Skip to main content

26.04.2024 | RESEARCH

STING Agonist cGAMP Attenuates Sleep Deprivation-Induced Neuroinflammation and Cognitive Deficits via TREM2 Up-Regulation

verfasst von: Yue Wang, Wen Niu, Shan Zhu, Jianyu Sun, Jianrui Lv, Ning Wang, Huijuan Zhang, Zhenni Zhang, Meijuan Wang, Lingli Cao, Shuwei Li, Qian Zhai, Lei Ma

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Sleep deprivation (SD) has been associated with several adverse effects, including cognitive deficit. Emerging evidence suggests microglia-associated neuroinflammation is a potential trigger of cognitive deficit after SD. Stimulator of interferon genes (STING) constitutes an important factor in host immune response to pathogenic organisms and is found in multiple cells, including microglia. STING is involved in neuroinflammation during neuronal degeneration, although how STING signaling affects SD-induced neuroinflammation remains unexplored. In the present study, the chronic sleep restriction (CSR) model was applied to examine the effects of STING signaling on cognition. The results revealed that cGAMP, a high-affinity and selective STING agonist, significantly improved cognitive deficit, alleviated neural injury, and relieved neuroinflammation in CSR mice by activating the STING-TBK1-IRF3 pathway. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) was upregulated in CSR mice treated with cGAMP, and this effect was abolished by STING knockout. TREM2 upregulation induced by cGAMP regulated the microglia from pro-inflammatory state to anti-inflammatory state, thereby relieving neuroinflammation in CSR mice. These findings indicate cGAMP-induced STING signaling activation alleviates SD-associated neuroinflammation and cognitive deficit by upregulating TREM2, providing a novel approach for the treatment of SD-related nerve injury.
Literatur
2.
Zurück zum Zitat Holler, E., N.L. Campbell, M. Boustani, P. Dexter, Z. Ben Miled, and A. Owora. 2023. Racial disparities in the pharmacological treatment of insomnia: A time-to-event analysis using real-world data. Sleep Health 9: 128–135.PubMedCrossRef Holler, E., N.L. Campbell, M. Boustani, P. Dexter, Z. Ben Miled, and A. Owora. 2023. Racial disparities in the pharmacological treatment of insomnia: A time-to-event analysis using real-world data. Sleep Health 9: 128–135.PubMedCrossRef
3.
Zurück zum Zitat Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934.PubMedPubMedCentralCrossRef Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918–934.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Graeber, M.B., W. Li, and M.L. Rodriguez. 2011. Role of microglia in CNS inflammation. FEBS Letters 585: 3798–3805.PubMedCrossRef Graeber, M.B., W. Li, and M.L. Rodriguez. 2011. Role of microglia in CNS inflammation. FEBS Letters 585: 3798–3805.PubMedCrossRef
5.
Zurück zum Zitat Ding, C., Z. Song, A. Shen, T. Chen, and A. Zhang. 2020. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharmaceutica Sinica B 10: 2272–2298.PubMedPubMedCentralCrossRef Ding, C., Z. Song, A. Shen, T. Chen, and A. Zhang. 2020. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharmaceutica Sinica B 10: 2272–2298.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Li, A., M. Yi, S. Qin, Y. Song, Q. Chu, and K. Wu. 2019. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. Journal of Hematology & Oncology 12: 35.CrossRef Li, A., M. Yi, S. Qin, Y. Song, Q. Chu, and K. Wu. 2019. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. Journal of Hematology & Oncology 12: 35.CrossRef
7.
Zurück zum Zitat Corrales, L., S.M. McWhirter, T.W. Dubensky Jr., and T.F. Gajewski. 2016. The host STING pathway at the interface of cancer and immunity. The Journal of Clinical Investigation 126: 2404–2411.PubMedPubMedCentralCrossRef Corrales, L., S.M. McWhirter, T.W. Dubensky Jr., and T.F. Gajewski. 2016. The host STING pathway at the interface of cancer and immunity. The Journal of Clinical Investigation 126: 2404–2411.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Woo, S.R., M.B. Fuertes, L. Corrales, S. Spranger, M.J. Furdyna, M.Y. Leung, R. Duggan, Y. Wang, G.N. Barber, K.A. Fitzgerald, et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41: 830–842.PubMedPubMedCentralCrossRef Woo, S.R., M.B. Fuertes, L. Corrales, S. Spranger, M.J. Furdyna, M.Y. Leung, R. Duggan, Y. Wang, G.N. Barber, K.A. Fitzgerald, et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41: 830–842.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Hanamsagar, R., M.L. Hanke, and T. Kielian. 2012. Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends in Immunology 33: 333–342.PubMedPubMedCentralCrossRef Hanamsagar, R., M.L. Hanke, and T. Kielian. 2012. Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends in Immunology 33: 333–342.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Xu, Q., W. Xu, H. Cheng, H. Yuan, and X. Tan. 2019. Efficacy and mechanism of cGAMP to suppress Alzheimer’s disease by elevating TREM2. Brain, Behavior, and Immunity 81: 495–508.PubMedCrossRef Xu, Q., W. Xu, H. Cheng, H. Yuan, and X. Tan. 2019. Efficacy and mechanism of cGAMP to suppress Alzheimer’s disease by elevating TREM2. Brain, Behavior, and Immunity 81: 495–508.PubMedCrossRef
11.
