Skip to main content
Erschienen in: Experimental Hematology & Oncology 1/2023

Open Access 01.12.2023 | Correspondence

Targeting NOTCH1 in combination with antimetabolite drugs prolongs life span in relapsed pediatric and adult T-acute lymphoblastic leukemia xenografts

verfasst von: Sonia Minuzzo, Valentina Agnusdei, Marica Pinazza, Adriana A. Amaro, Valeria Sacchetto, Ulrich Pfeffer, Roberta Bertorelle, Orietta Spinelli, Valentina Serafin, Stefano Indraccolo

Erschienen in: Experimental Hematology & Oncology | Ausgabe 1/2023

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic tumor, characterized by several genetic alterations, that constitutes 15% of pediatric and 25% of adult ALL. While with current therapeutic protocols children and adults’ overall survival (OS) rates reach 85–90% and 40–50%, respectively, the outcome for both pediatric and adult T-ALL patients that relapse or are refractory to induction therapy, remains extremely poor, achieving around 25% OS for both patient groups. About 60% of T-ALL patients show increased NOTCH1 activity, due to activating NOTCH1 mutations or alterations in its ubiquitin ligase FBXW7. NOTCH signaling has been shown to contribute to chemotherapy resistance in some tumor models. Hence, targeting the NOTCH1 signaling pathway may be an effective option to overcome relapsed and refractory T-ALL.
Here, we focused on the therapeutic activity of the NOTCH1-specific monoclonal antibody OMP-52M51 in combination either with drugs used during the induction, consolidation, or maintenance phase in mice xenografts established from pediatric and adult relapsed NOTCH1 mutated T-ALL samples. Interestingly, from RNAseq data we observed that anti-NOTCH1 treatment in vivo affects the purine metabolic pathway. In agreement, both in vitro and in vivo, the greatest effect on leukemia growth reduction was achieved by anti-NOTCH1 therapy in combination with antimetabolite drugs. This result was further corroborated by the longer life span of mice treated with the anti-NOTCH1 in combination with antimetabolites, indicating a novel Notch-targeted therapeutic approach that could ameliorate pediatric and adult T-ALL patients outcome with relapse disease for whom so far, no other therapeutic options are available.
Begleitmaterial
Additional file 1: Additional materials and methods. Establishment of T-ALL xenografts and treatments. Sanger sequencing. Reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR). Western blot analysis. Preparation of RNA libraries and RNA seq. Bioinformatics analysis. T-ALL Patient Derived Xenografts (PDXs) cells in vitro treatments and (half maximal inhibitory concentration) IC50 determination for selected drugs by Caspase-Glo® 3/7 Assay. Statistical analysis. Scientific Image and Illustration software. Additional Tables: Table S1. Characterization of PDXs from T-ALL pediatric and adult relapsed patients. Table S2. Upregulated gene sets in CTRL versus OMP-52M51-treated PDTALL46 cells. Table S3. IC50 determination for selected drugs in T-ALL PDX cells. Table S4. Selected drugs to be combined with anti-NOTCH1 antibody (OMP-52M51). Additional Figures and Legends: Figure S1. NOTCH1 protein and target genes expression in T-ALL PDXs (PDTALL). Figure S2. Anti-NOTCH1 (OMP-52M51) inhibits growth of NOTCH1-driven T-ALL PDXs. Figure S3. RNASeq analysis of OMP-52M51-acute treated PDTALL46 mice. Figure S4. In vitro cell apoptosis determination in T-ALL PDXs cells treated with different drugs alone or in combination with OMP-52M51. Figure S5. In vivo inhibitory effect of OMP-52M51 in combination with COMBO1 and COMBO2 in PDTALL46 model. Figure S6. In vivo inhibitory effect of OMP-52M51 in combination with antimetabolite drugs (COMBO2) in PDTALL39 and PDTALL-AD4 models. Figure S7. Efficacy of Anti-NOTCH1 in combination with antimetabolite drugs in T-ALL PDXs models. Additional References.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40164-023-00439-6.
Valentina Serafin and Stefano Indraccolo contributed equally.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To the editor

