Skip to main content

04.03.2024 | Review

Survival mechanisms of circulating tumor cells and their implications for cancer treatment

verfasst von: Shuang Zhou, Huanji Xu, Yichun Duan, Qiulin Tang, Huixi Huang, Feng Bi

Erschienen in: Cancer and Metastasis Reviews

Einloggen, um Zugang zu erhalten

Abstract

Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.
Literatur
2.
Zurück zum Zitat Ashworth, T. R. (1869). A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australas Med J, 14, 146–149. Ashworth, T. R. (1869). A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australas Med J, 14, 146–149.
3.
4.
Zurück zum Zitat Kanwar, N., et al. (2015). Identification of genomic signatures in circulating tumor cells from breast cancer. International Journal of Cancer, 137(2), 332–344.MathSciNetPubMedCrossRef Kanwar, N., et al. (2015). Identification of genomic signatures in circulating tumor cells from breast cancer. International Journal of Cancer, 137(2), 332–344.MathSciNetPubMedCrossRef
5.
Zurück zum Zitat Chang, T. Y. (2021). Comparison of genetic profiling between primary tumor and circulating Tumor cells captured by Microfluidics in Epithelial Ovarian Cancer: Tumor Heterogeneity or Allele Dropout? Diagnostics (Basel) 11 (6). Chang, T. Y. (2021). Comparison of genetic profiling between primary tumor and circulating Tumor cells captured by Microfluidics in Epithelial Ovarian Cancer: Tumor Heterogeneity or Allele Dropout? Diagnostics (Basel) 11 (6).
6.
Zurück zum Zitat Zou, L., et al. (2020). Genome–wide copy number analysis of circulating tumor cells in breast cancer patients with liver metastasis. Oncology Reports, 44(3), 1075–1093.PubMedPubMedCentralCrossRef Zou, L., et al. (2020). Genome–wide copy number analysis of circulating tumor cells in breast cancer patients with liver metastasis. Oncology Reports, 44(3), 1075–1093.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Chiu, C. G., et al. (2014). Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clinical Chemistry, 60(6), 873–885.PubMedCrossRef Chiu, C. G., et al. (2014). Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clinical Chemistry, 60(6), 873–885.PubMedCrossRef
8.
Zurück zum Zitat Steinert, G., et al. (2014). Immune escape and survival mechanisms in circulating Tumor cells of Colorectal Cancer. Cancer Research, 74(6), 1694–1704.PubMedCrossRef Steinert, G., et al. (2014). Immune escape and survival mechanisms in circulating Tumor cells of Colorectal Cancer. Cancer Research, 74(6), 1694–1704.PubMedCrossRef
9.
Zurück zum Zitat Müller, V., et al. (2005). Circulating tumor cells in breast cancer: Correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clinical Cancer Research, 11(10), 3678–3685.PubMedCrossRef Müller, V., et al. (2005). Circulating tumor cells in breast cancer: Correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clinical Cancer Research, 11(10), 3678–3685.PubMedCrossRef
10.
Zurück zum Zitat Gires, O. A. O. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? (1573–7233 (Electronic)). Gires, O. A. O. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? (1573–7233 (Electronic)).
11.
Zurück zum Zitat Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMedCrossRef Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMedCrossRef
12.
Zurück zum Zitat Huang, Y., et al. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129.CrossRef Huang, Y., et al. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129.CrossRef
13.
Zurück zum Zitat Huaman, J. (2019). Fibronectin regulation of integrin B1 and SLUG in circulating Tumor cells. Cells 8 (6). Huaman, J. (2019). Fibronectin regulation of integrin B1 and SLUG in circulating Tumor cells. Cells 8 (6).
14.
Zurück zum Zitat Lecharpentier, A., et al. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105(9), 1338–1341.PubMedPubMedCentralCrossRef Lecharpentier, A., et al. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105(9), 1338–1341.PubMedPubMedCentralCrossRef
15.
16.
Zurück zum Zitat Armstrong, A. J., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9(8), 997–1007.PubMedCrossRef Armstrong, A. J., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9(8), 997–1007.PubMedCrossRef
17.
Zurück zum Zitat Kallergi, G., et al. (2011). Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Research, 13(3), R59.PubMedPubMedCentralCrossRef Kallergi, G., et al. (2011). Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Research, 13(3), R59.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Liu, X., et al. (2019). Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Science Advances, 5(6), eaav4275.ADSPubMedPubMedCentralCrossRef Liu, X., et al. (2019). Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Science Advances, 5(6), eaav4275.ADSPubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Chaffer, C. L., et al. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.PubMedCrossRef Chaffer, C. L., et al. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.PubMedCrossRef
20.
