Skip to main content
Erschienen in: Molecular and Cellular Pediatrics 1/2023

Open Access 01.12.2023 | Review

Perinatal origins of bronchopulmonary dysplasia—deciphering normal and impaired lung development cell by cell

verfasst von: I. Mižíková, B. Thébaud

Erschienen in: Molecular and Cellular Pediatrics | Ausgabe 1/2023

Abstract

Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
aCap
Aerocytes capillary cell
Ang-1
Angiotensin 1
AT1
Alveolar type 1 cell
AT2
Alveolar type 2 cell
BASCS
Bronchial alveolar stem cells
BM-MSC
Bone marrow-derived mesenchymal stromal cell
BPD
Bronchopulmonary dysplasia
Car4
Carbonic anhydrase 4
CD45
PTPRC, protein tyrosine phosphatase receptor type C
c-Kit
KIT proto-oncogene, receptor tyrosine kinase
Col1a1
Collagen 1a1
Col13a1
Collagen 13a1
COPD
Chronic pulmonary obstructive disease
Csf1r
Colony stimulating factor 1 receptor
E
Embryonic day
EC
Endothelial cell
ECM
Extracellular matrix
eNOS
Endothelial Nitric oxide synthase 3
EPC
Endothelial progenitor cell
EV
Extracellular vesicle
FGF
Fibroblast growth factor
FGF2
Fibroblast growth factor 2
FGF10
Fibroblast growth factor 10
FOXF1
Forkhead box F1
gCap
General capillary cell
GH
Growth hormone
HFD
High fat diet
Hopx
HOP homeobox
IGF-1
Insulin-like growth factor 1
IL-6
Interleukin 6
IL-8
Interleukin 8
IL-1β
Interleukin 1 beta
IUGR
Intrauterine growth restriction
KRT8
Keratin 8
LBW
Low body weight
LISA
Less invasive surfactant administration
L-MSC
Lung mesenchymal stromal cell
LPD
Low protein dietactin
LPS
Lipopolysaccharide
LY6A
Lymphocyte antigen 6 complex, locus A
MIST
Minimally invasive surfactant therapy
MSC
Mesenchymal stromal cell
MV
Mechanical ventilation
MVU
Maternal vascular underperfusion
NCPAP
Nasal continuous positive airways pressure
NICU
Neonatal intensive care unit
NOTCH
NOTCH protein
P
Postnatal day
PDA
Patent ductus arteriosus
PDGFA
Plateled-derived growth factor alpha
PDGFRA
Plateled-derived growth factor receptor alpha
PE
Preeclampsia
PH
Pulmonary hypertension
PVR
Pulmonary vascular resistance
RAS
Respiratory airway secretory cells
RVH
Right vascular hypertrophy
SCA1
Stem cell antigen 1
sc-proteomics
Single cell proteomics
scRNA-seq
Single cell RNA sequencing
sFlt-1
Soluble fms-like tyrosine kinase 1
SGA
Small for gestational age
SNIPPV
Nasal intermittent positive pressure ventilation
snRNA-seq
Single nuclear RNA sequencing
Stat5
Signal transducer and activator of transcription 5A
TA
Tracheal aspirate
TGF-β
Transcription growth factor beta
Tie-2
TEK receptor tyrosine kinase
TNF-α
Tumor necrosis factor alpha
UC-MSC
Umbilical cord-derived mesenchymal stromal cell
VEGF
Vascular endothelial growth factor

Introduction

Bronchopulmonary dysplasia (BPD) is the most common form of chronic lung disease in children and a leading cause of neonatal morbidity and mortality [13]. Since 1999, the disease has been defined by the need for supplemental oxygen at 36 weeks post-menstrual age, and is classified based on its severity, as well as oxygen and respiratory support requirements into three grades: mild, moderate, or severe [4, 5]. While advancements in neonatal care led to improvements in survival of premature infants, the incidence of BPD has not decreased. Not surprisingly, BPD is now less frequent in infants with birth weight > 1200 g, or born after 30 weeks of gestation, but affects extremely premature infants of lower gestational age [46].
BPD is a multifactorial disease which occurs predominantly as a consequence of prematurity leading to respiratory distress and consequent treatments in neonatal intensive care units (NICU), including mechanical ventilation (MV) and oxygen supplementation [2, 5]. In addition to the degree of prematurity, additional antenatal and perinatal risk factors include low body weight (LBW), infection, and maternal nutrition [68]. Moreover, preeclampsia and intrauterine growth restriction (IUGR) are identified as independent risks factors [6, 911]. Recent studies further indicate that prenatal smoke exposure might also contribute to the development of the disease [12, 13]. Finally, BPD may have some hereditary component [14, 15]. While increased prevalence of BPD is typically associated with male sex, in the long term, female patients with a history of BPD might be affected more severely [6, 16, 17].
In the past BPD was associated mostly with aggressive MV in more mature infants [18]. However, advances in ventilation technology, avoidance of MV, and more judicious use of oxygen result in a new histological phenotype characterized less by fibrosis and more by global arrest in alveolar and microvascular development, as well as impaired, and sometimes declining lung function [4, 5]. BPD is also associated with long-term sequelae, which often persist into adolescence or early adulthood, including neurodevelopmental and cognitive changes [19], impaired lung function [2, 20, 21], pulmonary vascular disease [2, 22], and cardiac dysfunction [2, 23]. Impaired immune development results in increased susceptibility to viral infections and higher risk of rehospitalization later in life [1, 4, 6]. The disease is further associated with increased incidence of asthma [21] and early-onset emphysema [24].
BPD constitutes a complex injury to the developing lung with heterogenous pathological features and outcomes, greatly depending on the degree of prematurity, as well as antenatal and postnatal exposures. In the following paragraphs we discuss underlying causes and mechanisms contributing to the development of BPD, as well as novel approaches to study BPD pathogenesis.

Intrauterine growth restriction, placental dysfunction, and preeclampsia

IUGR is defined as a failure of the fetus to reach its “biologically based potential” [25]. The condition can arise due to anatomical or functional disorders associated with maternal factors, maternal-placental-fetal unit, or genetic abnormalities [2629]. IUGR often results in malnutrition, LBW, and permanent perturbations in metabolism and development [26, 28]. It is a known cause of prematurity and associated with increased morbidity and mortality [26, 30].
In experimental animal models, IUGR can be induced by various interventions, including uterine artery ligation [31], low protein diet (LPD) [3234], or heat exposure [9]. Impaired alveolar and vascular formation during postnatal development and/or in adulthood were reported in various IUGR models in rats [3235] and sheep [9, 36, 37]. IUGR in developing rat pups from LPD-fed mothers is associated with impaired lung development, as evidenced by increased alveolar septal thickness, Col1a1 expression and extracellular matrix (ECM) deposition at P23 [34]. These changes are preceded by an inhibition of GH/Stat5/IGF-1 signaling during the embryonic phase. Decreased IGF-1 levels were also reported in serum of BPD patients [38]. Notably, IGF-1 was shown to have anti-inflammatory properties, to preserve lung structure, and to prevent right ventricular hypertrophy (RVH) in a rat BPD model [3941]. IUGR in rats further impaired embryonic VEGF and BMP signaling, and decreased microvascular and ECM formation postnatally [35]. Finally, microRNA microarray analysis revealed perturbations to “tissue repair” and “cellular communication” pathways [33]. In addition to structural changes, IUGR impairs lung function in developing rats [42, 43], while in clinical studies, IUGR and LBW are associated with poorer lung function in childhood [44, 45] and adulthood [4648]. The impact on lung function may be directly related to a higher prevalence of BPD among the IUGR patients [11]. Finally, studies show that IUGR and LBW may contribute to development of chronical illness such as asthma [49] or chronic pulmonary obstructive disease (COPD) [50, 51].
Placental dysfunction and preeclampsia (PE), major causes of IUGR, also impact lung development. While the underlying molecular mechanisms remain unknown, PE is an independent risk factor for both, preterm delivery, and the development of BPD [6, 10, 52]. Pathological placental changes resulting from maternal vascular underperfusion (MVU) are associated with increased risk of BPD [53]. A recent meta-analysis of 211 studies show that placental vascular dysfunction in association with IUGR or being born small for gestational age (SGA) increases the risk of BPD and pulmonary hypertension (PH) [54]. Accordingly, decreased levels of cord blood angiogenic factors are strong predictors of BPD-associated PH [55]. Taken together, these data strongly indicates the strong association between the placental dysfunction of prematurity and vascular phenotype of BPD, supporting the so-called “vascular hypothesis” of BPD pathogenesis and the potential preventive use of proangiogenic agents in such patients [56].
While several preclinical models of PE have been designed, most differ from the human condition and replicate the condition to only a limited extent [57]. These include genetic models, such as the hypertensive BPH/5 mouse model [58], chronic hypoxia models [59, 60], or pharmacologically-induced models, such as nitric oxide inhibition [61, 62]. Widely used are also surgical models, such as the reduced uterine perfusion pressure (RUPP) [63], or selective RUPP rat model [64]. Interesting is also the CBA/J × DBA/2 J mouse model of recurrent miscarriage and spontaneous PE, recapitulating many features of the clinical condition, including renal damage, placental growth defects, restricted fetal growth, and increase sFLT-1 and leptin levels [65]. However, the animals do not become hypertensive, therefore not meeting the clinical criteria. Building on the notion of the importance of the above-mentioned sFLT-1 is another rat model, where PE is induced by intraamniotic sFLT-1 injections [66]. This model recapitulates retardation in lung growth, as well as findings of abnormal lung function, vessel density, and RVH. Importantly, both antenatal and postnatal treatment with selective anti-sFLT-1 antibody improved alveolarization, vessel formation, and lung function and decreased RVH in developing pups. Moreover, authors have shown similar result of anti-sFLT-1 treatment in the endotoxin-induced rat chorioamnionitis model [66].
Finally, maternal malnutrition or overnutrition are also associated with metabolic changes leading to increased risk of developing diabetes, obesity, and metabolic syndrome in later life [6769]. Combined insult of IUGR and maternal high-fat diet (HFD) increase the risk of early cardiovascular pathology in rats [31]. Furthermore, HFD in rat dams prior to conception, or HFD diet from pre-conception until lactation increases airway resistance in the offspring [70]. Taken together, these findings highlight the impact of perinatal nutrition on lung development and the origin of adult pulmonary disease.

Patent ductus arteriosus, pulmonary hypertension, and microbiome

Patent ductus arteriosus (PDA) is a frequent complication in very preterm infants, with up to 70% of infants born before 28th week of gestation requiring pharmacological or surgical treatment [71, 72]. The condition is associated with increased lung blood flow, impaired lung mechanics, oxidative stress, and increased need for MV. PDA is clinically often associated with RDS and BPD and is historically considered a risk factor for BPD [7377]. However, whether PDA plays a causal role in BPD pathogenesis is not known [72, 78, 79]. In fact, multiple randomized control trials have failed to find a direct relationship between PDA and the development of BPD [78, 8083]. PDA closure is performed either pharmacologically or surgically. Pharmacological closure, typically achieved with indomethacin or ibuprofen, was shown to improve alveolarization and lung mechanics, as well as the need for ventilator support [8486]. Whether the improvement is due to PDA closure or the pharmacological agents themselves however is not fully understood. These improvements have not been observed after surgical closure, with some reports indicating that early surgical ligation itself may contribute to impaired alveolarization [78, 87, 88]. Additionally, studies indicate differences in outcome dependent on timing of the pharmacological closure [89, 90]. Consequently, recent studies and review literature recommend avoidance of surgical ligation and further investigations into timing of PDA closure [78, 91, 92].
During the fetal development, gas exchange is provided by placenta and fetal pulmonary vascular resistance (PVR) is high. Perinatal transition is normally marked by a significant decrease in PVR, resulting in up to tenfold increase in pulmonary blood flow [9395]. However, in some instances this change in vascular resistance does not occur, resulting in PH. Neonatal PH is a frequent complication in premature infants, particularly those with extremely LBW [96]. While not fully understood, among the known risk factors contributing to neonatal PH are low birth weight, SGA status, oligohydramnios, PE, severity of BPD, and prolonged MV [94, 97]. A consensus approach to better classify pediatric PH recognizes 10 categories of pulmonary hypertensive vascular disease, including the BPD-PH category [98, 99]. Up to 25% of patients with moderate to severe BPD also develop PH [99101]. It can present itself as primary PH, acute PH associated with RDS or chronic PH associated with BPD (BPD-PH). Additionally, neonatal PH can be exacerbated by a PDA. BPD-PH is characterized by aberrant pulmonary vascular growth and remodeling, RV failure, increased mortality, and increased risk of PH and right ventricular dysfunction in adulthood [99, 102]. Initial diagnosis of neonatal PH is typically based on echocardiography and clinical representation. Late onset of PH in BPD patients (3–4 months of age) is now well described and justifies continuous screening for PH in premature infants with BPD [96]. Current therapies are based on the underlying pathophysiology of neonatal PH and include maintaining adequate oxygen saturation, correction of acidosis, surfactant therapy, and the use of pulmonary vasodilators, such as inhaled nitric oxide and sildenafil [94, 95].
Another intriguing, but understudied factor impacting the perinatal period is the microbiome. Studies have revealed alterations in airway and lung microbiome of prematurely born infants and suggest a link between the microbiome and BPD severity. A recent systematic reviews showed that most studies indicate decreased bacterial diversity, higher levels of Ureoplasma, and lower levels of Staphylococcus in the tracheal aspirates (TAs) of preterm infants who went on to develop severe BPD [103107]. BPD progression was further associated with microbial turnover and relative abundance of different bacterial strains. It is important to note that majority of the infants included in these studies have received prenatal or postnatal antibiotics, which has previously also been associated with increased risk and severity of BPD [103, 105, 108110]. Finally, a recent study has explored the relationship between perinatal microbiome and metabolome. The authors observed an increase in Proteobacteria, a reduction in Lactobacilli, as well as reduction in fatty acid β-oxidation pathway in infants with BPD [111]. While this data suggests a role for airway microbiome in the regulation of inflammation, further studies are needed to identify the mechanisms by which microbiome at birth modulates and primes the pulmonary metabolome.