Zurück zum Zitat Elzinga, S.E., E.J. Koubek, J.M. Hayes, A. Carter, F.E. Mendelson, I. Webber-Davis, S.I. Lentz, and E.L. Feldman. 2023. Modeling the innate inflammatory cGAS/STING pathway: Sexually dimorphic effects on microglia and cognition in obesity and prediabetes. Frontiers in Cellular Neuroscience 17: 1167688.PubMedPubMedCentralCrossRef Elzinga, S.E., E.J. Koubek, J.M. Hayes, A. Carter, F.E. Mendelson, I. Webber-Davis, S.I. Lentz, and E.L. Feldman. 2023. Modeling the innate inflammatory cGAS/STING pathway: Sexually dimorphic effects on microglia and cognition in obesity and prediabetes. Frontiers in Cellular Neuroscience 17: 1167688.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Duan, N., Y. Zhang, S. Tan, J. Sun, M. Ye, H. Gao, K. Pu, M. Wu, Q. Wang, and Q. Zhai. 2022. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiology of Diseases 169: 105739.CrossRef Duan, N., Y. Zhang, S. Tan, J. Sun, M. Ye, H. Gao, K. Pu, M. Wu, Q. Wang, and Q. Zhai. 2022. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiology of Diseases 169: 105739.CrossRef
13.
Zurück zum Zitat Ennaceur, A. 2010. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behavioural Brain Research 215: 244–254.PubMedCrossRef Ennaceur, A. 2010. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behavioural Brain Research 215: 244–254.PubMedCrossRef
14.
Zurück zum Zitat Lueptow, L.M. 2017. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. Journal of Visualized Experiments 30: 55718. Lueptow, L.M. 2017. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. Journal of Visualized Experiments 30: 55718.
15.
Zurück zum Zitat Yoshizaki, K., M. Asai, and T. Hara. 2020. High-Fat Diet Enhances Working Memory in the Y-Maze Test in Male C57BL/6J Mice with Less Anxiety in the Elevated Plus Maze Test. Nutrients 12: 2036.PubMedPubMedCentralCrossRef Yoshizaki, K., M. Asai, and T. Hara. 2020. High-Fat Diet Enhances Working Memory in the Y-Maze Test in Male C57BL/6J Mice with Less Anxiety in the Elevated Plus Maze Test. Nutrients 12: 2036.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Liu, M., Z. Xu, L. Wang, L. Zhang, Y. Liu, J. Cao, Q. Fu, Y. Liu, H. Li, J. Lou, et al. 2020. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. Journal of Neuroinflammation 17: 270.PubMedPubMedCentralCrossRef Liu, M., Z. Xu, L. Wang, L. Zhang, Y. Liu, J. Cao, Q. Fu, Y. Liu, H. Li, J. Lou, et al. 2020. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. Journal of Neuroinflammation 17: 270.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Zhai, Q., F. Li, X. Chen, J. Jia, S. Sun, D. Zhou, L. Ma, T. Jiang, F. Bai, L. Xiong, and Q. Wang. 2017. Triggering Receptor Expressed on Myeloid Cells 2, a Novel Regulator of Immunocyte Phenotypes Confers Neuroprotection by Relieving Neuroinflammation. Anesthesiology 127: 98–110.PubMedCrossRef Zhai, Q., F. Li, X. Chen, J. Jia, S. Sun, D. Zhou, L. Ma, T. Jiang, F. Bai, L. Xiong, and Q. Wang. 2017. Triggering Receptor Expressed on Myeloid Cells 2, a Novel Regulator of Immunocyte Phenotypes Confers Neuroprotection by Relieving Neuroinflammation. Anesthesiology 127: 98–110.PubMedCrossRef
19.