Zurück zum Zitat Yamamoto, M., et al. (2017). Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer. Cancer Science, 108(6), 1210–1222.PubMedPubMedCentralCrossRef Yamamoto, M., et al. (2017). Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer. Cancer Science, 108(6), 1210–1222.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Yang, M. H., et al. (2015). Circulating cancer stem cells: The importance to select. Chinese Journal of Cancer Research, 27(5), 437–449.PubMedPubMedCentral Yang, M. H., et al. (2015). Circulating cancer stem cells: The importance to select. Chinese Journal of Cancer Research, 27(5), 437–449.PubMedPubMedCentral
22.
Zurück zum Zitat Theodoropoulos, P. A., et al. (2010). Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Letters, 288(1), 99–106.PubMedCrossRef Theodoropoulos, P. A., et al. (2010). Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Letters, 288(1), 99–106.PubMedCrossRef
23.
Zurück zum Zitat Wan, S., et al. (2019). New Labyrinth Microfluidic device detects circulating Tumor cells expressing Cancer stem cell marker and circulating Tumor Microemboli in Hepatocellular Carcinoma. Scientific Reports, 9(1), 18575.ADSPubMedPubMedCentralCrossRef Wan, S., et al. (2019). New Labyrinth Microfluidic device detects circulating Tumor cells expressing Cancer stem cell marker and circulating Tumor Microemboli in Hepatocellular Carcinoma. Scientific Reports, 9(1), 18575.ADSPubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Morel, A. P. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3 (8), e2888. Morel, A. P. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3 (8), e2888.
25.
26.
Zurück zum Zitat Papadaki, M. A., et al. (2019). Circulating Tumor cells with stemness and Epithelial-To-Mesenchymal Transition Features Are Chemoresistant and Predictive of poor outcome in metastatic breast Cancer. Molecular Cancer Therapeutics, 18(2), 437–447.PubMedCrossRef Papadaki, M. A., et al. (2019). Circulating Tumor cells with stemness and Epithelial-To-Mesenchymal Transition Features Are Chemoresistant and Predictive of poor outcome in metastatic breast Cancer. Molecular Cancer Therapeutics, 18(2), 437–447.PubMedCrossRef
27.
Zurück zum Zitat Follain, G., et al. (2020). Fluids and their mechanics in tumour transit: Shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.PubMedCrossRef Follain, G., et al. (2020). Fluids and their mechanics in tumour transit: Shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.PubMedCrossRef
28.
29.
30.
Zurück zum Zitat Fu, A., et al. (2016). High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget, 7(31), 50239–50257.PubMedPubMedCentralCrossRef Fu, A., et al. (2016). High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget, 7(31), 50239–50257.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Regmi, S., et al. (2017). High Shear stresses under Exercise Condition destroy circulating Tumor cells in a Microfluidic System. Scientific Reports, 7, 39975.ADSPubMedPubMedCentralCrossRef Regmi, S., et al. (2017). High Shear stresses under Exercise Condition destroy circulating Tumor cells in a Microfluidic System. Scientific Reports, 7, 39975.ADSPubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kienast, Y., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.PubMedCrossRef Kienast, Y., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.PubMedCrossRef
33.
Zurück zum Zitat Marrella, A. (2021). High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS One 16 (1), e0245536. Marrella, A. (2021). High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS One 16 (1), e0245536.
34.
Zurück zum Zitat Jasuja, H., et al. (2023). Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor. Biofabrication, 15(2), 025017.ADSPubMedCentralCrossRef Jasuja, H., et al. (2023). Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor. Biofabrication, 15(2), 025017.ADSPubMedCentralCrossRef
35.
Zurück zum Zitat Kim, O. H., et al. (2022). Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sciences, 308, 120936.PubMedCrossRef Kim, O. H., et al. (2022). Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sciences, 308, 120936.PubMedCrossRef
37.
38.
Zurück zum Zitat Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica Et Biophysica Acta, 1863(12), 2977–2992.PubMedCrossRef Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica Et Biophysica Acta, 1863(12), 2977–2992.PubMedCrossRef
39.
Zurück zum Zitat Que, Z., et al. (2019). Jingfukang induces anti-cancer activity through oxidative stress-mediated DNA damage in circulating human lung cancer cells. Bmc Complementary and Alternative Medicine, 19(1), 204.PubMedPubMedCentralCrossRef Que, Z., et al. (2019). Jingfukang induces anti-cancer activity through oxidative stress-mediated DNA damage in circulating human lung cancer cells. Bmc Complementary and Alternative Medicine, 19(1), 204.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Paoli, P., et al. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta, 1833(12), 3481–3498.PubMedCrossRef Paoli, P., et al. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta, 1833(12), 3481–3498.PubMedCrossRef
42.