Prenatal inflammation

Increasing evidence suggests that pre- and postnatal inflammation play critical roles in the development of BPD. BPD is associated with an increase in pro-inflammatory and decrease in anti-inflammatory cytokine levels, lung neutrophil and monocyte infiltration, and macrophage activation. Whether pre- or postnatal inflammation contribute more to the development and severity of BPD is not known.
Multiple types of prenatal inflammation have been suggested as BPD risk factors, including chorioamnionitis [112], fetal inflammatory response syndrome [113], and neonatal leukemoid reaction [114]. Most widely studied in the context of BPD is chorioamnionitis, a complex syndrome associated with preterm delivery. Chorioamnionitis is an inflammation of chorion and amnion membranes, often caused by bacterial infection, and usually classified as either histological or clinical [115]. The histological form is characterized microscopically by inflammatory cells infiltration, while the clinical form is defined by abdominal pain, presence of uterine tenderness, fever, increased white blood count, and maternal and fetal tachycardia [115, 116]. Studies in experimental animals suggest that antenatal inflammation can affect the expression of grow factors, modulate the immune system, and contribute to structural changes in the lung, resembling the BPD phenotype [117]. Intrauterine inflammation in animal models is often induced by bacterial lipopolysaccharide (LPS). Pre- or postnatal LPS in rodents and sheep results in inflammation, alveolar hypoplasia, impaired surfactant production, and impaired pulmonary vascular function [118121]. Importantly, amniotic concentrations of IL-6, IL-8, IL-1β, and TNF-α are increased in mothers of infants who develop BPD [122]. However, the clinical data on relationship between chorioamnionitis and BPD remain inconclusive [123125]. This is partly due to an inconsistent diagnosis and lack of correlation between clinical and histological chorioamnionitis [116, 126]. In fact, some studies indicate that the increased risk of BPD is rather associated with the postnatal consequences of chorioamnionitis and prematurity, such as surfactant deficiency, neonatal sepsis, and need for MV [112, 126128]. Additionally, postnatal sepsis directly increases BPD incidence and interrupts lung development by various mechanisms, including inflammation, oxidative stress, and endothelial injury [126, 129].

Mechanical ventilation, hyperoxia, and postnatal inflammation

Prematurity in infants is furthermore directly associated with the need of respiratory support and ventilation. Ventilation constitutes a major risk factor for lung injury and BPD. Initial injury results from both, barotrauma and volutrauma, which initiate an influx of immune cells, particularly macrophages and neutrophils, and an increase in production of pro-inflammatory cytokines [130133]. Elevated levels of pro-inflammatory IL-1β, IL-6, and IL-8 are found in TAs and blood of BPD patients [134]. Comparable cytokine profiles can be observed in ventilated rats, lambs, and baboons [135137]. Similar to MV, hyperoxia exposure is as an independent mediator of lung inflammation [112, 131, 138140]. Hyperoxia induces inflammation primarily via increase in IL-1β as evidenced by experiments with overexpression and blocking of IL-1β signaling [141144]. Moreover, some evidence exists for the role of Csf1r+ monocytes and macrophages in hyperoxia-induced lung injury [138]. Finally, oxidative stress induced by hyperoxia impacts the expression of large number of genes implicated in cell cycle, signal transduction, ECM turnover, coagulation, and alveolar growth [145]. The initial inflammatory response disturbs the homeostasis and triggers additional mediators and growth factors which in turn impact alveolar and microvascular formation [146, 147]. Depending on the model used however, the inflammatory response induced by hyperoxia might be considered moderate. To better reflect the clinical situation, various double-hit models combining postnatal hyperoxia with either pre- or postnatal LPS administration were developed [148153]. Results of these studies vary depending on species, strain, and LPS dosage. Overall, both pre- and postnatal endotoxin amplifies the effects of hyperoxia exposure in dose-dependent manner [148, 152]. Additionally, only animals exposed to both hits developed prominent PH [152], as well as intense local and systemic inflammatory response [149, 151].
Both, MV and hyperoxia exposure induce alveolar hypoplasia in mice [154, 155], rats [156, 157], lambs [130], and baboons [136]. Ventilation in premature infants is associated with underdeveloped terminal airspace epithelium and epithelial apoptosis [158160]. Parallel observations of epithelial inflammation and shedding, as well as epithelial hyperplasia were made in ventilated lambs [161, 162] and baboons [163] respectively. MV and hyperoxia exposure are further associated with increased [164, 165] or decreased [166, 167] alveolar epithelial type 2 (AT2) cells proliferation. Finally, both hyperoxia [168] and cyclic stretch [169] disrupt epithelial permeability in vitro.
Reduction in lung microvascularization is seen in BPD patients [170, 171] and in various animal models [172, 173] alike. Both, hyperoxia and ventilation inhibit pro-angiogenic VEGF signaling in rodent [172174], rabbits [175], and baboons [176], reminiscent of observations in the lungs, plasma, and TAs of BPD patients [177179]. Decreased levels of additional pro-angiogenic factors have also been observed. Expression levels of eNOS are decreased in hyperoxia-exposed mice and ventilated lambs [174, 180]. Lowered Tie-2 and Ang-1 levels are found in ventilated preterm infants [181] and Ang-1 expression is decreased in hyperoxia-exposed mouse pups [182]. Similarly decreased in BPD patients and hyperoxia-exposed mice is the production of novel angiogenic markers such as Foxf1 and c-Kit [183].
The mesenchymal damage in the “new” BPD manifests in form of thickened alveolar septa, defective ECM deposition, and interstitial fibrosis [147, 184, 185]. Comparable findings were made in various animal models, including ventilated lambs and baboons [136, 186], as well as ventilated and hyperoxia-exposed rodents [172, 187189]. Among the most studied in context of late lung development and BPD are the FGF, TGF-β, and PDGFA signaling pathways. Among the FGF family, pulmonary FGF10 expression is decreased [190], while FGF2 TA levels are increased in BPD patients [191]. Elevated FGF2 expression is also found during compensatory lung growth in hyperoxia-exposed rats [192]. PDGFA, as well as its receptor PDGFRA, are critical for secondary septation and their loss results in decreased myofibroblasts migration and proliferation [193195]. Decreased PDGFRA expression is found in animal hyperoxia BPD models [151, 194, 196] and the low expression of PDGFRA is associated with increased BPD incidence in male patients [197]. TGF-β signaling is essential for fetal lung development and is dynamically regulated during alveolarization [198, 199]. Increase in TGF-β expression was reported in TAs of BPD patients [200]. Similarly, an increased TGF-β expression is associated with alveolar hypoplasia secondary to hyperoxia, which could be prevented by treatment with TGF-β neutralizing antibody [201, 202]. Perturbances in both, PDGFA and TGF-β signaling are associated with defects in secondary septation, during which elastin is deposited at the top of the protruding septa by myofibroblast. This ECM scaffold provides a base for further alveolar formation [147]. Impaired elastic fibres formation and an increased expression of elastin and elastin or collagen cross-linking enzymes were noted in BPD patients [203205], as well as ventilated and hyperoxia-exposed rodents and lambs [186188, 205, 206].
It is important to note that considerable efforts have been made to establish less invasive therapies, avoiding intubation and mechanical ventilation. These strategies include sustained inflation approaches, such as nasal continuous positive airways pressure (NCPAP) or synchronised nasal intermittent positive pressure ventilation (SNIPPV) [207, 208]. Particularly the combination of NCPAP and early surfactant-replacement therapy is more effective in preventing BPD than continuous MV and elective surfactant replacement [207, 209]. However, meta-analysis revealed that it is the avoidance of endotracheal MV, rather than sustained inflations strategies themselves, which decreases the risk of BPD and death [208]. As even a brief intubation early in life can have severe consequences, less invasive methods of surfactant delivery, such as less invasive surfactant administration (LISA) and minimally invasive surfactant therapy (MIST), have recently been developed. In combination with NCPAP these strategies currently represent very promising approaches to decrease the BPD occurrence [208, 210212].

BPD phenotypes and endotypes

The multifactorial nature of BPD pathogenesis, combining various prenatal and postnatal insults results in several discrete endotypes and clinical phenotypes. As mentioned above, the biggest differences in clinical manifestation could be observed between the so-called “old”, profibrotic-like BPD phenotype and the “new” BPD characterized mainly by parenchymal and vascular damage [4, 5, 213]. Various classifications of BPD phenotypes have been proposed, including the categorization based on (i) severity [214], (ii) lung function (obstructive vs. restrictive phenotype) [215], or (iii) most effected tissue compartment [213, 216, 217]. Perhaps the most detailed classification, proposed in a recent review by Pierro et al., includes seven categories of BPD phenotypes: (i) parenchymal (characterized by alveolar simplification), (ii) peripheral airway (defined by bronchial hyperreactivity), (iii) central airway (stenosis, bronchomalacia, and tracheomalacia), (iv) interstitial (interstitial fibrosis and inflammation), (v) congestive (with pulmonary edema), (vi) vascular (dysmorphic vascularization and PH), and (vii) mixed phenotype [213].
Individual phenotypes do not only require different treatments but have different disease development and consequences in later life. The parenchymal phenotype, which is defined by arrest in alveolarization and decreased alveolar surface area, largely resembles emphysema. In fact, about two-thirds of BPD patients develop obstructive disease [215]. While the lung has capacity to continue alveolarization postnatally and parenchymal disease may improve over time, parenchymal damage in BPD has been previously associated with early onset chronic obstructive lung disease (COPD) in later life [213, 218]. The second obstructive phenotype—the peripheral airway phenotype, characterized by bronchoconstriction and hyperreactivity manifests similarly to asthma. However, studies have shown that at school age, these patients respond differently to treatments with β2-agonists than asthma patients and that the disease might be additionally characterized by structural changes in small airways [213, 216, 219].
In addition to BPD phenotypes, two main BPD endotypes are often recognized: (i) infection/inflammation (including chorioamnionitis) and (ii) placental dysfunction (including preeclampsia and IUGR) [213, 220]. While chorioamnionitis and infection represent the more common endotype, placental dysfunction in combination with IUGR constitute a more prominent background for vascular BPD phenotype [54, 221]. Ideally, in accordance with emerging personalized medicine approaches, distinct BPD phenotypes will be considered when assigning therapies and identifying possible complications in later life. However, details regarding underlying mechanisms and cellular integrations pertaining to individual phenotypes have not been yet deciphered.