Thanks to the current therapeutic protocols, children and adults’ affected by T-cell acute lymphoblastic leukemia (T-ALL) [1] present an overall survival (OS) rate that reaches 85–90% and 40–50%, respectively [2, 3]. Nevertheless, around 25–40% of pediatric and adult T-ALL patients still experience relapses, with an OS around 25% for both patient groups [4, 5]. Furthermore, for relapsed T-ALL patients, except from Hematopoietic Stem Cell Transplantation and the intensification of the therapeutic regimen administered after the first diagnosis, no novel therapeutic options are available so far [1, 4, 5]. Therefore, the identification of novel therapeutic approaches are necessary to treat T-ALL relapsed patients thus preventing a poor outcome. In this light, TP53 mutations and deletions have been shown to occur more frequently at relapse and are adversely associated with second-line therapy survival [6]. Additionally, 60% of T-ALL patients present activating NOTCH1 mutations or alterations in its ubiquitin ligase FBXW7 [7, 8], suggesting NOTCH1 signaling pathway as a possible therapeutic target to overcome relapsed T-ALL. In this regard, several preclinical studies have been reported either directly or indirectly inhibiting NOTCH1 signaling [911], but few reports on relapsed T-ALL treatment have been published so far [12]. Taking advantage of our previous studies [9] here we aimed to assess if NOTCH1 signaling inhibition by the specific monoclonal anti-NOTCH1 antibody (OMP-52M51) would be effective at relapse, exploiting NSG mice xenograft models established from both pediatric (PDTALL46, PDTALL39 and PDTALL47) and adult (PDTALL-AD2R and PDTALL-AD4) relapsed NOTCH1 and TP53 mutated T-ALL samples (Additional file 1: Table S1 and Fig. S1A-B).
As first, we treated PDX mouse models with anti-NOTCH1 monotherapy, started 2 days after i.v. injection of T-ALL relapse cells into mice, and we observed a clear leukemia burden reduction in the peripheral blood (PB) (Fig. 1A-C and Additional file 1: Fig. S2A upper panel), bone marrow (BM) and spleen (Fig. 1A-C and Additional file 1:  Fig. S2A bottom panel) in 4 out of 5 T-ALL PDXs. Only PDTALL-AD2R was apparently not responding to treatment (Additional file 1: Fig. S2B), probably due to the almost undetectable expression of NOTCH1 target genes (Additional file 1: Fig. S1) suggesting the absence of a NOTCH1 pro-survival signaling dependence, despite the presence of a NOTCH1 PEST domain mutation. RNAseq analysis from in vivo PDTALL46 cells treated or not with OMP-52M51 unveiled that the anti-NOTCH1 therapy causes a significant down regulation of NOTCH1 signaling, histidine and tyrosine metabolism as well as purine metabolism which can be targeted by FDA-approved antimetabolites drugs used in T-ALL treatment (Fig. 1D, Additional file 1: Fig. S3 and Table S2). Accordingly, the in vitro apoptosis Caspase 3/7 assay on PDTALL46 and PDATALL39 primary T-ALL cells revealed the most significant IC50 index decrease in the combination between anti-NOTCH1 and antimetabolites used during the consolidation/maintenance phases [Cytarabine (AraC), methotrexate (MTX) and 6-mercaptopurine (6MP)], (Fig. 1F, Additional file 1:  Fig. S4 and Table S3), compared to drugs administered along the induction phase therapy [vincristine (Vinc) and daunorubicin (Dauno)] (Fig. 1E). Thus, starting from these results and based on the kinetics of PDTALL46 leukemia growth (Additional file 1: Fig. S5A), we started the in vivo treatment (day 11) with the anti-NOTCH1 alone or in combination with COMBO1 (Vinc, Dauno, Dexa) or COMBO2 (AraC, MTX, 6MP) schedule when the percentage of CD5+/CD7+ circulating blasts in the PB of PDTALL46 was around 1–2% (Additional file 1: Table S4, Fig. 1G). Interestingly, we observed a significant reduction of CD5+/CD7+ blasts in mice treated with the anti-NOTCH1 antibody in combination with both therapeutic schedules (COMBO1/2) in all the compartments (PB, BM and spleen) as well as a decrease in spleen weight (Additional file 1: Fig. S5B) compared to controls or single arm treatments (Fig. 2A-B). Importantly, mice treated with both the anti-NOTCH1 antibody and COMBO2 showed the best therapeutic effect (Fig. 2B). These results were further confirmed in the pediatric PDTALL39 (Fig. 2C and Additional file 1: Fig. S6A) and in the adult PDTALL-AD4 (Fig. 2D and Additional file 1: Fig. S6B) PDX models, although in the latter with less efficacy when compared to the pediatric one, probably due to the fact that adult T-ALL have lower response rate to chemotherapy and thus result more difficult to treat.
Finally, we performed survival experiments by administrating the anti-NOTCH1 and COMBO2 treatments alone or in combination, and stopped the treatments at 20-40% of circulating blasts in control mice PB (Additional file 1: Fig. S7A-C). In agreement with the efficacy in vivo studies, all PDX mice models treated with the anti-NOTCH1 and COMBO2 therapy showed a significantly (p < 0.001) longer life span survival, between 20 and 290 days, compared to the COMBO2 alone treated group (0-100 days) (Fig. 2E-G), thus corroborating the hypothesis that NOTCH1 targeted therapy improves therapeutic efficacy of antimetabolite drugs (Fig. 2H).
In conclusion, altogether these results provide a rationale for a novel therapeutic strategy that provides NOTCH1 inhibition in combination with antimetabolites drugs in T-ALL relapsed pediatric and adult patients, for whom so far no other therapeutic options are available.