Zurück zum Zitat Khan, S. U., et al. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical & Experimental Metastasis, 39(5), 715–726.CrossRef Khan, S. U., et al. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical & Experimental Metastasis, 39(5), 715–726.CrossRef
43.
Zurück zum Zitat Mohme, M., et al. (2017). Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nature Reviews. Clinical Oncology, 14(3), 155–167.PubMedCrossRef Mohme, M., et al. (2017). Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nature Reviews. Clinical Oncology, 14(3), 155–167.PubMedCrossRef
44.
45.
Zurück zum Zitat Cornel, A. M. (2020). MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 12 (7). Cornel, A. M. (2020). MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 12 (7).
46.
Zurück zum Zitat Kärre, K., et al. (1986). Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 319(6055), 675–678.ADSPubMedCrossRef Kärre, K., et al. (1986). Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 319(6055), 675–678.ADSPubMedCrossRef
47.
Zurück zum Zitat Ljunggren, H. G., & Kärre, K. (1985). Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. Journal of Experimental Medicine, 162(6), 1745–1759.PubMedCrossRef Ljunggren, H. G., & Kärre, K. (1985). Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. Journal of Experimental Medicine, 162(6), 1745–1759.PubMedCrossRef
48.
Zurück zum Zitat Brodbeck, T., et al. (2014). Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Molecular Cancer, 13, 244.PubMedPubMedCentralCrossRef Brodbeck, T., et al. (2014). Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Molecular Cancer, 13, 244.PubMedPubMedCentralCrossRef
49.
50.
Zurück zum Zitat Xue, D., et al. (2018). Role of regulatory T cells and CD8(+) T lymphocytes in the dissemination of circulating tumor cells in primary invasive breast cancer. Oncol Lett, 16(3), 3045–3053.ADSPubMedPubMedCentral Xue, D., et al. (2018). Role of regulatory T cells and CD8(+) T lymphocytes in the dissemination of circulating tumor cells in primary invasive breast cancer. Oncol Lett, 16(3), 3045–3053.ADSPubMedPubMedCentral
51.
Zurück zum Zitat Liu, J., et al. (2019). Increased stromal infiltrating lymphocytes are Associated with circulating Tumor cells and metastatic relapse in breast Cancer patients after Neoadjuvant Chemotherapy. Cancer Manag Res, 11, 10791–10800.PubMedPubMedCentralCrossRef Liu, J., et al. (2019). Increased stromal infiltrating lymphocytes are Associated with circulating Tumor cells and metastatic relapse in breast Cancer patients after Neoadjuvant Chemotherapy. Cancer Manag Res, 11, 10791–10800.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Smolkova, B., et al. (2020). Increased stromal infiltrating lymphocytes are Associated with the risk of Disease Progression in Mesenchymal circulating Tumor cell-positive primary breast Cancer patients. International Journal of Molecular Sciences, 21, 24.CrossRef Smolkova, B., et al. (2020). Increased stromal infiltrating lymphocytes are Associated with the risk of Disease Progression in Mesenchymal circulating Tumor cell-positive primary breast Cancer patients. International Journal of Molecular Sciences, 21, 24.CrossRef
53.
Zurück zum Zitat Liu, X., et al. (2023). Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell, 41(2), 272–287. e9.PubMedCrossRef Liu, X., et al. (2023). Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell, 41(2), 272–287. e9.PubMedCrossRef
54.
Zurück zum Zitat Lo, H. C., et al. (2020). Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat Cancer, 1(7), 709–722.PubMedCrossRef Lo, H. C., et al. (2020). Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat Cancer, 1(7), 709–722.PubMedCrossRef
55.
Zurück zum Zitat Hope, J. M. (2021). Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death. Journal of Cell Science 134 (4). Hope, J. M. (2021). Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death. Journal of Cell Science 134 (4).
56.
Zurück zum Zitat Barnes, J. M. (2012). Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 7 (12), e50973. Barnes, J. M. (2012). Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 7 (12), e50973.
57.
Zurück zum Zitat Moose, D. L., et al. (2020). Cancer cells resist Mechanical Destruction in circulation via RhoA/Actomyosin-Dependent mechano-adaptation. Cell Rep, 30(11), 3864–3874e6.PubMedPubMedCentralCrossRef Moose, D. L., et al. (2020). Cancer cells resist Mechanical Destruction in circulation via RhoA/Actomyosin-Dependent mechano-adaptation. Cell Rep, 30(11), 3864–3874e6.PubMedPubMedCentralCrossRef
58.
59.