Zurück zum Zitat Wu, J.J., L. Zhao, H.G. Hu, W.H. Li, and Y.M. Li. 2020. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Medicinal Research Reviews 40: 1117–1141.PubMedCrossRef Wu, J.J., L. Zhao, H.G. Hu, W.H. Li, and Y.M. Li. 2020. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Medicinal Research Reviews 40: 1117–1141.PubMedCrossRef
20.
Zurück zum Zitat Yang, K., W. Han, X. Jiang, A. Piffko, J. Bugno, C. Han, S. Li, H. Liang, Z. Xu, W. Zheng, et al. 2022. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nature Nanotechnology 17: 1322–1331.PubMedCrossRef Yang, K., W. Han, X. Jiang, A. Piffko, J. Bugno, C. Han, S. Li, H. Liang, Z. Xu, W. Zheng, et al. 2022. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nature Nanotechnology 17: 1322–1331.PubMedCrossRef
21.
Zurück zum Zitat Xu, L., H. Deng, L. Wu, D. Wang, L. Shi, Q. Qian, X. Huang, L. Zhu, X. Gao, J. Yang, et al. 2023. Supramolecular Cyclic Dinucleotide Nanoparticles for STING-Mediated Cancer Immunotherapy. ACS Nano 17: 10090–10103.PubMedCrossRef Xu, L., H. Deng, L. Wu, D. Wang, L. Shi, Q. Qian, X. Huang, L. Zhu, X. Gao, J. Yang, et al. 2023. Supramolecular Cyclic Dinucleotide Nanoparticles for STING-Mediated Cancer Immunotherapy. ACS Nano 17: 10090–10103.PubMedCrossRef
22.
Zurück zum Zitat Su, M., J. Zheng, L. Gan, Y. Zhao, Y. Fu, and Q. Chen. 2022. Second messenger 2’3’-cyclic GMP-AMP (2’3’-cGAMP): Synthesis, transmission, and degradation. Biochemical Pharmacology 198: 114934.PubMedCrossRef Su, M., J. Zheng, L. Gan, Y. Zhao, Y. Fu, and Q. Chen. 2022. Second messenger 2’3’-cyclic GMP-AMP (2’3’-cGAMP): Synthesis, transmission, and degradation. Biochemical Pharmacology 198: 114934.PubMedCrossRef
23.
Zurück zum Zitat Zhang, C., G. Shang, X. Gui, X. Zhang, X.C. Bai, and Z.J. Chen. 2019. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567: 394–398.PubMedPubMedCentralCrossRef Zhang, C., G. Shang, X. Gui, X. Zhang, X.C. Bai, and Z.J. Chen. 2019. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567: 394–398.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Wu, Y.T., W.T. Xu, L. Zheng, S. Wang, J. Wei, M.Y. Liu, H.P. Zhou, Q.F. Li, X. Shi, and X. Lv. 2023. 4-octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway. International Immunopharmacology 118: 110104.PubMedCrossRef Wu, Y.T., W.T. Xu, L. Zheng, S. Wang, J. Wei, M.Y. Liu, H.P. Zhou, Q.F. Li, X. Shi, and X. Lv. 2023. 4-octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway. International Immunopharmacology 118: 110104.PubMedCrossRef
25.
Zurück zum Zitat Kincheski, G.C., I.S. Valentim, J.R. Clarke, D. Cozachenco, M.T.L. Castelo-Branco, A.M. Ramos-Lobo, V. Rumjanek, J. Donato Jr., F.G. De Felice, and S.T. Ferreira. 2017. Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-β oligomers in mice. Brain, Behavior, and Immunity 64: 140–151.PubMedCrossRef Kincheski, G.C., I.S. Valentim, J.R. Clarke, D. Cozachenco, M.T.L. Castelo-Branco, A.M. Ramos-Lobo, V. Rumjanek, J. Donato Jr., F.G. De Felice, and S.T. Ferreira. 2017. Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-β oligomers in mice. Brain, Behavior, and Immunity 64: 140–151.PubMedCrossRef
26.