Novel approaches to study the preterm lung

BPD in single-cell resolution

Understanding the lung composition on single-cell level has been a focus of substantial scientific research for more than a decade. During this period, more than 300 single-cell RNA sequencing (scRNA-seq) or single-nuclei RNA sequencing (snRNA-seq) human or animal lung datasets have been published. However, only a small fraction of these is dedicated to late lung development, and even fewer to the pathogenesis of BPD.
First exploratory scRNA-seq analysis of postnatal developing lung in mice were performed by Cohen et al., constructing a detailed single-cell map of the developing lung and lung progenitor cell populations covering the period from embryonic day (E)12.5 to postnatal day (P)7 [222]. The study identified 10 non-immune and 12 immune cell populations, revealing dynamic changes in population sizes, particularly during the pseudoglandular (E12.5) and canalicular stage (E18/19) of lung development. This data were further expanded in another study, characterizing lung immune (CD45+) cells between E18.5 and P21 [223]. When comparing the prenatal and postnatal immune cells authors identified a gradual increase in macrophage heterogeneity, as well as rapid increase in the proportion of lymphoid populations (2% vs 60% of all immune cells, respectively). Additional studies have focused on the developmental changes and postnatal adaptation in lung epithelial, endothelial, and stromal populations [224227].
Several scRNA-seq studies have contributed to establishing a cell atlas of human fetal lung development [228231]. No study to date has analysed lungs of BPD patients, although the scRNA-seq analysis of TA-derived cells to establish novel biomarkers and aid in stratifying BPD into endotypes has recently been proposed [232]. In contrast to the lack of studies in humans, few studies have explored the BPD pathogenesis at the single-cell level in the neonatal mouse hyperoxia model [151, 183, 226]. As mentioned above, the expression levels of angiogenic markers FOXF1 and c-KIT are decreased in the lungs of BPD patients [183]. This was confirmed by scRNA-seq in adult mouse lungs where hyperoxia exposure for first 7 days of life decreased the number of c-Kit+ endothelial cells (ECs) progenitors. Importantly, authors showed that adoptive transfer of c-Kit+ ECs improved lung angiogenesis and alveolarization in developing hyperoxia-exposed mice [183]. Substantial expression changes in all cell compartments were observed in the largest to date study of hyperoxia-exposed developing mice by Hurskainen et al., profiling over 66.000 lung cells at P3, P7, and P14 [151]. In this study, hyperoxia caused gradual changes in cell composition and expression patterns, particularly after 7 days of exposure. Within the stroma, authors identified transcriptomic shifts in myofibroblasts, pericytes, and Col13a1+ fibroblast, which were also among the most active signal senders and receivers in the hyperoxic lung. The study further revealed a substantial depletion of gCap (general capillary) cells and an increase in number of Car4+ aCap cells (aerocytes) after hyperoxia exposure [151]. The gCap cells were previously identified as putative distal lung vascular progenitors and regulators of capillary homeostasis, vasomotor tone, and repair [233]. The depletion of gCap ECs may contribute not only to the developmental injury, but also to the lack of repair capacity and an increased susceptibility to lung injury later in life, implying potential benefits of EC-derived cell therapies in BPD [151, 234]. In parallel, the Car4+ aCap cells showed pathological gene expression characterized by pro-inflammatory and anti-angiogenic markers. This is in agreement with recent reports, that aCap cells might contribute to septation [227] and revascularization following injury [235]. Moreover, the study highlighted the importance of inflammation in hyperoxia injury, with majority of the impacted transcriptional programs related to inflammatory response [151]. Finally, a recent study explored the long-term implication of neonatal hyperoxia [236]. Authors mapped lung cell populations in developing (P7) and adult (P60) mice previously exposed to hyperoxia for the first 3 days of life and identified persistent changes to AT2 subpopulations, predicting lasting perturbations to lung architecture and function [236].
While scRNA-seq studies so far have provided us with a somewhat complete map of the postnatally developing mouse lung, presently only a small portion of data derived from these studies have contributed to our understanding of BPD pathogenesis. As such, parallel studies in humans are still needed and further studies of BPD lungs are necessary to improve our interpretation of data obtained from animal studies. Finally, additional techniques, such as lineage tracing and spatial transcriptomics should be used to complement scRNA-seq to further investigate the role of newly identified cell populations, particularly rare cell subtypes and potential putative progenitors.

Lung stem/progenitor cells—opportunities to regenerate the preterm lung

Lung constitutes a quiescent organ, with the turnover time gradually decreasing along the proximal–distal axis [237, 238]. Following injury, lung cells are typically activated by their microenvironment and directed to participate in remodelling or repair [237, 239, 240]. The same injurious stimuli can damage or inhibit stem cells' ability to differentiate, leading to decreased, incorrect, or inappropriately timed production of particular cell populations, contributing to the development of lung disease [241]. The role of stem cells in the dysplastic pulmonary growth, premature lung aging, and pathogenesis of BPD has previously been proposed [241]. However, while multiple populations of lung endothelial, epithelial, and stromal stem or progenitor cells have been described, relatively little is known about their role in late lung development or BPD [237]. Particularly of interest are questions why resident stem cells lose their function and whether it is more feasible to restore their progenitor potential, or rather supplement the injured lung with undamaged, exogenous, therapeutic stem cells.
Epithelial stem cells are the most studied putative progenitors in the lung [242244]. These include proximal airways basal cells, secretory cells, bronchial alveolar stem cells (BASC), and distal AT2 cells. The fate of the progenitor basal cells, characterized by the expression of luminal cytokeratin KRT8, seems to be largely guided by the NOTCH signaling. Low levels of NOTCH expression predispose basal cells toward the secretory phenotype, while high levels lead to differentiation into goblet cells, and the absence of NOTCH results in the ciliated phenotype [245249]. Although the progenitor capacity of BASC cells has been demonstrated in mice, their exact role in postnatal lung growth and even their existence in human lungs still remain controversial [237, 244, 250]. On the other hand, the role of distal AT2 cells in lung repair is well-established and has been broadly studied. Lineage-tracing and scRNA-seq studies shown, that (alveolar type) AT1 and AT2 cells originate from a common bipotent progenitor. In humans, the AT1/AT2 progenitors were reported in developing lungs at gestational week 15 [230]. Studies in mice suggest that the bipotent AT1/AT2 population splits into independent cell lines by E18.5 [251, 252]. AT2 cells were repeatedly shown to self-renew, differentiate into AT1 cells, and exhibit repair capacities even in matured lungs [253256]. In regard to BPD pathogenesis, increased compensatory AT2-to-AT1 trans-differentiation was shown in the developing hyperoxia-exposed rats [257]. Early postnatal hyperoxia-exposure in mice resulted in reduced AT2 proliferation which persisted for up to 2 months [167]. Contradicting observations were however made in premature ventilated baboons, where AT2 hyperproliferation was observed [164], perhaps indicating that the nature, intensity, and timing of the injurious stimulus are critical in determining the way progenitor populations respond. Indeed, the molecular mechanisms involved in the AT2 progenitor capacity are largely unknown. Among the proposed pathways are the WTN, EGFR, and KRAS signaling pathways [256, 258]. Further, reports of progenitor-like AT1 cells [259] and the AT1-to-AT2 trans-differentiation also exist [260], and a specific Hopx+ AT1 population was shown to generate new AT2 cells in an adult mice post-pneumonectomy [261]. Finally, the progenitor role of so-called respiratory airway secretory cells (RAS) was also recently revealed [262]. RAS, which are located in human, but not mice proximal airways, differentiate exclusively into AT2 cells, a process regulated by NOTCH and WNT signalling. While this study explored the potential role of RAS in adult lung disease, future studies are needed to reveal their role in the neonatal lung.
In comparison to epithelial cells, less is known in regard to lung resident endothelial and mesenchymal stem cells. The rational for the search for endothelial progenitor cells (EPCs) is based in the hypothesis that the lung development is driven by pulmonary vessel formation [56, 263]. Numerous studies support the existence of resident EPCs in the postnatally developing lungs and a defective lung vascularization can be found in both, BPD patients and animal models of BPD [170, 172, 176, 177]. Moreover, inhibition of vessel formation in developing animals stunts lung development and results in alveolar hypoplasia [172, 264266]. Importantly, pro-angiogenic interventions proved effective in improving lung alveolarization in animal BPD models [172, 267269]. Reduction in number of resident and circulating EPCs was observed in murine BPD model [174], and the hyperoxia exposure decreased proliferation in human fetal lung endothelial colony-forming cells (ECFCs) in vitro [234]. Importantly, intravenously administered human cord blood-derived ECFCs were effective in restoring lung function, alveolar and vascular growth, and colony-formic capacity of resident ECFCs in hyperoxia-exposed developing mice [234]. Finally, some efforts have recently been made to identify markers of resident lung EPCs. Among the promising proposed candidates are above-mentioned markers FOXF1 and c-KIT, which expression is decreased in the lungs of hyperoxia-exposed rodents and BPD patients alike [151, 183].
The best described and most attractive among the somatic stem cells are mesenchymal stromal cells (MSCs), which can be easily isolated from bone marrow (BM-MSCs) or umbilical cord (UC-MSCs). Several studies have demonstrated the therapeutic properties of exogenous MSCs in experimental BPD, where UC- and BM-MSCs restored lung architecture and function, and attenuated inflammation and PH in developing rodents [270274]. This evidence prompted further interest in MSC-based cell therapies for BPD and selected approaches are currently in early phase clinical trials [275278]. Besides the cell-based therapies, MSC research further encompasses the study of cell-derived products, mainly extracellular vesicles (EVs). EVs represent a heterogenous population with smaller EVs (30–100 nm) also being referred to as exosomes [279]. Multiple studies have shown their role in cell communication during both, organ homeostasis and disease [280]. Human UC-MSC-derived EVs were shown to improve alveolar and vascular development, as well as lung function and RVH in hyperoxia-exposed developing mice [281283]. Similar results were further observed in studies employing EVs from amniotic fluid-derived [284] and Wharton’s Jelly-derived MSCs [285]. Studies indicate that EVs exert their mostly anti-inflammatory effects by promoting an immunosuppressive CCR2-associated myeloid cell phenotype [283]. Similarly, antenatal delivery of BM-MSCs-derived EVs benefited rats with endotoxin-induced chorioamnionitis, resulting in reduced cytokine levels and improved lung growth and mechanics [286]. Finally, UC-MSCs-derived EVs protected lung architecture, vessel formation and inflammatory modulation in LPS-injected and mechanically ventilated developing mice [287].
In addition to exogenous MSCs, the notion of the resident lung MSC (L-MSC) population come from reports of MSCs in TAs from prematurely born infants, where their presence was identified as indicator of BPD morbidity and severity [288290]. Resident L-MSCs were also described in human fetal lungs (gestational week 15–17) [291] and hyperoxia-exposed developing rodents [292, 293]. Hyperoxia exposure increased the number of L-MSCs and triggered expression of pro-inflammatory, pro-fibrotic, and anti-angiogenic genes [151, 293]. A scRNA-seq cell communication analysis revealed inflammatory signals from immune populations as main drivers of hyperoxia-induced changes in L-MSCs [293]. Importantly, hyperoxia-exposed human fetal L-MSCs exhibited decreased colony-forming capacity [291], while L-MSCs isolated from hyperoxia-exposed animals had decreased ability to support angiogenesis [292]. Although minimal criteria for MSCs characterization have been officially established [294], the definition remains rather crude and the identification of organ-specific MSCs, including the L-MSCs, lacks standardization. As a result, no L-MSC-specific marker has been accepted to date, although few markers have been proposed [292, 293, 295297]. Notable among these is LY6A, also known as SCA-1 (stem cell antigen 1) [295, 297]. Recent studies have shown that L-MSCs may constitute a rather heterogenous population and their study might require more advanced methods, such as scRNA-seq or sc-proteomics [292, 293]. Another recently emerging candidate resident MSC population are the Gli-1+ repair-supportive mesenchymal cells [298, 299]. Progenitor properties of Gli-1+ cells were previously described in other organs, including bones [300, 301], teeth [300], and liver [302]. In the lung, Gli-1+ cells co-express Acta2, Fgf10 and Pdgfra, thus resembling alveolar fibroblasts [225, 298]. In mice Gli-1+ MSCs were shown to aid epithelial regeneration following naphthalene-induced airway injury [298], and were shown to be increased in bleomycin-induced lung fibrosis in mice [303]. A more detailed characterization of all types of lung resident stem cell populations will clearly be of essence in understanding their role in normal and impaired lung development and regeneration.