Zurück zum Zitat Chen, X., et al. (2022). YAP1 activation promotes epithelial-mesenchymal transition and cell survival of renal cell carcinoma cells under shear stress. Carcinogenesis, 43(4), 301–310.MathSciNetPubMedCrossRef Chen, X., et al. (2022). YAP1 activation promotes epithelial-mesenchymal transition and cell survival of renal cell carcinoma cells under shear stress. Carcinogenesis, 43(4), 301–310.MathSciNetPubMedCrossRef
60.
Zurück zum Zitat Mitchell, M. J., et al. (2015). Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. American Journal of Physiology. Cell Physiology, 309(11), C736–C746.PubMedPubMedCentralCrossRef Mitchell, M. J., et al. (2015). Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. American Journal of Physiology. Cell Physiology, 309(11), C736–C746.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Xu, Z. (2022). Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion. Journal of Cell Science 135 (10). Xu, Z. (2022). Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion. Journal of Cell Science 135 (10).
62.
Zurück zum Zitat Maeshiro, M., et al. (2021). Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress. Scientific Reports, 11(1), 6150.ADSPubMedPubMedCentralCrossRef Maeshiro, M., et al. (2021). Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress. Scientific Reports, 11(1), 6150.ADSPubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ortiz-Otero, N., et al. (2020). Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget, 11(12), 1037–1050.PubMedPubMedCentralCrossRef Ortiz-Otero, N., et al. (2020). Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget, 11(12), 1037–1050.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Hagihara, T., et al. (2019). Hydrodynamic stress stimulates growth of cell clusters via the ANXA1/PI3K/AKT axis in colorectal cancer. Scientific Reports, 9(1), 20027.ADSPubMedPubMedCentralCrossRef Hagihara, T., et al. (2019). Hydrodynamic stress stimulates growth of cell clusters via the ANXA1/PI3K/AKT axis in colorectal cancer. Scientific Reports, 9(1), 20027.ADSPubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Osmulski, P. A., et al. (2021). Contacts with macrophages promote an aggressive Nanomechanical phenotype of circulating Tumor cells in prostate Cancer. Cancer Research, 81(15), 4110–4123.PubMedPubMedCentralCrossRef Osmulski, P. A., et al. (2021). Contacts with macrophages promote an aggressive Nanomechanical phenotype of circulating Tumor cells in prostate Cancer. Cancer Research, 81(15), 4110–4123.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Huang, Q., et al. (2020). Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. Journal of Experimental & Clinical Cancer Research : Cr, 39(1), 25.ADSPubMedCentralCrossRef Huang, Q., et al. (2020). Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. Journal of Experimental & Clinical Cancer Research : Cr, 39(1), 25.ADSPubMedCentralCrossRef
68.
Zurück zum Zitat Labuschagne, C. F., et al. (2019). Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab, 30(4), 720–734e5.PubMedPubMedCentralCrossRef Labuschagne, C. F., et al. (2019). Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab, 30(4), 720–734e5.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Hong, X., et al. (2021). The Lipogenic Regulator SREBP2 induces transferrin in circulating Melanoma cells and suppresses ferroptosis. Cancer Discovery, 11(3), 678–695.PubMedCrossRef Hong, X., et al. (2021). The Lipogenic Regulator SREBP2 induces transferrin in circulating Melanoma cells and suppresses ferroptosis. Cancer Discovery, 11(3), 678–695.PubMedCrossRef
70.
Zurück zum Zitat Sun, B., et al. (2017). Midkine promotes hepatocellular carcinoma metastasis by elevating anoikis resistance of circulating tumor cells. Oncotarget, 8(20), 32523–32535.PubMedPubMedCentralCrossRef Sun, B., et al. (2017). Midkine promotes hepatocellular carcinoma metastasis by elevating anoikis resistance of circulating tumor cells. Oncotarget, 8(20), 32523–32535.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Malin, D., et al. (2015). ERK-regulated alphab-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo. Oncogene, 34(45), 5626–5634.PubMedPubMedCentralCrossRef Malin, D., et al. (2015). ERK-regulated alphab-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo. Oncogene, 34(45), 5626–5634.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Jin, L., et al. (2015). Glutamate dehydrogenase 1 signals through Antioxidant Glutathione Peroxidase 1 to regulate Redox Homeostasis and Tumor Growth. Cancer Cell, 27(2), 257–270.PubMedPubMedCentralCrossRef Jin, L., et al. (2015). Glutamate dehydrogenase 1 signals through Antioxidant Glutathione Peroxidase 1 to regulate Redox Homeostasis and Tumor Growth. Cancer Cell, 27(2), 257–270.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Jin, L., et al. (2018). The PLAG1-GDH1 Axis promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. Molecular Cell, 69(1), 87–99e7.PubMedCrossRef Jin, L., et al. (2018). The PLAG1-GDH1 Axis promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. Molecular Cell, 69(1), 87–99e7.PubMedCrossRef
75.