Zurück zum Zitat Liu, P., B. Zhao, M. Wei, Y. Li, J. Liu, L. Ma, S. Shang, K. Huo, J. Wang, R. Li, and Q. Qu. 2020. Activation of Inflammation is Associated with Amyloid-β Accumulation Induced by Chronic Sleep Restriction in Rats. Journal of Alzheimer’s Disease 74: 759–773.PubMedCrossRef Liu, P., B. Zhao, M. Wei, Y. Li, J. Liu, L. Ma, S. Shang, K. Huo, J. Wang, R. Li, and Q. Qu. 2020. Activation of Inflammation is Associated with Amyloid-β Accumulation Induced by Chronic Sleep Restriction in Rats. Journal of Alzheimer’s Disease 74: 759–773.PubMedCrossRef
27.
Zurück zum Zitat Zielinski, M.R., Y. Kim, S.A. Karpova, R.W. McCarley, R.E. Strecker, and D. Gerashchenko. 2014. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neuroscience Letters 580: 27–31.PubMedPubMedCentralCrossRef Zielinski, M.R., Y. Kim, S.A. Karpova, R.W. McCarley, R.E. Strecker, and D. Gerashchenko. 2014. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neuroscience Letters 580: 27–31.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Salvador, A.F.M., and J. Kipnis. 2022. Immune response after central nervous system injury. Seminars in Immunology 59: 101629.PubMedCrossRef Salvador, A.F.M., and J. Kipnis. 2022. Immune response after central nervous system injury. Seminars in Immunology 59: 101629.PubMedCrossRef
29.
Zurück zum Zitat Custodero, C., A. Ciavarella, F. Panza, D. Gnocchi, G.M. Lenato, J. Lee, A. Mazzocca, C. Sabbà, and V. Solfrizzi. 2022. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: A systematic review and meta-analysis. Geroscience 44: 1373–1392.PubMedPubMedCentralCrossRef Custodero, C., A. Ciavarella, F. Panza, D. Gnocchi, G.M. Lenato, J. Lee, A. Mazzocca, C. Sabbà, and V. Solfrizzi. 2022. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: A systematic review and meta-analysis. Geroscience 44: 1373–1392.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Hopfner, K.P., and V. Hornung. 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 21: 501–521.PubMedCrossRef Hopfner, K.P., and V. Hornung. 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 21: 501–521.PubMedCrossRef
32.
Zurück zum Zitat González-Navajas, J.M., J. Lee, M. David, and E. Raz. 2012. Immunomodulatory functions of type I interferons. Nature Reviews Immunology 12: 125–135.PubMedPubMedCentralCrossRef González-Navajas, J.M., J. Lee, M. David, and E. Raz. 2012. Immunomodulatory functions of type I interferons. Nature Reviews Immunology 12: 125–135.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Choubey, D. 2019. Type I interferon (IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: Implications for Alzheimer’s disease. Journal of Neuroinflammation 16: 236.PubMedPubMedCentralCrossRef Choubey, D. 2019. Type I interferon (IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: Implications for Alzheimer’s disease. Journal of Neuroinflammation 16: 236.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Poliani, P.L., Y. Wang, E. Fontana, M.L. Robinette, Y. Yamanishi, S. Gilfillan, and M. Colonna. 2015. TREM2 sustains microglial expansion during aging and response to demyelination. The Journal of Clinical Investigation 125: 2161–2170.PubMedPubMedCentralCrossRef Poliani, P.L., Y. Wang, E. Fontana, M.L. Robinette, Y. Yamanishi, S. Gilfillan, and M. Colonna. 2015. TREM2 sustains microglial expansion during aging and response to demyelination. The Journal of Clinical Investigation 125: 2161–2170.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Han, X., X. Cheng, J. Xu, Y. Liu, J. Zhou, L. Jiang, X. Gu, and T. Xia. 2022. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology 219: 109231.PubMedCrossRef Han, X., X. Cheng, J. Xu, Y. Liu, J. Zhou, L. Jiang, X. Gu, and T. Xia. 2022. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology 219: 109231.PubMedCrossRef
36.
Zurück zum Zitat Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, and S.R. Paludan. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. Science Advances 9: eadf5808.PubMedPubMedCentralCrossRef Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, and S.R. Paludan. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. Science Advances 9: eadf5808.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Colonna, M., and O. Butovsky. 2017. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annual Review of Immunology 35: 441–468.PubMedPubMedCentralCrossRef Colonna, M., and O. Butovsky. 2017. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annual Review of Immunology 35: 441–468.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kwon, H.S., and S.H. Koh. 2020. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener 9: 42.PubMedPubMedCentralCrossRef Kwon, H.S., and S.H. Koh. 2020. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener 9: 42.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Woodburn, S.C., J.L. Bollinger, and E.S. Wohleb. 2021. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation 18: 258.PubMedPubMedCentralCrossRef Woodburn, S.C., J.L. Bollinger, and E.S. Wohleb. 2021. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation 18: 258.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Li, Q., and B.A. Barres. 2018. Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology 18: 225–242.PubMedCrossRef Li, Q., and B.A. Barres. 2018. Microglia and macrophages in brain homeostasis and disease. Nature Reviews Immunology 18: 225–242.PubMedCrossRef
41.