Conclusions

Great advancements in the understanding of BPD pathophysiology have been made since its first description almost 60 years ago. However, prevention and treatment of this multifactorial disease still pose major challenges. Moreover, most treatment strategies, however lifesaving, can contribute to the disease pathogenesis. Because BPD occurs in a still developing lung, there is a notable risk of life-long adverse effects. Additionally, due to the scarcity of human material, most of our current knowledge derives from experimental animal, mostly rodent models. Aberrant immune response, activation of pro-fibrotic and anti-angiogenic factors, as well as defects in alveolar and capillary formation are among the main features of BPD pathogenesis. More recent studies suggest additional roles in the development of BPD for maternal obesity, second-hand smoking, and pollution. However, no single animal model can fully replicate the complex nature of BPD. Therefore, how exactly do the prenatal and postnatal factors interrelate during the development of BPD, effect patients' recovery, and possibly contribute to the susceptibility to pulmonary diseases in later life remains unknown. Finally, the heterogenous nature of pulmonary cellular landscape represents a great challenge when identifying individual effector cells, particularly rare progenitors. Future novel multi-omics and interdisciplinary approaches will allow for more in-depth identification of rare cell types, cellular dynamics, and novel biomarkers. This knowledge will further enable development of more personalized therapeutics relevant to disease prevention, as well as acute and long-term organ repair.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
3.
Zurück zum Zitat Warburton D (2017) Overview of lung development in the newborn human. Neonatology 111:398–401PubMedCrossRef Warburton D (2017) Overview of lung development in the newborn human. Neonatology 111:398–401PubMedCrossRef
4.
Zurück zum Zitat Duijts L, van Meel ER, Moschino L et al (2020) European Respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia. Eur Respir J 55:1900788PubMedCrossRef Duijts L, van Meel ER, Moschino L et al (2020) European Respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia. Eur Respir J 55:1900788PubMedCrossRef
5.
Zurück zum Zitat Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729PubMedCrossRef Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729PubMedCrossRef
6.
Zurück zum Zitat Sucre J, Haist L, Bolton CE, Hilgendorff A (2021) Early changes and indicators characterizing lung aging in neonatal chronic lung disease. Front Med 8:665152CrossRef Sucre J, Haist L, Bolton CE, Hilgendorff A (2021) Early changes and indicators characterizing lung aging in neonatal chronic lung disease. Front Med 8:665152CrossRef
7.
Zurück zum Zitat Sahni M, Bhandari V (2020) Recent advances in understanding and management of bronchopulmonary dysplasia. F100Res. 9:703CrossRef Sahni M, Bhandari V (2020) Recent advances in understanding and management of bronchopulmonary dysplasia. F100Res. 9:703CrossRef
8.
Zurück zum Zitat Biniwale MA, Ehrenkranz RA (2006) The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol 30:200–208PubMedCrossRef Biniwale MA, Ehrenkranz RA (2006) The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol 30:200–208PubMedCrossRef
9.
Zurück zum Zitat Rozance PJ, Seedorf GJ, Brown A, Roe G, O’Meara MC, Gien J, Tang J-R, Abman SH (2011) Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiology Lung Cell Mol Physiol 301:L860–L871CrossRef Rozance PJ, Seedorf GJ, Brown A, Roe G, O’Meara MC, Gien J, Tang J-R, Abman SH (2011) Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiology Lung Cell Mol Physiol 301:L860–L871CrossRef
10.
Zurück zum Zitat Collaborators of the Hypertensive Disorders of Pregnancy Study Group, Rocha G, de Lima FF, Machado AP, Guimarães H (2018) Preeclampsia predicts higher incidence of bronchopulmonary dysplasia. J Perinatol 38:1165–1173CrossRef Collaborators of the Hypertensive Disorders of Pregnancy Study Group, Rocha G, de Lima FF, Machado AP, Guimarães H (2018) Preeclampsia predicts higher incidence of bronchopulmonary dysplasia. J Perinatol 38:1165–1173CrossRef
11.
Zurück zum Zitat Arigliani M, Stocco C, Valentini E et al (2021) Lung function between 8 and 15 years of age in very preterm infants with fetal growth restriction. Pediatr Res 90:657–663PubMedCrossRef Arigliani M, Stocco C, Valentini E et al (2021) Lung function between 8 and 15 years of age in very preterm infants with fetal growth restriction. Pediatr Res 90:657–663PubMedCrossRef
12.
13.
Zurück zum Zitat Isaksen CV, Austgulen R, Chedwick L, Romundstad P, Vatten L, Craven C (2004) Maternal Smoking, Intrauterine Growth Restriction, and Placental Apoptosis. Pediatr Dev Pathol 7:433–442CrossRef Isaksen CV, Austgulen R, Chedwick L, Romundstad P, Vatten L, Craven C (2004) Maternal Smoking, Intrauterine Growth Restriction, and Placental Apoptosis. Pediatr Dev Pathol 7:433–442CrossRef
14.
Zurück zum Zitat Bhandari V (2006) Familial and Genetic Susceptibility to Major Neonatal Morbidities in Preterm Twins. Pediatrics 117:1901–1906PubMedCrossRef Bhandari V (2006) Familial and Genetic Susceptibility to Major Neonatal Morbidities in Preterm Twins. Pediatrics 117:1901–1906PubMedCrossRef
15.
Zurück zum Zitat Lal CV, Ambalavanan N (2015) Genetic predisposition to bronchopulmonary dysplasia. Semin Perinatol 39:584–591PubMedCrossRef Lal CV, Ambalavanan N (2015) Genetic predisposition to bronchopulmonary dysplasia. Semin Perinatol 39:584–591PubMedCrossRef
16.
Zurück zum Zitat Binet M-E, Bujold E, Lefebvre F, Tremblay Y, Piedboeuf B, for the Canadian Neonatal NetworkTM, (2012) Role of gender in morbidity and mortality of extremely premature neonates. Amer J Perinatol 29:159–166CrossRef Binet M-E, Bujold E, Lefebvre F, Tremblay Y, Piedboeuf B, for the Canadian Neonatal NetworkTM, (2012) Role of gender in morbidity and mortality of extremely premature neonates. Amer J Perinatol 29:159–166CrossRef
17.
Zurück zum Zitat Vrijlandt EJ, Gerritsen J, Boezen HM, Duiverman EJ, the Dutch POPS-19 Collaborative Study Group* (2005) Gender differences in respiratory symptoms in 19-year-old adults born preterm. Respir Res 6:117PubMedCentralCrossRef Vrijlandt EJ, Gerritsen J, Boezen HM, Duiverman EJ, the Dutch POPS-19 Collaborative Study Group* (2005) Gender differences in respiratory symptoms in 19-year-old adults born preterm. Respir Res 6:117PubMedCentralCrossRef
18.
Zurück zum Zitat Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia. N Engl J Med 276:357–368PubMedCrossRef Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia. N Engl J Med 276:357–368PubMedCrossRef
19.
Zurück zum Zitat Cheong JLY, Doyle LW (2018) An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol 42:478–484PubMedCrossRef Cheong JLY, Doyle LW (2018) An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol 42:478–484PubMedCrossRef
20.
Zurück zum Zitat Northway WH, Moss RB, Carlisle KB, Parker BR, Popp RL, Pitlick PT, Eichler I, Lamm RL, Brown BW (1990) Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 323:1793–1799PubMedCrossRef Northway WH, Moss RB, Carlisle KB, Parker BR, Popp RL, Pitlick PT, Eichler I, Lamm RL, Brown BW (1990) Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 323:1793–1799PubMedCrossRef
21.
Zurück zum Zitat Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, Thomas S, Stocks J (2010) Lung function and respiratory symptoms at 11 years in children born extremely preterm: The EPICure Study. Am J Respir Crit Care Med 182:237–245PubMedPubMedCentralCrossRef Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, Thomas S, Stocks J (2010) Lung function and respiratory symptoms at 11 years in children born extremely preterm: The EPICure Study. Am J Respir Crit Care Med 182:237–245PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Goss KN, Beshish AG, Barton GP et al (2018) Early pulmonary vascular disease in young adults born preterm. Am J Respir Crit Care Med 198:1549–1558PubMedPubMedCentralCrossRef Goss KN, Beshish AG, Barton GP et al (2018) Early pulmonary vascular disease in young adults born preterm. Am J Respir Crit Care Med 198:1549–1558PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Lewandowski AJ, Bradlow WM, Augustine D, Davis EF, Francis J, Singhal A, Lucas A, Neubauer S, McCormick K, Leeson P (2013) Right ventricular systolic dysfunction in young adults born preterm. Circulation 128:713–720PubMedCrossRef Lewandowski AJ, Bradlow WM, Augustine D, Davis EF, Francis J, Singhal A, Lucas A, Neubauer S, McCormick K, Leeson P (2013) Right ventricular systolic dysfunction in young adults born preterm. Circulation 128:713–720PubMedCrossRef
24.
Zurück zum Zitat Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, Murray CP, Wilson A, Chambers DC (2008) Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 32:321–328PubMedCrossRef Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, Murray CP, Wilson A, Chambers DC (2008) Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 32:321–328PubMedCrossRef
25.
Zurück zum Zitat Gordijn SJ, Beune IM, Ganzevoort W (2018) Building consensus and standards in fetal growth restriction studies. Best Pract Res Clin Obstet Gynaecol 49:117–126PubMedCrossRef Gordijn SJ, Beune IM, Ganzevoort W (2018) Building consensus and standards in fetal growth restriction studies. Best Pract Res Clin Obstet Gynaecol 49:117–126PubMedCrossRef
27.
Zurück zum Zitat Briana DD, Malamitsi-Puchner A (2020) Perinatal biomarkers implying ‘Developmental Origins of Health and Disease’ consequences in intrauterine growth restriction. Acta Paediatr 109:1317–1322PubMedCrossRef Briana DD, Malamitsi-Puchner A (2020) Perinatal biomarkers implying ‘Developmental Origins of Health and Disease’ consequences in intrauterine growth restriction. Acta Paediatr 109:1317–1322PubMedCrossRef
28.
Zurück zum Zitat Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA (2021) Perinatal nutritional and metabolic pathways: early origins of chronic lung diseases. Front Med 8:667315CrossRef Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA (2021) Perinatal nutritional and metabolic pathways: early origins of chronic lung diseases. Front Med 8:667315CrossRef
29.
Zurück zum Zitat Brodsky D, Christou H (2004) Current concepts in intrauterine growth restriction. J Intensive Care Med 19:307–319PubMedCrossRef Brodsky D, Christou H (2004) Current concepts in intrauterine growth restriction. J Intensive Care Med 19:307–319PubMedCrossRef
30.
Zurück zum Zitat Garite TJ, Clark R, Thorp JA (2004) Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol 191:481–487PubMedCrossRef Garite TJ, Clark R, Thorp JA (2004) Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol 191:481–487PubMedCrossRef
31.
Zurück zum Zitat Miller TA, Dodson RB, Mankouski A, Powers KN, Yang Y, Yu B, Zinkhan EK (2019) Impact of diet on the persistence of early vascular remodeling and stiffening induced by intrauterine growth restriction and a maternal high-fat diet. Am J Physiol Heart Circ Physiol 317:H424–H433PubMedCrossRef Miller TA, Dodson RB, Mankouski A, Powers KN, Yang Y, Yu B, Zinkhan EK (2019) Impact of diet on the persistence of early vascular remodeling and stiffening induced by intrauterine growth restriction and a maternal high-fat diet. Am J Physiol Heart Circ Physiol 317:H424–H433PubMedCrossRef
32.
Zurück zum Zitat Zana-Taieb E, Butruille L, Franco-Montoya M-L et al (2013) Effect of two models of intrauterine growth restriction on alveolarization in rat lungs: morphometric and gene expression analysis. PLoS ONE 8:e78326PubMedPubMedCentralCrossRef Zana-Taieb E, Butruille L, Franco-Montoya M-L et al (2013) Effect of two models of intrauterine growth restriction on alveolarization in rat lungs: morphometric and gene expression analysis. PLoS ONE 8:e78326PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Dravet-Gounot P, Morin C, Jacques S, Dumont F, Ely-Marius F, Vaiman D, Jarreau P-H, Méhats C, Zana-Taïeb E (2017) Lung microRNA deregulation associated with impaired alveolarization in rats after intrauterine growth restriction. PLoS ONE 12:e0190445PubMedPubMedCentralCrossRef Dravet-Gounot P, Morin C, Jacques S, Dumont F, Ely-Marius F, Vaiman D, Jarreau P-H, Méhats C, Zana-Taïeb E (2017) Lung microRNA deregulation associated with impaired alveolarization in rats after intrauterine growth restriction. PLoS ONE 12:e0190445PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Nawabi J, Vohlen C, Dinger K et al (2018) Novel functional role of GH/IGF-I in neonatal lung myofibroblasts and in rat lung growth after intrauterine growth restriction. Am J Physiol Lung Cell Mol Physiol 315:L623–L637PubMedCrossRef Nawabi J, Vohlen C, Dinger K et al (2018) Novel functional role of GH/IGF-I in neonatal lung myofibroblasts and in rat lung growth after intrauterine growth restriction. Am J Physiol Lung Cell Mol Physiol 315:L623–L637PubMedCrossRef
35.