Zurück zum Zitat Chen, X., et al. (2022). Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radical Biology and Medicine, 193(Pt 1), 95–107.PubMed Chen, X., et al. (2022). Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radical Biology and Medicine, 193(Pt 1), 95–107.PubMed
76.
Zurück zum Zitat Kim, H., et al. (2017). Regulation of anoikis resistance by NADPH oxidase 4 and epidermal growth factor receptor. British Journal of Cancer, 116(3), 370–381.PubMedPubMedCentralCrossRef Kim, H., et al. (2017). Regulation of anoikis resistance by NADPH oxidase 4 and epidermal growth factor receptor. British Journal of Cancer, 116(3), 370–381.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Du, S., et al. (2018). NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death and Disease, 9(10), 948.PubMedPubMedCentralCrossRef Du, S., et al. (2018). NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death and Disease, 9(10), 948.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Tian, T., et al. (2022). CPT1A promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis. Redox Biology, 58, 102544.PubMedPubMedCentralCrossRef Tian, T., et al. (2022). CPT1A promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis. Redox Biology, 58, 102544.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Wang, Y. N., et al. (2018). CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 37(46), 6025–6040.PubMedCrossRef Wang, Y. N., et al. (2018). CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 37(46), 6025–6040.PubMedCrossRef
80.
Zurück zum Zitat Sawyer, B. T., et al. (2020). Targeting fatty acid oxidation to promote Anoikis and inhibit ovarian Cancer progression. Molecular Cancer Research, 18(7), 1088–1098.ADSPubMedCrossRef Sawyer, B. T., et al. (2020). Targeting fatty acid oxidation to promote Anoikis and inhibit ovarian Cancer progression. Molecular Cancer Research, 18(7), 1088–1098.ADSPubMedCrossRef
81.
Zurück zum Zitat Koppenol, W. H., et al. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 11(5), 325–337.PubMedCrossRef Koppenol, W. H., et al. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 11(5), 325–337.PubMedCrossRef
82.
Zurück zum Zitat Stacpoole, P. W. (2017). Therapeutic targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. JNCI: Journal of the National Cancer Institute, 109, 11.CrossRef Stacpoole, P. W. (2017). Therapeutic targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. JNCI: Journal of the National Cancer Institute, 109, 11.CrossRef
83.
84.
Zurück zum Zitat Kim, J., et al. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.PubMedCrossRef Kim, J., et al. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.PubMedCrossRef
85.
Zurück zum Zitat Maurer, G. D., et al. (2019). Loss of cell-matrix contact increases hypoxia-inducible factor-dependent transcriptional activity in glioma cells. Biochemical and Biophysical Research Communications, 515(1), 77–84.PubMedCrossRef Maurer, G. D., et al. (2019). Loss of cell-matrix contact increases hypoxia-inducible factor-dependent transcriptional activity in glioma cells. Biochemical and Biophysical Research Communications, 515(1), 77–84.PubMedCrossRef
86.
Zurück zum Zitat Zhao, T. (2014). HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Scientific Reports 4 (1). Zhao, T. (2014). HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Scientific Reports 4 (1).
87.
Zurück zum Zitat Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-Organizing Principle. 327 (5961), 46–50. Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-Organizing Principle. 327 (5961), 46–50.
88.
Zurück zum Zitat del Pozo, M. A., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7(9), 901–908.PubMedPubMedCentralCrossRef del Pozo, M. A., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7(9), 901–908.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Li, D. (2023). Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. Journal of Biological Chemistry 299 (12). Li, D. (2023). Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. Journal of Biological Chemistry 299 (12).
90.
Zurück zum Zitat Han, H. J., et al. (2021). Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Letters, 508, 59–72.PubMedCrossRef Han, H. J., et al. (2021). Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Letters, 508, 59–72.PubMedCrossRef
91.
Zurück zum Zitat Peppicelli, S. (2019). Anoikis Resistance as a Further Trait of Acidic-Adapted Melanoma Cells. J Oncol 2019, 8340926. Peppicelli, S. (2019). Anoikis Resistance as a Further Trait of Acidic-Adapted Melanoma Cells. J Oncol 2019, 8340926.
92.
Zurück zum Zitat Corbet, C., et al. (2020). TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nature Communications, 11(1), 454.ADSPubMedPubMedCentralCrossRef Corbet, C., et al. (2020). TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nature Communications, 11(1), 454.ADSPubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Wheatley, S. P., & Altieri, D. C. (2019). Survivin at a glance. Journal of Cell Science, 132, 7.CrossRef Wheatley, S. P., & Altieri, D. C. (2019). Survivin at a glance. Journal of Cell Science, 132, 7.CrossRef
94.