42.
Zurück zum Zitat Peng, L., G. Hu, Q. Yao, J. Wu, Z. He, B.Y. Law, G. Hu, X. Zhou, J. Du, A. Wu, and L. Yu. 2022. Microglia autophagy in ischemic stroke: A double-edged sword. Frontiers in Immunology 13: 1013311.PubMedPubMedCentralCrossRef Peng, L., G. Hu, Q. Yao, J. Wu, Z. He, B.Y. Law, G. Hu, X. Zhou, J. Du, A. Wu, and L. Yu. 2022. Microglia autophagy in ischemic stroke: A double-edged sword. Frontiers in Immunology 13: 1013311.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Konishi, H., and H. Kiyama. 2018. Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience 12: 206.PubMedPubMedCentralCrossRef Konishi, H., and H. Kiyama. 2018. Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience 12: 206.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Tang, Y., and W. Le. 2016. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular Neurobiology 53: 1181–1194.PubMedCrossRef Tang, Y., and W. Le. 2016. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular Neurobiology 53: 1181–1194.PubMedCrossRef
45.
Zurück zum Zitat Spiteri, A.G., C.L. Wishart, R. Pamphlett, G. Locatelli, and N.J.C. King. 2022. Microglia and monocytes in inflammatory CNS disease: Integrating phenotype and function. Acta Neuropathologica 143: 179–224.PubMedCrossRef Spiteri, A.G., C.L. Wishart, R. Pamphlett, G. Locatelli, and N.J.C. King. 2022. Microglia and monocytes in inflammatory CNS disease: Integrating phenotype and function. Acta Neuropathologica 143: 179–224.PubMedCrossRef
46.
Zurück zum Zitat Wes, P.D., I.R. Holtman, E.W. Boddeke, T. Möller, and B.J. Eggen. 2016. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 64: 197–213.PubMedCrossRef Wes, P.D., I.R. Holtman, E.W. Boddeke, T. Möller, and B.J. Eggen. 2016. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 64: 197–213.PubMedCrossRef
47.
Zurück zum Zitat Porro, C., A. Cianciulli, R. Calvello, and M.A. Panaro. 2015. Reviewing the Role of Resveratrol as a Natural Modulator of Microglial Activities. Current Pharmaceutical Design 21: 5277–5291.PubMedCrossRef Porro, C., A. Cianciulli, R. Calvello, and M.A. Panaro. 2015. Reviewing the Role of Resveratrol as a Natural Modulator of Microglial Activities. Current Pharmaceutical Design 21: 5277–5291.PubMedCrossRef
48.
Zurück zum Zitat Peng, Y., J. Zhuang, G. Ying, H. Zeng, H. Zhou, Y. Cao, H. Chen, C. Xu, X. Fu, H. Xu, et al. 2020. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. Journal of Neuroinflammation 17: 165.PubMedPubMedCentralCrossRef Peng, Y., J. Zhuang, G. Ying, H. Zeng, H. Zhou, Y. Cao, H. Chen, C. Xu, X. Fu, H. Xu, et al. 2020. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. Journal of Neuroinflammation 17: 165.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Martin, G.R., C.M. Blomquist, K.L. Henare, and F.R. Jirik. 2019. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Science and Reports 9: 14281.CrossRef Martin, G.R., C.M. Blomquist, K.L. Henare, and F.R. Jirik. 2019. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Science and Reports 9: 14281.CrossRef
Metadaten
Titel
STING Agonist cGAMP Attenuates Sleep Deprivation-Induced Neuroinflammation and Cognitive Deficits via TREM2 Up-Regulation
verfasst von
Yue Wang
Wen Niu
Shan Zhu
Jianyu Sun
Jianrui Lv
Ning Wang
Huijuan Zhang
Zhenni Zhang
Meijuan Wang
Lingli Cao
Shuwei Li
Qian Zhai
Lei Ma
Publikationsdatum
26.04.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02029-y

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.