Zurück zum Zitat Kuiper-Makris C, Zanetti D, Vohlen C, Fahle L, Müller M, Odenthal M, Felderhoff-Müser U, Dötsch J, Alejandre Alcazar MA (2020) Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function. Sci Rep 10:22395PubMedPubMedCentralCrossRef Kuiper-Makris C, Zanetti D, Vohlen C, Fahle L, Müller M, Odenthal M, Felderhoff-Müser U, Dötsch J, Alejandre Alcazar MA (2020) Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function. Sci Rep 10:22395PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Maritz GS, Cock ML, Louey S, Joyce BJ, Albuquerque CA, Harding R (2001) Effects of fetal growth restriction on lung development before and after birth: a morphometric analysis. Pediatr Pulmonol 32:201–210PubMedCrossRef Maritz GS, Cock ML, Louey S, Joyce BJ, Albuquerque CA, Harding R (2001) Effects of fetal growth restriction on lung development before and after birth: a morphometric analysis. Pediatr Pulmonol 32:201–210PubMedCrossRef
37.
Zurück zum Zitat Lipsett J, Tamblyn M, Madigan K, Roberts P, Cool JC, Runciman SI, McMillen IC, Robinson J, Owens JA (2006) Restricted fetal growth and lung development: A morphometric analysis of pulmonary structure. Pediatr Pulmonol 41:1138–1145PubMedCrossRef Lipsett J, Tamblyn M, Madigan K, Roberts P, Cool JC, Runciman SI, McMillen IC, Robinson J, Owens JA (2006) Restricted fetal growth and lung development: A morphometric analysis of pulmonary structure. Pediatr Pulmonol 41:1138–1145PubMedCrossRef
38.
Zurück zum Zitat Löfqvist C, Hellgren G, Niklasson A, Engström E, Ley D, Hansen-Pupp I, and the WINROP Consortium (2012) Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr 101:1211–1216CrossRef Löfqvist C, Hellgren G, Niklasson A, Engström E, Ley D, Hansen-Pupp I, and the WINROP Consortium (2012) Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr 101:1211–1216CrossRef
39.
Zurück zum Zitat Seedorf G, Kim C, Wallace B, Mandell EW, Nowlin T, Shepherd D, Abman SH (2020) rhIGF-1/BP3 Preserves lung growth and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Respir Crit Care Med 201:1120–1134PubMedPubMedCentralCrossRef Seedorf G, Kim C, Wallace B, Mandell EW, Nowlin T, Shepherd D, Abman SH (2020) rhIGF-1/BP3 Preserves lung growth and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Respir Crit Care Med 201:1120–1134PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Puzik A, Rupp J, Tröger B, Göpel W, Herting E, Härtel C (2012) Insulin-like growth factor-I regulates the neonatal immune response in infection and maturation by suppression of IFN-γ. Cytokine 60:369–376PubMedCrossRef Puzik A, Rupp J, Tröger B, Göpel W, Herting E, Härtel C (2012) Insulin-like growth factor-I regulates the neonatal immune response in infection and maturation by suppression of IFN-γ. Cytokine 60:369–376PubMedCrossRef
41.
Zurück zum Zitat Hellstrom A, Perruzzi C, Ju M et al (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci 98:5804–5808PubMedPubMedCentralCrossRef Hellstrom A, Perruzzi C, Ju M et al (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci 98:5804–5808PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Khazaee R, McCaig LA, Yamashita C, Hardy DB, Veldhuizen RAW (2019) Maternal protein restriction during perinatal life affects lung mechanics and the surfactant system during early postnatal life in female rats. PLoS ONE 14:e0215611PubMedPubMedCentralCrossRef Khazaee R, McCaig LA, Yamashita C, Hardy DB, Veldhuizen RAW (2019) Maternal protein restriction during perinatal life affects lung mechanics and the surfactant system during early postnatal life in female rats. PLoS ONE 14:e0215611PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Alejandre Alcazar MA, Östreicher I, Appel S, Rother E, Vohlen C, Plank C, Dötsch J (2012) Developmental regulation of inflammatory cytokine-mediated Stat3 signaling: the missing link between intrauterine growth restriction and pulmonary dysfunction? J Mol Med 90:945–957PubMedCrossRef Alejandre Alcazar MA, Östreicher I, Appel S, Rother E, Vohlen C, Plank C, Dötsch J (2012) Developmental regulation of inflammatory cytokine-mediated Stat3 signaling: the missing link between intrauterine growth restriction and pulmonary dysfunction? J Mol Med 90:945–957PubMedCrossRef
44.
Zurück zum Zitat Kotecha SJ, Watkins WJ, Heron J, Henderson J, Dunstan FD, Kotecha S (2010) Spirometric Lung Function in School-Age Children: Effect of Intrauterine Growth Retardation and Catch-up Growth. Am J Respir Crit Care Med 181:969–974PubMedPubMedCentralCrossRef Kotecha SJ, Watkins WJ, Heron J, Henderson J, Dunstan FD, Kotecha S (2010) Spirometric Lung Function in School-Age Children: Effect of Intrauterine Growth Retardation and Catch-up Growth. Am J Respir Crit Care Med 181:969–974PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Ronkainen E, Dunder T, Kaukola T, Marttila R, Hallman M (2016) Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 101:F412–F417PubMedCrossRef Ronkainen E, Dunder T, Kaukola T, Marttila R, Hallman M (2016) Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 101:F412–F417PubMedCrossRef
46.
Zurück zum Zitat Cai Y, Shaheen SO, Hardy R, Kuh D, Hansell AL (2016) Birth weight, early childhood growth and lung function in middle to early old age: 1946 British birth cohort. Thorax 71:916–922PubMedCrossRef Cai Y, Shaheen SO, Hardy R, Kuh D, Hansell AL (2016) Birth weight, early childhood growth and lung function in middle to early old age: 1946 British birth cohort. Thorax 71:916–922PubMedCrossRef
47.
Zurück zum Zitat Harris C, Lunt A, Bisquera A, Peacock J, Greenough A (2021) Intrauterine growth retardation and lung function of very prematurely born young people. Pediatr Pulmonol 56:2284–2291PubMedCrossRef Harris C, Lunt A, Bisquera A, Peacock J, Greenough A (2021) Intrauterine growth retardation and lung function of very prematurely born young people. Pediatr Pulmonol 56:2284–2291PubMedCrossRef
48.
Zurück zum Zitat Canoy D, Pekkanen J, Elliott P, Pouta A, Laitinen J, Hartikainen A-L, Zitting P, Patel S, Little MP, Jarvelin M-R (2007) Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 62:396–402PubMedCrossRef Canoy D, Pekkanen J, Elliott P, Pouta A, Laitinen J, Hartikainen A-L, Zitting P, Patel S, Little MP, Jarvelin M-R (2007) Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax 62:396–402PubMedCrossRef
49.
Zurück zum Zitat Svanes C, Omenaas E, Heuch JM, Irgens LM, Gulsvik A (1998) Birth characteristics and asthma symptoms in young adults: results from a population-based cohort study in Norway. Eur Respir J 12:1366–1370PubMedCrossRef Svanes C, Omenaas E, Heuch JM, Irgens LM, Gulsvik A (1998) Birth characteristics and asthma symptoms in young adults: results from a population-based cohort study in Norway. Eur Respir J 12:1366–1370PubMedCrossRef
50.
Zurück zum Zitat Barker DJ, Godfrey KM, Fall C, Osmond C, Winter PD, Shaheen SO (1991) Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ 303:671–675PubMedPubMedCentralCrossRef Barker DJ, Godfrey KM, Fall C, Osmond C, Winter PD, Shaheen SO (1991) Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ 303:671–675PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Stocks J, Sonnappa S (2013) Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis 7:161–173PubMedCrossRef Stocks J, Sonnappa S (2013) Early life influences on the development of chronic obstructive pulmonary disease. Ther Adv Respir Dis 7:161–173PubMedCrossRef
52.
Zurück zum Zitat Hansen AR, Barnés CM, Folkman J, McElrath TF (2010) Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr 156:532–536PubMedCrossRef Hansen AR, Barnés CM, Folkman J, McElrath TF (2010) Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr 156:532–536PubMedCrossRef
53.
Zurück zum Zitat Mestan KK, Check J, Minturn L, Yallapragada S, Farrow KN, Liu X, Su E, Porta N, Gotteiner N, Ernst LM (2014) Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta 35:570–574PubMedPubMedCentralCrossRef Mestan KK, Check J, Minturn L, Yallapragada S, Farrow KN, Liu X, Su E, Porta N, Gotteiner N, Ernst LM (2014) Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta 35:570–574PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Pierro M, Villamor-Martinez E, van Westering-Kroon E, Alvarez-Fuente M, Abman SH, Villamor E (2021) Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: a systematic review, meta-analysis and meta-regression. Thorax Thoraxjnl. 2020:216485 Pierro M, Villamor-Martinez E, van Westering-Kroon E, Alvarez-Fuente M, Abman SH, Villamor E (2021) Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: a systematic review, meta-analysis and meta-regression. Thorax Thoraxjnl. 2020:216485
55.
Zurück zum Zitat Mestan KK, Gotteiner N, Porta N, Grobman W, Su EJ, Ernst LM (2017) Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension. J Pediatr 185:33–41PubMedPubMedCentralCrossRef Mestan KK, Gotteiner N, Porta N, Grobman W, Su EJ, Ernst LM (2017) Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension. J Pediatr 185:33–41PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Abman SH (2001) Bronchopulmonary dysplasia: “a vascular hypothesis.” Am J Respir Crit Care Med 164:1755–1756PubMedCrossRef Abman SH (2001) Bronchopulmonary dysplasia: “a vascular hypothesis.” Am J Respir Crit Care Med 164:1755–1756PubMedCrossRef
57.
Zurück zum Zitat Gatford KL, Andraweera PH, Roberts CT, Care AS (2020) Animal models of preeclampsia: causes, consequences, and interventions. Hypertension 75:1363–1381PubMedCrossRef Gatford KL, Andraweera PH, Roberts CT, Care AS (2020) Animal models of preeclampsia: causes, consequences, and interventions. Hypertension 75:1363–1381PubMedCrossRef
58.
Zurück zum Zitat Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, Sethi S, Weiss RM, Bates JN (2002) Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension 39:337–342PubMedCrossRef Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, Sethi S, Weiss RM, Bates JN (2002) Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension 39:337–342PubMedCrossRef
59.
Zurück zum Zitat Zhou J, Xiao D, Hu Y, Wang Z, Paradis A, Mata-Greenwood E, Zhang L (2013) Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension 62:599–607PubMedCrossRef Zhou J, Xiao D, Hu Y, Wang Z, Paradis A, Mata-Greenwood E, Zhang L (2013) Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension 62:599–607PubMedCrossRef
60.
Zurück zum Zitat Tong W, Allison BJ, Brain KL et al (2022) Chronic hypoxia in ovine pregnancy recapitulates physiological and molecular markers of preeclampsia in the mother, placenta, and offspring. Hypertension 79:1525–1535PubMedCrossRef Tong W, Allison BJ, Brain KL et al (2022) Chronic hypoxia in ovine pregnancy recapitulates physiological and molecular markers of preeclampsia in the mother, placenta, and offspring. Hypertension 79:1525–1535PubMedCrossRef
61.
Zurück zum Zitat Yallampalli C, Garfield RE (1993) Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol 169:1316–1320PubMedCrossRef Yallampalli C, Garfield RE (1993) Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol 169:1316–1320PubMedCrossRef
62.
Zurück zum Zitat Witlin AG, Gangula PRR, Thompson ML, Yallampalli C (2002) Growth and fertility rates in the offspring of pregnant rats treated with L-ω nitro-L-arginine methyl ester (L-NAME), a nitric oxide inhibitor. Am J Obstet Gynecol 186:89–93PubMedCrossRef Witlin AG, Gangula PRR, Thompson ML, Yallampalli C (2002) Growth and fertility rates in the offspring of pregnant rats treated with L-ω nitro-L-arginine methyl ester (L-NAME), a nitric oxide inhibitor. Am J Obstet Gynecol 186:89–93PubMedCrossRef
63.
Zurück zum Zitat Li J, LaMarca B, Reckelhoff JF (2012) A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 303:H1–H8PubMedPubMedCentralCrossRef Li J, LaMarca B, Reckelhoff JF (2012) A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 303:H1–H8PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Schenone MH, Mari G, Schlabritz-Loutsevitch N, Ahokas R (2015) Effects of selective reduced uterine perfusion pressure in pregnant rats. Placenta 36:1450–1454PubMedCrossRef Schenone MH, Mari G, Schlabritz-Loutsevitch N, Ahokas R (2015) Effects of selective reduced uterine perfusion pressure in pregnant rats. Placenta 36:1450–1454PubMedCrossRef
66.
Zurück zum Zitat Wallace B, Peisl A, Seedorf G, Nowlin T, Kim C, Bosco J, Kenniston J, Keefe D, Abman SH (2018) Anti–sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia. Am J Respir Crit Care Med 197:776–787PubMedPubMedCentralCrossRef Wallace B, Peisl A, Seedorf G, Nowlin T, Kim C, Bosco J, Kenniston J, Keefe D, Abman SH (2018) Anti–sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia. Am J Respir Crit Care Med 197:776–787PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Longo S, Bollani L, Decembrino L, Di Comite A, Angelini M, Stronati M (2013) Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med 26:222–225PubMedCrossRef Longo S, Bollani L, Decembrino L, Di Comite A, Angelini M, Stronati M (2013) Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med 26:222–225PubMedCrossRef
68.
Zurück zum Zitat Ravelli G-P, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353PubMedCrossRef Ravelli G-P, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353PubMedCrossRef
69.