Zurück zum Zitat Végran, F., et al. (2013). Survivin-3B potentiates immune escape in cancer but also inhibits the toxicity of cancer chemotherapy. Cancer Research, 73(17), 5391–5401.PubMedCrossRef Végran, F., et al. (2013). Survivin-3B potentiates immune escape in cancer but also inhibits the toxicity of cancer chemotherapy. Cancer Research, 73(17), 5391–5401.PubMedCrossRef
95.
Zurück zum Zitat Yie, S. M. (2006). Detection of Survivin-expressing circulating cancer cells in the peripheral blood of breast cancer patients by a RT-PCR ELISA. Clinical & Experimental Metastasis 23 (5–6), 279 – 89. Yie, S. M. (2006). Detection of Survivin-expressing circulating cancer cells in the peripheral blood of breast cancer patients by a RT-PCR ELISA. Clinical & Experimental Metastasis 23 (5–6), 279 – 89.
96.
Zurück zum Zitat Yie, S., et al. (2008). Detection of Survivin-expressing circulating Cancer cells (CCCs) in Peripheral blood of patients with gastric and colorectal Cancer reveals high risks of Relapse. Annals of Surgical Oncology, 15(11), 3073–3082.PubMedCrossRef Yie, S., et al. (2008). Detection of Survivin-expressing circulating Cancer cells (CCCs) in Peripheral blood of patients with gastric and colorectal Cancer reveals high risks of Relapse. Annals of Surgical Oncology, 15(11), 3073–3082.PubMedCrossRef
97.
Zurück zum Zitat Yie, S. M., et al. (2009). Clinical significance of detecting survivin-expressing circulating cancer cells in patients with non-small cell lung cancer. Lung Cancer, 63(2), 284–290.PubMedCrossRef Yie, S. M., et al. (2009). Clinical significance of detecting survivin-expressing circulating cancer cells in patients with non-small cell lung cancer. Lung Cancer, 63(2), 284–290.PubMedCrossRef
98.
Zurück zum Zitat Cao, M., et al. (2009). Detection of survivin-expressing circulating cancer cells in the peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance. Clinical & Experimental Metastasis, 26(7), 751–758.CrossRef Cao, M., et al. (2009). Detection of survivin-expressing circulating cancer cells in the peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance. Clinical & Experimental Metastasis, 26(7), 751–758.CrossRef
99.
Zurück zum Zitat Ning, Y., et al. (2015). Cytokeratin-20 and survivin-expressing circulating Tumor cells predict survival in metastatic colorectal Cancer patients by a combined immunomagnetic qRT-PCR Approach. Molecular Cancer Therapeutics, 14(10), 2401–2408.PubMedPubMedCentralCrossRef Ning, Y., et al. (2015). Cytokeratin-20 and survivin-expressing circulating Tumor cells predict survival in metastatic colorectal Cancer patients by a combined immunomagnetic qRT-PCR Approach. Molecular Cancer Therapeutics, 14(10), 2401–2408.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Lu, J., et al. (2023). Association of survivin positive circulating tumor cell levels with immune escape and prognosis of osteosarcoma. Journal of Cancer Research and Clinical Oncology, 149(15), 13741–13751.PubMedCrossRef Lu, J., et al. (2023). Association of survivin positive circulating tumor cell levels with immune escape and prognosis of osteosarcoma. Journal of Cancer Research and Clinical Oncology, 149(15), 13741–13751.PubMedCrossRef
103.
Zurück zum Zitat Kong, D., et al. (2021). Correlation between PD-L1 expression ON CTCs and prognosis of patients with cancer: A systematic review and meta-analysis. Oncoimmunology, 10(1), 1938476.PubMedPubMedCentralCrossRef Kong, D., et al. (2021). Correlation between PD-L1 expression ON CTCs and prognosis of patients with cancer: A systematic review and meta-analysis. Oncoimmunology, 10(1), 1938476.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Papadaki, M. A. (2020). Clinical Relevance of Immune Checkpoints on Circulating Tumor Cells in Breast Cancer. Cancers (Basel) 12 (2). Papadaki, M. A. (2020). Clinical Relevance of Immune Checkpoints on Circulating Tumor Cells in Breast Cancer. Cancers (Basel) 12 (2).
105.