Acknowledgements

We thank Dr. Tim Hoey (Oncomed Pharmaceuticals Inc., Redwood, CA, USA) for providing the OMP-52M51 antibody.

Declarations

Competing interests

The authors declare no competing interests.
Procedures involving animals conformed to current laws and policies (EEC Council Directive 2010/63/EU, OJ L 276, 20.10.2010) were authorized by the Italian Ministry of Health (894/2016-PR).
Not Applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Additional file 1: Additional materials and methods. Establishment of T-ALL xenografts and treatments. Sanger sequencing. Reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR). Western blot analysis. Preparation of RNA libraries and RNA seq. Bioinformatics analysis. T-ALL Patient Derived Xenografts (PDXs) cells in vitro treatments and (half maximal inhibitory concentration) IC50 determination for selected drugs by Caspase-Glo® 3/7 Assay. Statistical analysis. Scientific Image and Illustration software. Additional Tables: Table S1. Characterization of PDXs from T-ALL pediatric and adult relapsed patients. Table S2. Upregulated gene sets in CTRL versus OMP-52M51-treated PDTALL46 cells. Table S3. IC50 determination for selected drugs in T-ALL PDX cells. Table S4. Selected drugs to be combined with anti-NOTCH1 antibody (OMP-52M51). Additional Figures and Legends: Figure S1. NOTCH1 protein and target genes expression in T-ALL PDXs (PDTALL). Figure S2. Anti-NOTCH1 (OMP-52M51) inhibits growth of NOTCH1-driven T-ALL PDXs. Figure S3. RNASeq analysis of OMP-52M51-acute treated PDTALL46 mice. Figure S4. In vitro cell apoptosis determination in T-ALL PDXs cells treated with different drugs alone or in combination with OMP-52M51. Figure S5. In vivo inhibitory effect of OMP-52M51 in combination with COMBO1 and COMBO2 in PDTALL46 model. Figure S6. In vivo inhibitory effect of OMP-52M51 in combination with antimetabolite drugs (COMBO2) in PDTALL39 and PDTALL-AD4 models. Figure S7. Efficacy of Anti-NOTCH1 in combination with antimetabolite drugs in T-ALL PDXs models. Additional References.
Literatur
1.
2.
3.
Zurück zum Zitat Rowe JM, Buck G, Burnett AK et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005 1;106(12):3760-7. Rowe JM, Buck G, Burnett AK et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005 1;106(12):3760-7.
4.
Zurück zum Zitat Reismüller B, Attarbaschi A, Peters C, et al. Austrian Berlin-Frankfurt-Münster (BFM) Study Group. Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria–a population-based report of the austrian Berlin-Frankfurt-Münster (BFM) Study Group. Br J Haematol. 2009;144(4):559–70.CrossRefPubMed Reismüller B, Attarbaschi A, Peters C, et al. Austrian Berlin-Frankfurt-Münster (BFM) Study Group. Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria–a population-based report of the austrian Berlin-Frankfurt-Münster (BFM) Study Group. Br J Haematol. 2009;144(4):559–70.CrossRefPubMed
5.