Zurück zum Zitat Wallace JM, Bourke DA, Aitken RP, Palmer RM, Da Silva P, Cruickshank MA (2000) Relationship between nutritionally-mediated placental growth restriction and fetal growth, body composition and endocrine status during late gestation in adolescent sheep. Placenta 21:100–108PubMedCrossRef Wallace JM, Bourke DA, Aitken RP, Palmer RM, Da Silva P, Cruickshank MA (2000) Relationship between nutritionally-mediated placental growth restriction and fetal growth, body composition and endocrine status during late gestation in adolescent sheep. Placenta 21:100–108PubMedCrossRef
70.
Zurück zum Zitat Dinger K, Koningsbruggen-Rietschel S, v., Dötsch J, Alejandre Alcazar MA, (2020) Identification of critical windows of metabolic programming of metabolism and lung function in male offspring of obese dams. Clin Transl Sci 13:1065–1070PubMedPubMedCentralCrossRef Dinger K, Koningsbruggen-Rietschel S, v., Dötsch J, Alejandre Alcazar MA, (2020) Identification of critical windows of metabolic programming of metabolism and lung function in male offspring of obese dams. Clin Transl Sci 13:1065–1070PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Hamrick SEG, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125:1020–1030PubMedCrossRef Hamrick SEG, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125:1020–1030PubMedCrossRef
72.
73.
Zurück zum Zitat Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C, Silva-Neto G (1995) Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr 126:605–610PubMedCrossRef Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C, Silva-Neto G (1995) Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr 126:605–610PubMedCrossRef
74.
Zurück zum Zitat Schena F, Francescato G, Cappelleri A, Picciolli I, Mayer A, Mosca F, Fumagalli M (2015) Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia. J Pediatr 166:1488–1492PubMedCrossRef Schena F, Francescato G, Cappelleri A, Picciolli I, Mayer A, Mosca F, Fumagalli M (2015) Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia. J Pediatr 166:1488–1492PubMedCrossRef
75.
Zurück zum Zitat Gentle SJ, Travers CP, Clark M, Carlo WA, Ambalavanan N (2022) Patent ductus arteriosus and development of bronchopulmonary dysplasia with pulmonary hypertension. Am J Respir Crit Care Med 207(7):921-928 Gentle SJ, Travers CP, Clark M, Carlo WA, Ambalavanan N (2022) Patent ductus arteriosus and development of bronchopulmonary dysplasia with pulmonary hypertension. Am J Respir Crit Care Med 207(7):921-928
76.
Zurück zum Zitat Marshall DD, Kotelchuck M, Young TE, Bose CL, Kruyer L, O’Shea TM, the North Carolina Neonatologists Association (1999) Risk factors for chronic lung disease in the surfactant era: a north carolina population-based study of very low birth weight infants. Pediatrics 104:1345–1350PubMedCrossRef Marshall DD, Kotelchuck M, Young TE, Bose CL, Kruyer L, O’Shea TM, the North Carolina Neonatologists Association (1999) Risk factors for chronic lung disease in the surfactant era: a north carolina population-based study of very low birth weight infants. Pediatrics 104:1345–1350PubMedCrossRef
77.
Zurück zum Zitat Brown ER (1979) Increased risk of bronchopulmonary dysplasia in infants with patent ductus arteriosus. J Pediatr 95:865–866PubMedCrossRef Brown ER (1979) Increased risk of bronchopulmonary dysplasia in infants with patent ductus arteriosus. J Pediatr 95:865–866PubMedCrossRef
78.
Zurück zum Zitat Clyman RI (2018) Patent ductus arteriosus, its treatments, and the risks of pulmonary morbidity. Semin Perinatol 42:235–242PubMedCrossRef Clyman RI (2018) Patent ductus arteriosus, its treatments, and the risks of pulmonary morbidity. Semin Perinatol 42:235–242PubMedCrossRef
79.
Zurück zum Zitat Hennelly M, Greenberg RG, Aleem S (2021) An update on the prevention and management of bronchopulmonary dysplasia. PHMT 12:405–419CrossRef Hennelly M, Greenberg RG, Aleem S (2021) An update on the prevention and management of bronchopulmonary dysplasia. PHMT 12:405–419CrossRef
81.
Zurück zum Zitat Kluckow M, Jeffery M, Gill A, Evans N (2014) A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 99:F99–F104PubMedCrossRef Kluckow M, Jeffery M, Gill A, Evans N (2014) A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 99:F99–F104PubMedCrossRef
85.
Zurück zum Zitat Liebowitz M, Koo J, Wickremasinghe A, Allen IE, Clyman RI (2017) Effects of prophylactic indomethacin on vasopressor-dependent hypotension in extremely preterm infants. J Pediatr 182:21-27.e2PubMedCrossRef Liebowitz M, Koo J, Wickremasinghe A, Allen IE, Clyman RI (2017) Effects of prophylactic indomethacin on vasopressor-dependent hypotension in extremely preterm infants. J Pediatr 182:21-27.e2PubMedCrossRef
86.
Zurück zum Zitat McCurnin D, Seidner S, Chang L-Y et al (2008) Ibuprofen-induced patent ductus arteriosus closure: physiologic, histologic, and biochemical effects on the premature lung. Pediatrics 121:945–956PubMedCrossRef McCurnin D, Seidner S, Chang L-Y et al (2008) Ibuprofen-induced patent ductus arteriosus closure: physiologic, histologic, and biochemical effects on the premature lung. Pediatrics 121:945–956PubMedCrossRef
87.
Zurück zum Zitat Chang LY, McCurnin D, Yoder B, Shaul PW, Clyman RI (2008) Ductus arteriosus ligation and alveolar growth in preterm baboons with a patent ductus arteriosus. Pediatr Res 63:299–302PubMedCrossRef Chang LY, McCurnin D, Yoder B, Shaul PW, Clyman RI (2008) Ductus arteriosus ligation and alveolar growth in preterm baboons with a patent ductus arteriosus. Pediatr Res 63:299–302PubMedCrossRef
88.
Zurück zum Zitat Waleh N, McCurnin DC, Yoder BA, Shaul PW, Clyman RI (2011) Patent ductus arteriosus ligation alters pulmonary gene expression in preterm baboons. Pediatr Res 69:212–216PubMedPubMedCentralCrossRef Waleh N, McCurnin DC, Yoder BA, Shaul PW, Clyman RI (2011) Patent ductus arteriosus ligation alters pulmonary gene expression in preterm baboons. Pediatr Res 69:212–216PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Liebowitz M, Katheria A, Sauberan J et al (2019) Lack of equipoise in the PDA-TOLERATE trial: a comparison of eligible infants enrolled in the trial and those treated outside the trial. J Pediatr 213:222-226.e2PubMedPubMedCentralCrossRef Liebowitz M, Katheria A, Sauberan J et al (2019) Lack of equipoise in the PDA-TOLERATE trial: a comparison of eligible infants enrolled in the trial and those treated outside the trial. J Pediatr 213:222-226.e2PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Clyman RI, Liebowitz M, Kaempf J et al (2019) PDA-TOLERATE trial: an exploratory randomized controlled trial of treatment of moderate-to-large patent ductus arteriosus at 1 week of age. J Pediatr 205:41-48.e6PubMedCrossRef Clyman RI, Liebowitz M, Kaempf J et al (2019) PDA-TOLERATE trial: an exploratory randomized controlled trial of treatment of moderate-to-large patent ductus arteriosus at 1 week of age. J Pediatr 205:41-48.e6PubMedCrossRef
91.
Zurück zum Zitat Benitz WE, Committee on Fetus and Newborn, Watterberg KL et al (2016) Patent ductus arteriosus in preterm infants. Pediatrics 137:e20153730CrossRef Benitz WE, Committee on Fetus and Newborn, Watterberg KL et al (2016) Patent ductus arteriosus in preterm infants. Pediatrics 137:e20153730CrossRef
92.
Zurück zum Zitat Bose CL, Laughon M (2006) Treatment to prevent patency of the ductus arteriosus: beneficial or harmful? J Pediatr 148:713–714PubMedCrossRef Bose CL, Laughon M (2006) Treatment to prevent patency of the ductus arteriosus: beneficial or harmful? J Pediatr 148:713–714PubMedCrossRef
93.
Zurück zum Zitat Lakshminrusimha S, Steinhorn RH (1999) Pulmonary vascular biology during neonatal transition. Clin Perinatol 26:601–619PubMedCrossRef Lakshminrusimha S, Steinhorn RH (1999) Pulmonary vascular biology during neonatal transition. Clin Perinatol 26:601–619PubMedCrossRef
96.
Zurück zum Zitat Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N (2012) Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 129:e682-689PubMedPubMedCentralCrossRef Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N (2012) Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 129:e682-689PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Kim D-H, Kim H-S, Choi CW, Kim E-K, Kim BI, Choi J-H (2012) Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology 101:40–46PubMedCrossRef Kim D-H, Kim H-S, Choi CW, Kim E-K, Kim BI, Choi J-H (2012) Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology 101:40–46PubMedCrossRef
98.
Zurück zum Zitat Cerro MJ, Abman S, Diaz G et al (2011) A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: report from the PVRI Pediatric Taskforce, Panama 2011. Pulm circ 1:286–298PubMedPubMedCentralCrossRef Cerro MJ, Abman S, Diaz G et al (2011) A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: report from the PVRI Pediatric Taskforce, Panama 2011. Pulm circ 1:286–298PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Hansmann G, Sallmon H, Roehr CC, Kourembanas S, Austin ED, Koestenberger M, for the European Pediatric Pulmonary Vascular Disease Network (EPPVDN) (2021) Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr Res 89:446–455PubMedCrossRef Hansmann G, Sallmon H, Roehr CC, Kourembanas S, Austin ED, Koestenberger M, for the European Pediatric Pulmonary Vascular Disease Network (EPPVDN) (2021) Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr Res 89:446–455PubMedCrossRef
100.
Zurück zum Zitat Mourani PM, Sontag MK, Younoszai A, Miller JI, Kinsella JP, Baker CD, Poindexter BB, Ingram DA, Abman SH (2015) Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 191:87–95PubMedPubMedCentralCrossRef Mourani PM, Sontag MK, Younoszai A, Miller JI, Kinsella JP, Baker CD, Poindexter BB, Ingram DA, Abman SH (2015) Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 191:87–95PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Weismann CG, Asnes JD, Bazzy-Asaad A, Tolomeo C, Ehrenkranz RA, Bizzarro MJ (2017) Pulmonary hypertension in preterm infants: results of a prospective screening program. J Perinatol 37:572–577PubMedCrossRef Weismann CG, Asnes JD, Bazzy-Asaad A, Tolomeo C, Ehrenkranz RA, Bizzarro MJ (2017) Pulmonary hypertension in preterm infants: results of a prospective screening program. J Perinatol 37:572–577PubMedCrossRef
102.
Zurück zum Zitat Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, Mullen MP (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120:1260–1269PubMedCrossRef Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, Mullen MP (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120:1260–1269PubMedCrossRef
103.
Zurück zum Zitat Pammi M, Lal CV, Wagner BD et al (2019) Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: a systematic review. J Pediatr 204:126-133.e2PubMedCrossRef Pammi M, Lal CV, Wagner BD et al (2019) Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: a systematic review. J Pediatr 204:126-133.e2PubMedCrossRef
104.
Zurück zum Zitat Wagner BD, Sontag MK, Harris JK, Miller JI, Morrow L, Robertson CE, Stephens M, Poindexter BB, Abman SH, Mourani PM (2017) Airway microbial community turnover differs by BPD severity in ventilated preterm infants. PLoS ONE 12:e0170120PubMedPubMedCentralCrossRef Wagner BD, Sontag MK, Harris JK, Miller JI, Morrow L, Robertson CE, Stephens M, Poindexter BB, Abman SH, Mourani PM (2017) Airway microbial community turnover differs by BPD severity in ventilated preterm infants. PLoS ONE 12:e0170120PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Payne MS, Goss KCW, Connett GJ, Kollamparambil T, Legg JP, Thwaites R, Ashton M, Puddy V, Peacock JL, Bruce KD (2010) Molecular microbiological characterization of preterm neonates at risk of bronchopulmonary dysplasia. Pediatr Res 67:412–418PubMedCrossRef Payne MS, Goss KCW, Connett GJ, Kollamparambil T, Legg JP, Thwaites R, Ashton M, Puddy V, Peacock JL, Bruce KD (2010) Molecular microbiological characterization of preterm neonates at risk of bronchopulmonary dysplasia. Pediatr Res 67:412–418PubMedCrossRef
107.
Zurück zum Zitat Lohmann P, Luna RA, Hollister EB, Devaraj S, Mistretta T-A, Welty SE, Versalovic J (2014) The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatr Res 76:294–301PubMedCrossRef Lohmann P, Luna RA, Hollister EB, Devaraj S, Mistretta T-A, Welty SE, Versalovic J (2014) The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia. Pediatr Res 76:294–301PubMedCrossRef
108.
Zurück zum Zitat Cantey JB, Huffman LW, Subramanian A, Marshall AS, Ballard AR, Lefevre C, Sagar M, Pruszynski JE, Mallett LH (2017) Antibiotic exposure and risk for death or bronchopulmonary dysplasia in very low birth weight infants. J Pediatr 181:289-293.e1PubMedCrossRef Cantey JB, Huffman LW, Subramanian A, Marshall AS, Ballard AR, Lefevre C, Sagar M, Pruszynski JE, Mallett LH (2017) Antibiotic exposure and risk for death or bronchopulmonary dysplasia in very low birth weight infants. J Pediatr 181:289-293.e1PubMedCrossRef
109.
Zurück zum Zitat Novitsky A, Tuttle D, Locke R, Saiman L, Mackley A, Paul D (2014) Prolonged early antibiotic use and bronchopulmonary dysplasia in very low birth weight infants. Amer J Perinatol 32:043–048CrossRef Novitsky A, Tuttle D, Locke R, Saiman L, Mackley A, Paul D (2014) Prolonged early antibiotic use and bronchopulmonary dysplasia in very low birth weight infants. Amer J Perinatol 32:043–048CrossRef