Zurück zum Zitat Wang, J., et al. (2019). Fibrinogen-like protein 1 is a major Immune Inhibitory ligand of LAG-3. Cell, 176(1–2), 334–347e12.PubMedCrossRef Wang, J., et al. (2019). Fibrinogen-like protein 1 is a major Immune Inhibitory ligand of LAG-3. Cell, 176(1–2), 334–347e12.PubMedCrossRef
106.
Zurück zum Zitat Yan, Q., et al. (2022). Immune Checkpoint FGL1 expression of circulating Tumor cells is Associated with Poor Survival in Curatively Resected Hepatocellular Carcinoma. Frontiers in Oncology, 12, 810269.PubMedPubMedCentralCrossRef Yan, Q., et al. (2022). Immune Checkpoint FGL1 expression of circulating Tumor cells is Associated with Poor Survival in Curatively Resected Hepatocellular Carcinoma. Frontiers in Oncology, 12, 810269.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Gruber, I., et al. (2013). Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Research, 33(5), 2233–2238.PubMed Gruber, I., et al. (2013). Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Research, 33(5), 2233–2238.PubMed
108.
Zurück zum Zitat Sun, Y. F., et al. (2021). Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nature Communications, 12(1), 4091.ADSPubMedPubMedCentralCrossRef Sun, Y. F., et al. (2021). Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nature Communications, 12(1), 4091.ADSPubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Palumbo, J. S., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185.PubMedCrossRef Palumbo, J. S., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185.PubMedCrossRef
110.
Zurück zum Zitat Placke, T., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72(2), 440–448.PubMedCrossRef Placke, T., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72(2), 440–448.PubMedCrossRef
111.
Zurück zum Zitat Spiegel, A., et al. (2016). Neutrophils suppress intraluminal NK cell-mediated Tumor Cell Clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discovery, 6(6), 630–649.ADSPubMedPubMedCentralCrossRef Spiegel, A., et al. (2016). Neutrophils suppress intraluminal NK cell-mediated Tumor Cell Clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discovery, 6(6), 630–649.ADSPubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.PubMedPubMedCentralCrossRef Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Liu, Q., et al. (2016). Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. Medical Hypotheses, 87, 34–39.PubMedCrossRef Liu, Q., et al. (2016). Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. Medical Hypotheses, 87, 34–39.PubMedCrossRef
114.
Zurück zum Zitat Zhou, Q., et al. (2023). Circulating tumor cells PD-L1 expression detection and correlation of therapeutic efficacy of immune checkpoint inhibition in advanced non-small-cell lung cancer. Thorac Cancer, 14(5), 470–478.PubMedPubMedCentralCrossRef Zhou, Q., et al. (2023). Circulating tumor cells PD-L1 expression detection and correlation of therapeutic efficacy of immune checkpoint inhibition in advanced non-small-cell lung cancer. Thorac Cancer, 14(5), 470–478.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Murata, Y., et al. (2018). CD47-signal regulatory protein alpha signaling system and its application to cancer immunotherapy. Cancer Science, 109(8), 2349–2357.PubMedPubMedCentralCrossRef Murata, Y., et al. (2018). CD47-signal regulatory protein alpha signaling system and its application to cancer immunotherapy. Cancer Science, 109(8), 2349–2357.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Mammadova-Bach, E., et al. (2015). Platelets in cancer. From basic research to therapeutic implications. Hamostaseologie, 35(4), 325–336.PubMedCrossRef Mammadova-Bach, E., et al. (2015). Platelets in cancer. From basic research to therapeutic implications. Hamostaseologie, 35(4), 325–336.PubMedCrossRef
119.
Zurück zum Zitat Xu, Y., et al. (2020). Blockade of platelets using tumor-specific NO-Releasing nanoparticles prevents Tumor Metastasis and reverses Tumor Immunosuppression. Acs Nano, 14(8), 9780–9795.PubMedCrossRef Xu, Y., et al. (2020). Blockade of platelets using tumor-specific NO-Releasing nanoparticles prevents Tumor Metastasis and reverses Tumor Immunosuppression. Acs Nano, 14(8), 9780–9795.PubMedCrossRef
120.
121.
Zurück zum Zitat Yu, Y., et al. (2022). Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Science Advances, 8(49), eadd3599.PubMedPubMedCentralCrossRef Yu, Y., et al. (2022). Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Science Advances, 8(49), eadd3599.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Wang, H., et al. (2016). NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Science Translational Medicine, 8(334), 334ra51.PubMedCrossRef Wang, H., et al. (2016). NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Science Translational Medicine, 8(334), 334ra51.PubMedCrossRef
123.
Zurück zum Zitat Sayin, V. I., et al. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra15.PubMedCrossRef Sayin, V. I., et al. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra15.PubMedCrossRef
124.
127.