Zurück zum Zitat Einsiedel HG, von Stackelberg A, Hartmann R et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Münster Group 87. J Clin Oncol. 2005;1;23(31):7942-50. Erratum in: J Clin Oncol. 2008;1;26(13):2238. Einsiedel HG, von Stackelberg A, Hartmann R et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Münster Group 87. J Clin Oncol. 2005;1;23(31):7942-50. Erratum in: J Clin Oncol. 2008;1;26(13):2238.
6.
Zurück zum Zitat Diccianni MB, Yu J, Hsiao M, Mukherjee S, Shao LE, Yu AL. Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood. 1994;84(9):3105–12.CrossRefPubMed Diccianni MB, Yu J, Hsiao M, Mukherjee S, Shao LE, Yu AL. Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood. 1994;84(9):3105–12.CrossRefPubMed
7.
Zurück zum Zitat Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.CrossRefPubMed Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.CrossRefPubMed
8.
Zurück zum Zitat O’Neil J, Grim J, Strack P, Rao S et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007; 6;204(8):1813-24. O’Neil J, Grim J, Strack P, Rao S et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007; 6;204(8):1813-24.
9.
Zurück zum Zitat Agnusdei V, Minuzzo S, Frasson C, et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia. 2014;28(2):278–88.CrossRefPubMed Agnusdei V, Minuzzo S, Frasson C, et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia. 2014;28(2):278–88.CrossRefPubMed
10.
Zurück zum Zitat Minuzzo S, Agnusdei V, Pusceddu I, et al. DLL4 regulates NOTCH signaling and growth of T acute lymphoblastic leukemia cells in NOD/SCID mice. Carcinogenesis. 2015;36(1):115–21.CrossRefPubMed Minuzzo S, Agnusdei V, Pusceddu I, et al. DLL4 regulates NOTCH signaling and growth of T acute lymphoblastic leukemia cells in NOD/SCID mice. Carcinogenesis. 2015;36(1):115–21.CrossRefPubMed
11.
Zurück zum Zitat Lehal R, Zaric J, Vigolo M, et al. Pharmacological disruption of the notch transcription factor complex. Proc Natl Acad Sci U S A. 2020;14(28):16292–301.CrossRef Lehal R, Zaric J, Vigolo M, et al. Pharmacological disruption of the notch transcription factor complex. Proc Natl Acad Sci U S A. 2020;14(28):16292–301.CrossRef
12.
Zurück zum Zitat Zweidler-McKay PDD, Douer D. The safety and activity of BMS- 906024, a gamma secretase inhibitor (GSI) with anti-notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase I trial. Blood. 2014;121(21):Abstract968.CrossRef Zweidler-McKay PDD, Douer D. The safety and activity of BMS- 906024, a gamma secretase inhibitor (GSI) with anti-notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase I trial. Blood. 2014;121(21):Abstract968.CrossRef
Metadaten
Titel
Targeting NOTCH1 in combination with antimetabolite drugs prolongs life span in relapsed pediatric and adult T-acute lymphoblastic leukemia xenografts
verfasst von
Sonia Minuzzo
Valentina Agnusdei
Marica Pinazza
Adriana A. Amaro
Valeria Sacchetto
Ulrich Pfeffer
Roberta Bertorelle
Orietta Spinelli
Valentina Serafin
Stefano Indraccolo
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Experimental Hematology & Oncology / Ausgabe 1/2023
Elektronische ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-023-00439-6

Weitere Artikel der Ausgabe 1/2023

Experimental Hematology & Oncology 1/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.