102460.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Yin, C., B. Liu, P. Wang, X. Li, Y. Li, X. Zheng, et al. 2020. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. British Journal of Pharmacology 177 (9): 2042–2057.PubMedPubMedCentralCrossRef Yin, C., B. Liu, P. Wang, X. Li, Y. Li, X. Zheng, et al. 2020. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. British Journal of Pharmacology 177 (9): 2042–2057.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Xu, X., Y. Li, Z. Yang, and Z. Zhou. 2022. Transient receptor potential vanilloid type-1 regulates periodontal disease damage via the PI3K/AKT signaling pathway. Iranian Journal of Basic Medical Sciences 25 (5): 635–642.PubMedPubMedCentral Xu, X., Y. Li, Z. Yang, and Z. Zhou. 2022. Transient receptor potential vanilloid type-1 regulates periodontal disease damage via the PI3K/AKT signaling pathway. Iranian Journal of Basic Medical Sciences 25 (5): 635–642.PubMedPubMedCentral
55.
Zurück zum Zitat Yamaguchi, T., Y. Yamamoto, K. Egashira, A. Sato, Y. Kondo, S. Saiki, et al. 2023. Oxidative stress inhibits endotoxin tolerance and may affect periodontitis. Journal of Dental Research 102 (3): 331–339.PubMedCrossRef Yamaguchi, T., Y. Yamamoto, K. Egashira, A. Sato, Y. Kondo, S. Saiki, et al. 2023. Oxidative stress inhibits endotoxin tolerance and may affect periodontitis. Journal of Dental Research 102 (3): 331–339.PubMedCrossRef
56.
Zurück zum Zitat Chen, K., P. Qiu, Y. Yuan, L. Zheng, J. He, C. Wang, et al. 2019. Pseurotin a inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics 9 (6): 1634–1650.PubMedPubMedCentralCrossRef Chen, K., P. Qiu, Y. Yuan, L. Zheng, J. He, C. Wang, et al. 2019. Pseurotin a inhibits osteoclastogenesis and prevents ovariectomized-induced bone loss by suppressing reactive oxygen species. Theranostics 9 (6): 1634–1650.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Weng, Y., H. Wang, L. Li, Y. Feng, S. Xu, and Z. Wang. 2021. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biology 40: 101849.PubMedCrossRef Weng, Y., H. Wang, L. Li, Y. Feng, S. Xu, and Z. Wang. 2021. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biology 40: 101849.PubMedCrossRef
58.
Zurück zum Zitat Deng, Z., J. Lim, Q. Wang, K. Purtell, S. Wu, G.M. Palomo, et al. 2020. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16 (5): 917–931.PubMedCrossRef Deng, Z., J. Lim, Q. Wang, K. Purtell, S. Wu, G.M. Palomo, et al. 2020. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16 (5): 917–931.PubMedCrossRef
59.
Zurück zum Zitat Shen, K., Y. Jia, X. Wang, J. Zhang, K. Liu, J. Wang, et al. 2021. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology and Medicine 165: 54-66. CrossRef Shen, K., Y. Jia, X. Wang, J. Zhang, K. Liu, J. Wang, et al. 2021. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology and Medicine 165: 54-66. CrossRef
60.
Zurück zum Zitat Hung, S.Y., J.L. Chen, Y.K. Tu, H.Y. Tsai, P.H. Lu, I.M. Jou, et al. 2024. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway. Biomedicine & Pharmacotherapy 170: 116006. CrossRef Hung, S.Y., J.L. Chen, Y.K. Tu, H.Y. Tsai, P.H. Lu, I.M. Jou, et al. 2024. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway. Biomedicine & Pharmacotherapy 170: 116006. CrossRef
Metadaten
Titel
TRPV1 Regulates Proinflammatory Properties of M1 Macrophages in Periodontitis Via NRF2
verfasst von
Yiyang Li
Xiaotong Guo
Peimeng Zhan
Shuheng Huang
Jiayao Chen
Yujie Zhou
Wentao Jiang
Lingling Chen
Zhengmei Lin
Publikationsdatum
03.05.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02024-3

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.