111.
Zurück zum Zitat Lal CV, Kandasamy J, Dolma K et al (2018) Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 315:L810–L815PubMedPubMedCentralCrossRef Lal CV, Kandasamy J, Dolma K et al (2018) Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 315:L810–L815PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Hofer N, Kothari R, Morris N, Müller W, Resch B (2013) The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am J Obstet Gynecol 209:542.e1-542.e11PubMedCrossRef Hofer N, Kothari R, Morris N, Müller W, Resch B (2013) The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am J Obstet Gynecol 209:542.e1-542.e11PubMedCrossRef
114.
Zurück zum Zitat Zanardo V, Savio V, Giacomin C, Rinaldi A, Marzari F, Chiarelli S (2002) Relationship between neonatal leukemoid reaction and bronchopulmonary dysplasia in low-birth-weight infants: a cross-sectional study. Am J Perinatol 19:379–386PubMedCrossRef Zanardo V, Savio V, Giacomin C, Rinaldi A, Marzari F, Chiarelli S (2002) Relationship between neonatal leukemoid reaction and bronchopulmonary dysplasia in low-birth-weight infants: a cross-sectional study. Am J Perinatol 19:379–386PubMedCrossRef
115.
Zurück zum Zitat Menon R, Taylor RN, Fortunato SJ (2010) Chorioamnionitis – a complex pathophysiologic syndrome. Placenta 31:113–120PubMedCrossRef Menon R, Taylor RN, Fortunato SJ (2010) Chorioamnionitis – a complex pathophysiologic syndrome. Placenta 31:113–120PubMedCrossRef
116.
Zurück zum Zitat Smulian J (1999) Clinical chorioamnionitis and histologic placental inflammation. Obstet Gynecol 94:1000–1005PubMed Smulian J (1999) Clinical chorioamnionitis and histologic placental inflammation. Obstet Gynecol 94:1000–1005PubMed
117.
Zurück zum Zitat Kunzmann S, Collins JJP, Kuypers E, Kramer BW (2013) Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system. Am J Obstet Gynecol 208:429–437PubMedCrossRef Kunzmann S, Collins JJP, Kuypers E, Kramer BW (2013) Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system. Am J Obstet Gynecol 208:429–437PubMedCrossRef
118.
Zurück zum Zitat Galinsky R, Hooper SB, Wallace MJ, Westover AJ, Black MJ, Moss TJM, Polglase GR (2013) Intrauterine inflammation alters cardiopulmonary and cerebral haemodynamics at birth in preterm lambs: Intrauterine inflammation and neonatal haemodynamics. J Physiol 591:2127–2137PubMedPubMedCentralCrossRef Galinsky R, Hooper SB, Wallace MJ, Westover AJ, Black MJ, Moss TJM, Polglase GR (2013) Intrauterine inflammation alters cardiopulmonary and cerebral haemodynamics at birth in preterm lambs: Intrauterine inflammation and neonatal haemodynamics. J Physiol 591:2127–2137PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Moss TJM, Newnham JP, Willett KE, Kramer BW, Jobe AH, Ikegami M (2002) Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am J Respir Crit Care Med 165:805–811PubMedCrossRef Moss TJM, Newnham JP, Willett KE, Kramer BW, Jobe AH, Ikegami M (2002) Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am J Respir Crit Care Med 165:805–811PubMedCrossRef
120.
Zurück zum Zitat Shrestha AK, Bettini ML, Menon RT, Gopal VYN, Huang S, Edwards DP, Pammi M, Barrios R, Shivanna B (2019) Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice. Am J Physiol Lung Cell Mol Physiol 316:L229–L244PubMedCrossRef Shrestha AK, Bettini ML, Menon RT, Gopal VYN, Huang S, Edwards DP, Pammi M, Barrios R, Shivanna B (2019) Consequences of early postnatal lipopolysaccharide exposure on developing lungs in mice. Am J Physiol Lung Cell Mol Physiol 316:L229–L244PubMedCrossRef
121.
Zurück zum Zitat Pan J, Zhan C, Yuan T, Wang W, Shen Y, Sun Y, Wu T, Gu W, Chen L, Yu H (2018) Effects and molecular mechanisms of intrauterine infection/inflammation on lung development. Respir Res 19:93PubMedPubMedCentralCrossRef Pan J, Zhan C, Yuan T, Wang W, Shen Y, Sun Y, Wu T, Gu W, Chen L, Yu H (2018) Effects and molecular mechanisms of intrauterine infection/inflammation on lung development. Respir Res 19:93PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F, Kim BI (1997) Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol 177:825–830PubMedCrossRef Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F, Kim BI (1997) Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol 177:825–830PubMedCrossRef
123.
Zurück zum Zitat Plakkal N, Soraisham AS, Trevenen C, Freiheit EA, Sauve R (2013) Histological chorioamnionitis and bronchopulmonary dysplasia: a retrospective cohort study. J Perinatol 33:441–445PubMedCrossRef Plakkal N, Soraisham AS, Trevenen C, Freiheit EA, Sauve R (2013) Histological chorioamnionitis and bronchopulmonary dysplasia: a retrospective cohort study. J Perinatol 33:441–445PubMedCrossRef
124.
Zurück zum Zitat Van Marter LJ, Dammann O, Allred EN, Leviton A, Pagano M, Moore M, Martin C (2002) Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 140:171–176PubMedCrossRef Van Marter LJ, Dammann O, Allred EN, Leviton A, Pagano M, Moore M, Martin C (2002) Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 140:171–176PubMedCrossRef
125.
Zurück zum Zitat Hartling L, Liang Y, Lacaze-Masmonteil T (2012) Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 97:F8–F17PubMedCrossRef Hartling L, Liang Y, Lacaze-Masmonteil T (2012) Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 97:F8–F17PubMedCrossRef
126.
Zurück zum Zitat Kalikkot Thekkeveedu R, Guaman MC, Shivanna B (2017) Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir Med 132:170–177PubMedCrossRef Kalikkot Thekkeveedu R, Guaman MC, Shivanna B (2017) Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir Med 132:170–177PubMedCrossRef
127.
Zurück zum Zitat Thomas W, Speer CP (2014) Chorioamnionitis is essential in the evolution of bronchopulmonary dysplasia – The case in favour. Paediatr Respir Rev 15:49–52PubMed Thomas W, Speer CP (2014) Chorioamnionitis is essential in the evolution of bronchopulmonary dysplasia – The case in favour. Paediatr Respir Rev 15:49–52PubMed
128.
Zurück zum Zitat Lacaze-Masmonteil T (2014) That chorioamnionitis is a risk factor for bronchopulmonary dysplasia – the case against. Paediatr Respir Rev 15:53–55PubMed Lacaze-Masmonteil T (2014) That chorioamnionitis is a risk factor for bronchopulmonary dysplasia – the case against. Paediatr Respir Rev 15:53–55PubMed
130.
Zurück zum Zitat Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, Cho S-C, Carlton DP, Bland RD (1999) Chronic lung injury in preterm lambs: disordered respiratory tract development. Am J Respir Crit Care Med 159:945–958PubMedCrossRef Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, Cho S-C, Carlton DP, Bland RD (1999) Chronic lung injury in preterm lambs: disordered respiratory tract development. Am J Respir Crit Care Med 159:945–958PubMedCrossRef
131.
Zurück zum Zitat Speer CP (2009) Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 95:353–361PubMedCrossRef Speer CP (2009) Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 95:353–361PubMedCrossRef
132.
Zurück zum Zitat Papagianis PC, Pillow JJ, Moss TJ (2019) Bronchopulmonary dysplasia: Pathophysiology and potential anti-inflammatory therapies. Paediatr Respir Rev 30:34–41PubMed Papagianis PC, Pillow JJ, Moss TJ (2019) Bronchopulmonary dysplasia: Pathophysiology and potential anti-inflammatory therapies. Paediatr Respir Rev 30:34–41PubMed
133.
Zurück zum Zitat Londhe VA, Maisonet TM, Lopez B, Jeng J-M, Xiao J, Li C, Minoo P (2011) Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis. Respir Res 12:134PubMedPubMedCentralCrossRef Londhe VA, Maisonet TM, Lopez B, Jeng J-M, Xiao J, Li C, Minoo P (2011) Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis. Respir Res 12:134PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Köksal N, Kayık B, Çetinkaya M, Özkan H, Budak F, Kılıç Ş, Canıtez Y, Oral B (2012) Value of serum and bronchoalveolar fluid lavage pro- and anti-inflammatory cytokine levels for predicting bronchopulmonary dysplasia in premature infants. Eur Cytokine Netw 23:29–35PubMedCrossRef Köksal N, Kayık B, Çetinkaya M, Özkan H, Budak F, Kılıç Ş, Canıtez Y, Oral B (2012) Value of serum and bronchoalveolar fluid lavage pro- and anti-inflammatory cytokine levels for predicting bronchopulmonary dysplasia in premature infants. Eur Cytokine Netw 23:29–35PubMedCrossRef
135.
Zurück zum Zitat Kroon AA, Wang J, Huang Z, Cao L, Kuliszewski M, Post M (2010) Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume. Pediatr Res 68:63–69PubMedCrossRef Kroon AA, Wang J, Huang Z, Cao L, Kuliszewski M, Post M (2010) Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume. Pediatr Res 68:63–69PubMedCrossRef
136.
Zurück zum Zitat Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA (1999) Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med 160:1333–1346PubMedCrossRef Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA (1999) Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med 160:1333–1346PubMedCrossRef
137.
Zurück zum Zitat Hillman NH, Polglase GR, Jane Pillow J, Saito M, Kallapur SG, Jobe AH (2011) Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 300:L232–L241PubMedCrossRef Hillman NH, Polglase GR, Jane Pillow J, Saito M, Kallapur SG, Jobe AH (2011) Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 300:L232–L241PubMedCrossRef
138.
Zurück zum Zitat Kalymbetova TV, Selvakumar B, Rodríguez-Castillo JA et al (2018) Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia: Macrophages mediate aberrant lung alveolarization. J Pathol 245:153–159PubMedCrossRef Kalymbetova TV, Selvakumar B, Rodríguez-Castillo JA et al (2018) Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia: Macrophages mediate aberrant lung alveolarization. J Pathol 245:153–159PubMedCrossRef
139.
Zurück zum Zitat Bonikos DS, Bensch KG, Ludwin SK, Northway WH (1975) Oxygen toxicity in the newborn. The effect of prolonged 100 per cent O2 exposure on the lungs of newborn mice. Lab Invest 32:619–635PubMed Bonikos DS, Bensch KG, Ludwin SK, Northway WH (1975) Oxygen toxicity in the newborn. The effect of prolonged 100 per cent O2 exposure on the lungs of newborn mice. Lab Invest 32:619–635PubMed
140.
Zurück zum Zitat Bhandari V, Elias JA (2006) Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radical Biol Med 41:4–18CrossRef Bhandari V, Elias JA (2006) Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radical Biol Med 41:4–18CrossRef
141.
Zurück zum Zitat Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D, Ramgopal M, Mirpuri J, McCurnin DC, Savani RC (2015) The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun 6:8977PubMedCrossRef Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D, Ramgopal M, Mirpuri J, McCurnin DC, Savani RC (2015) The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun 6:8977PubMedCrossRef
142.
Zurück zum Zitat Bry K, Whitsett JA, Lappalainen U (2007) IL-1β disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36:32–42PubMedCrossRef Bry K, Whitsett JA, Lappalainen U (2007) IL-1β disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36:32–42PubMedCrossRef
143.
Zurück zum Zitat Nadeau-Vallée M, Chin P-Y, Belarbi L et al (2017) Antenatal suppression of IL-1 protects against inflammation-induced fetal injury and improves neonatal and developmental outcomes in mice. JI. 198:2047–2062 Nadeau-Vallée M, Chin P-Y, Belarbi L et al (2017) Antenatal suppression of IL-1 protects against inflammation-induced fetal injury and improves neonatal and developmental outcomes in mice. JI. 198:2047–2062
144.
Zurück zum Zitat Johnston CJ, Wright TW, Reed CK, Finkelstein JN (1997) Comparison of adult and newborn pulmonary cytokine mrna expression after hyperoxia. Exp Lung Res 23:537–552PubMedCrossRef Johnston CJ, Wright TW, Reed CK, Finkelstein JN (1997) Comparison of adult and newborn pulmonary cytokine mrna expression after hyperoxia. Exp Lung Res 23:537–552PubMedCrossRef
145.
Zurück zum Zitat Wagenaar GTM, ter Horst SAJ, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, de Heer E, Hiemstra PS, Poorthuis BJHM, Walther FJ (2004) Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radical Biol Med 36:782–801CrossRef Wagenaar GTM, ter Horst SAJ, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, de Heer E, Hiemstra PS, Poorthuis BJHM, Walther FJ (2004) Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radical Biol Med 36:782–801CrossRef
146.
Zurück zum Zitat Wu S, Capasso L, Lessa A, Peng J, Kasisomayajula K, Rodriguez M, Suguihara C, Bancalari E (2008) High tidal volume ventilation activates Smad2 and upregulates expression of connective tissue growth factor in newborn rat lung. Pediatr Res 63:245–250PubMedCrossRef Wu S, Capasso L, Lessa A, Peng J, Kasisomayajula K, Rodriguez M, Suguihara C, Bancalari E (2008) High tidal volume ventilation activates Smad2 and upregulates expression of connective tissue growth factor in newborn rat lung. Pediatr Res 63:245–250PubMedCrossRef
147.
Zurück zum Zitat Mižíková I, Alejandre Alcazar MA, Thébaud B (2021) Pathogenesis of bronchopulmonary dysplasia. In: Sinha IP, Bhatt JM, Cleator A, Wallace H (eds) Respiratory diseases of the newborn infant. European Respiratory Society, Sheffield, United Kingdom, pp 50–67CrossRef Mižíková I, Alejandre Alcazar MA, Thébaud B (2021) Pathogenesis of bronchopulmonary dysplasia. In: Sinha IP, Bhatt JM, Cleator A, Wallace H (eds) Respiratory diseases of the newborn infant. European Respiratory Society, Sheffield, United Kingdom, pp 50–67CrossRef