Zurück zum Zitat Regmi, S., et al. (2018). Fluidic shear stress increases the anti-cancer effects of ROS-generating drugs in circulating tumor cells. Breast Cancer Research and Treatment, 172(2), 297–312.PubMedCrossRef Regmi, S., et al. (2018). Fluidic shear stress increases the anti-cancer effects of ROS-generating drugs in circulating tumor cells. Breast Cancer Research and Treatment, 172(2), 297–312.PubMedCrossRef
129.
Zurück zum Zitat Que, Z. J., et al. (2021). Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. Journal of Ethnopharmacology, 267, 113473.PubMedCrossRef Que, Z. J., et al. (2021). Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. Journal of Ethnopharmacology, 267, 113473.PubMedCrossRef
130.
Zurück zum Zitat Liu, A., et al. (2021). Silencing ZIC2 abrogates tumorigenesis and anoikis resistance of non-small cell lung cancer cells by inhibiting Src/FAK signaling. Mol Ther Oncolytics, 22, 195–208.PubMedPubMedCentralCrossRef Liu, A., et al. (2021). Silencing ZIC2 abrogates tumorigenesis and anoikis resistance of non-small cell lung cancer cells by inhibiting Src/FAK signaling. Mol Ther Oncolytics, 22, 195–208.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Pang, X. J., et al. (2021). Drug Discovery Targeting Focal Adhesion kinase (FAK) as a Promising Cancer Therapy. Molecules, 26, 14.CrossRef Pang, X. J., et al. (2021). Drug Discovery Targeting Focal Adhesion kinase (FAK) as a Promising Cancer Therapy. Molecules, 26, 14.CrossRef
132.
Zurück zum Zitat Spallarossa, A. (2022). The development of FAK inhibitors: A five-year update. International Journal of Molecular Sciences 23 (12). Spallarossa, A. (2022). The development of FAK inhibitors: A five-year update. International Journal of Molecular Sciences 23 (12).
133.
Zurück zum Zitat Li, J., et al. (2016). Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release : Official Journal of the Controlled Release Society, 228, 38–47.PubMedCrossRef Li, J., et al. (2016). Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release : Official Journal of the Controlled Release Society, 228, 38–47.PubMedCrossRef
134.
Zurück zum Zitat Schell, J. C., et al. (2014). A role for the mitochondrial pyruvate carrier as a Repressor of the Warburg effect and Colon cancer cell growth. Molecular Cell, 56(3), 400–413.PubMedPubMedCentralCrossRef Schell, J. C., et al. (2014). A role for the mitochondrial pyruvate carrier as a Repressor of the Warburg effect and Colon cancer cell growth. Molecular Cell, 56(3), 400–413.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Kim, T. H., et al. (2016). Cancer cells become less deformable and more invasive with activation of beta-adrenergic signaling. Journal of Cell Science, 129(24), 4563–4575.PubMedPubMedCentral Kim, T. H., et al. (2016). Cancer cells become less deformable and more invasive with activation of beta-adrenergic signaling. Journal of Cell Science, 129(24), 4563–4575.PubMedPubMedCentral
136.
Zurück zum Zitat Sloan, E. K., et al. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Research, 70(18), 7042–7052.PubMedPubMedCentralCrossRef Sloan, E. K., et al. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Research, 70(18), 7042–7052.PubMedPubMedCentralCrossRef
137.
138.
139.
Zurück zum Zitat Gkountela, S., et al. (2019). Circulating Tumor Cell Clustering shapes DNA methylation to Enable Metastasis Seeding. Cell, 176(1–2), 98–112e14.PubMedPubMedCentralCrossRef Gkountela, S., et al. (2019). Circulating Tumor Cell Clustering shapes DNA methylation to Enable Metastasis Seeding. Cell, 176(1–2), 98–112e14.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Du, E., et al. (2020). The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Molecular Biology Reports, 47(6), 4681–4690.PubMedCrossRef Du, E., et al. (2020). The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Molecular Biology Reports, 47(6), 4681–4690.PubMedCrossRef
141.
Zurück zum Zitat Bowley, T. Y. (2023). Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 15 (21). Bowley, T. Y. (2023). Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 15 (21).
142.
Zurück zum Zitat LeBleu, V. S., et al. (2014). PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003.PubMedPubMedCentralCrossRef LeBleu, V. S., et al. (2014). PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Elia, I. (2017). Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications 8 (1). Elia, I. (2017). Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications 8 (1).
Metadaten
Titel
Survival mechanisms of circulating tumor cells and their implications for cancer treatment
verfasst von
Shuang Zhou
Huanji Xu
Yichun Duan
Qiulin Tang
Huixi Huang
Feng Bi
Publikationsdatum
04.03.2024
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-024-10178-7

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.