148.
Zurück zum Zitat Choi CW, Kim BI, Hong J-S, Kim E-K, Kim H-S, Choi J-H (2009) Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 65:323–327PubMedCrossRef Choi CW, Kim BI, Hong J-S, Kim E-K, Kim H-S, Choi J-H (2009) Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 65:323–327PubMedCrossRef
149.
Zurück zum Zitat Nold MF, Mangan NE, Rudloff I et al (2013) Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci USA 110:14384–14389PubMedPubMedCentralCrossRef Nold MF, Mangan NE, Rudloff I et al (2013) Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci USA 110:14384–14389PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Tang J-R, Seedorf GJ, Muehlethaler V, Walker DL, Markham NE, Balasubramaniam V, Abman SH (2010) Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol 299:L735–L748PubMedPubMedCentralCrossRef Tang J-R, Seedorf GJ, Muehlethaler V, Walker DL, Markham NE, Balasubramaniam V, Abman SH (2010) Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol 299:L735–L748PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Hurskainen M, Mižíková I, Cook DP et al (2021) Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat Commun 12:1565PubMedPubMedCentralCrossRef Hurskainen M, Mižíková I, Cook DP et al (2021) Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat Commun 12:1565PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Shrestha AK, Menon RT, El-Saie A, Barrios R, Reynolds C, Shivanna B (2020) Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am J Physiol Lung Cell Mol Physiol 319:L981–L996PubMedPubMedCentralCrossRef Shrestha AK, Menon RT, El-Saie A, Barrios R, Reynolds C, Shivanna B (2020) Interactive and independent effects of early lipopolysaccharide and hyperoxia exposure on developing murine lungs. Am J Physiol Lung Cell Mol Physiol 319:L981–L996PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat El Saie A, Fu C, Grimm SL et al (2022) Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia. Pediatr Res 92:1580–1589PubMedCrossRef El Saie A, Fu C, Grimm SL et al (2022) Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia. Pediatr Res 92:1580–1589PubMedCrossRef
154.
Zurück zum Zitat Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, Alvira CM, Rabinovitch M, Shinwell ES, Dixit A (2008) Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice.: Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 294:L3–L14PubMedCrossRef Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, Alvira CM, Rabinovitch M, Shinwell ES, Dixit A (2008) Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice.: Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 294:L3–L14PubMedCrossRef
155.
Zurück zum Zitat Nardiello C, Mižíková I, Silva DM, Ruiz-Camp J, Mayer K, Vadász I, Herold S, Seeger W, Morty RE (2017) Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia? Dis Models Mech 10(2):185-196 Nardiello C, Mižíková I, Silva DM, Ruiz-Camp J, Mayer K, Vadász I, Herold S, Seeger W, Morty RE (2017) Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia? Dis Models Mech 10(2):185-196
156.
Zurück zum Zitat Kroon AA, Wang J, Kavanagh B, Huang Z, Kuliszewski M, van Goudoever JB, Post M (2011) Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung. PLoS ONE 6:e16910PubMedPubMedCentralCrossRef Kroon AA, Wang J, Kavanagh B, Huang Z, Kuliszewski M, van Goudoever JB, Post M (2011) Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung. PLoS ONE 6:e16910PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat O’Reilly M, Möbius MA, Vadivel A, Ionescu L, Fung M, Eaton F, Greer JJ, Thébaud B (2020) Late rescue therapy with cord-derived mesenchymal stromal cells for established lung injury in experimental bronchopulmonary dysplasia. Stem Cells Dev 29:364–371PubMedCrossRef O’Reilly M, Möbius MA, Vadivel A, Ionescu L, Fung M, Eaton F, Greer JJ, Thébaud B (2020) Late rescue therapy with cord-derived mesenchymal stromal cells for established lung injury in experimental bronchopulmonary dysplasia. Stem Cells Dev 29:364–371PubMedCrossRef
158.
Zurück zum Zitat May M, Strobel P, Preisshofen T, Seidenspinner S, Marx A, Speer CP (2004) Apoptosis and proliferation in lungs of ventilated and oxygen-treated preterm infants. Eur Respir J 23:113–121PubMedCrossRef May M, Strobel P, Preisshofen T, Seidenspinner S, Marx A, Speer CP (2004) Apoptosis and proliferation in lungs of ventilated and oxygen-treated preterm infants. Eur Respir J 23:113–121PubMedCrossRef
159.
Zurück zum Zitat Hargitai B, Szabó V, Hajdú J, Harmath Á, Pataki M, Farid P, Papp Z, Szende B (2001) Apoptosis in various organs of preterm infants: histopathologic study of lung, kidney, liver, and brain of ventilated infants. Pediatr Res 50:110–114PubMedCrossRef Hargitai B, Szabó V, Hajdú J, Harmath Á, Pataki M, Farid P, Papp Z, Szende B (2001) Apoptosis in various organs of preterm infants: histopathologic study of lung, kidney, liver, and brain of ventilated infants. Pediatr Res 50:110–114PubMedCrossRef
160.
Zurück zum Zitat Chambers HM, van Velzen D (1989) Ventilator-related pathology in the extremely immature lung. Pathology 21:79–83PubMedCrossRef Chambers HM, van Velzen D (1989) Ventilator-related pathology in the extremely immature lung. Pathology 21:79–83PubMedCrossRef
161.
Zurück zum Zitat Hillman NH, Kallapur SG, Pillow JJ, Moss TJM, Polglase GR, Nitsos I, Jobe AH (2010) Airway injury from initiating ventilation in preterm sheep. Pediatr Res 67:60–65PubMedPubMedCentralCrossRef Hillman NH, Kallapur SG, Pillow JJ, Moss TJM, Polglase GR, Nitsos I, Jobe AH (2010) Airway injury from initiating ventilation in preterm sheep. Pediatr Res 67:60–65PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Polglase GR, Hillman NH, Pillow JJ, Cheah F-C, Nitsos I, Moss TJM, Kramer BW, Ikegami M, Kallapur SG, Jobe AH (2008) Positive end-expiratory pressure and tidal volume during initial ventilation of preterm lambs. Pediatr Res 64:517–522PubMedPubMedCentralCrossRef Polglase GR, Hillman NH, Pillow JJ, Cheah F-C, Nitsos I, Moss TJM, Kramer BW, Ikegami M, Kallapur SG, Jobe AH (2008) Positive end-expiratory pressure and tidal volume during initial ventilation of preterm lambs. Pediatr Res 64:517–522PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Coalson JJ, Kuehl TJ, Escobedo MB, Leonard Hilliard J, Smith F, Meredith K, Null DM, Walsh W, Johnson D, Robotham JL (1982) A baboon model of bronchopulmonary dysplasia. Exp Mol Pathol 37:335–350PubMedCrossRef Coalson JJ, Kuehl TJ, Escobedo MB, Leonard Hilliard J, Smith F, Meredith K, Null DM, Walsh W, Johnson D, Robotham JL (1982) A baboon model of bronchopulmonary dysplasia. Exp Mol Pathol 37:335–350PubMedCrossRef
164.
Zurück zum Zitat Maniscalco WM, Watkins RH, O’Reilly MA, Shea CP (2002) Increased epithelial cell proliferation in very premature baboons with chronic lung disease. Am J Physiol Lung Cell Mol Physiol 283:L991–L1001PubMedCrossRef Maniscalco WM, Watkins RH, O’Reilly MA, Shea CP (2002) Increased epithelial cell proliferation in very premature baboons with chronic lung disease. Am J Physiol Lung Cell Mol Physiol 283:L991–L1001PubMedCrossRef
165.
Zurück zum Zitat Yee M, Buczynski BW, O’Reilly MA (2014) Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. Am J Respir Cell Mol Biol 50:757–766PubMedPubMedCentralCrossRef Yee M, Buczynski BW, O’Reilly MA (2014) Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. Am J Respir Cell Mol Biol 50:757–766PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Yee M, Domm W, Gelein R, de Bentley KL, M, Kottmann RM, Sime PJ, Lawrence BP, O’Reilly MA, (2017) Alternative progenitor lineages regenerate the adult lung depleted of alveolar epithelial type 2 cells. Am J Respir Cell Mol Biol 56:453–464PubMedPubMedCentralCrossRef Yee M, Domm W, Gelein R, de Bentley KL, M, Kottmann RM, Sime PJ, Lawrence BP, O’Reilly MA, (2017) Alternative progenitor lineages regenerate the adult lung depleted of alveolar epithelial type 2 cells. Am J Respir Cell Mol Biol 56:453–464PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Yee M, Vitiello PF, Roper JM, Staversky RJ, Wright TW, McGrath-Morrow SA, Maniscalco WM, Finkelstein JN, O’Reilly MA (2006) Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am J Physiol Lung Cell Mol Physiol 291:L1101–L1111PubMedCrossRef Yee M, Vitiello PF, Roper JM, Staversky RJ, Wright TW, McGrath-Morrow SA, Maniscalco WM, Finkelstein JN, O’Reilly MA (2006) Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am J Physiol Lung Cell Mol Physiol 291:L1101–L1111PubMedCrossRef
168.
Zurück zum Zitat Xu S, Xue X, You K, Fu J (2016) Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res 17:50PubMedPubMedCentralCrossRef Xu S, Xue X, You K, Fu J (2016) Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res 17:50PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Davidovich N, DiPaolo BC, Lawrence GG, Chhour P, Yehya N, Margulies SS (2013) Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability. Am J Respir Cell Mol Biol 49:156–164PubMedPubMedCentralCrossRef Davidovich N, DiPaolo BC, Lawrence GG, Chhour P, Yehya N, Margulies SS (2013) Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability. Am J Respir Cell Mol Biol 49:156–164PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat De Paepe ME, Mao Q, Powell J, Rubin SE, DeKoninck P, Appel N, Dixon M, Gundogan F (2006) Growth of pulmonary microvasculature in ventilated preterm infants. Am J Respir Crit Care Med 173:204–211PubMedCrossRef De Paepe ME, Mao Q, Powell J, Rubin SE, DeKoninck P, Appel N, Dixon M, Gundogan F (2006) Growth of pulmonary microvasculature in ventilated preterm infants. Am J Respir Crit Care Med 173:204–211PubMedCrossRef
171.
Zurück zum Zitat Tomashefski JF, Oppermann HC, Vawter GF, Reid LM (1984) Bronchopulmonary dysplasia: a morphometry study with emphasis on the pulmonary vasculature. Pediatr Pathol 2:469–487PubMedCrossRef Tomashefski JF, Oppermann HC, Vawter GF, Reid LM (1984) Bronchopulmonary dysplasia: a morphometry study with emphasis on the pulmonary vasculature. Pediatr Pathol 2:469–487PubMedCrossRef
172.
Zurück zum Zitat Thébaud B, Ladha F, Michelakis ED et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486PubMedCrossRef Thébaud B, Ladha F, Michelakis ED et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486PubMedCrossRef
173.
Zurück zum Zitat Mokres LM, Parai K, Hilgendorff A, Ertsey R, Alvira CM, Rabinovitch M, Bland RD (2010) Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 298:L23–L35PubMedCrossRef Mokres LM, Parai K, Hilgendorff A, Ertsey R, Alvira CM, Rabinovitch M, Bland RD (2010) Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 298:L23–L35PubMedCrossRef
174.
Zurück zum Zitat Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L1073–L1084PubMedCrossRef Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L1073–L1084PubMedCrossRef
175.
Zurück zum Zitat Maniscalco WM, Watkins RH, D’Angio CT, Ryan RM (1997) Hyperoxic injury decreases alveolar epithelial cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am J Respir Cell Mol Biol 16:557–567PubMedCrossRef Maniscalco WM, Watkins RH, D’Angio CT, Ryan RM (1997) Hyperoxic injury decreases alveolar epithelial cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am J Respir Cell Mol Biol 16:557–567PubMedCrossRef
176.
Zurück zum Zitat Maniscalco WM, Watkins RH, Pryhuber GS, Bhatt A, Shea C, Huyck H (2002) Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol 282:L811–L823PubMedCrossRef Maniscalco WM, Watkins RH, Pryhuber GS, Bhatt A, Shea C, Huyck H (2002) Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol 282:L811–L823PubMedCrossRef
177.
Zurück zum Zitat Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 164:1971–1980PubMedCrossRef Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 164:1971–1980PubMedCrossRef
178.
Zurück zum Zitat Lassus P, Ristimäki A, Ylikorkala O, Viinikka L, Andersson S (1999) Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med 159:1429–1433PubMedCrossRef Lassus P, Ristimäki A, Ylikorkala O, Viinikka L, Andersson S (1999) Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med 159:1429–1433PubMedCrossRef
179.
Zurück zum Zitat Lassus P, Turanlahti M, Heikkilä P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981–1987PubMedCrossRef Lassus P, Turanlahti M, Heikkilä P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981–1987PubMedCrossRef
180.
Zurück zum Zitat MacRitchie AN, Albertine KH, Sun J et al (2001) Reduced endothelial nitric oxide synthase in lungs of chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 281:L1011–L1020PubMedCrossRef MacRitchie AN, Albertine KH, Sun J et al (2001) Reduced endothelial nitric oxide synthase in lungs of chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 281:L1011–L1020PubMedCrossRef
181.
Zurück zum Zitat De Paepe ME, Patel C, Tsai A, Gundavarapu S, Mao Q (2008) Endoglin (CD105) up-regulation in pulmonary microvasculature of ventilated preterm infants. Am J Respir Crit Care Med 178:180–187PubMedPubMedCentralCrossRef De Paepe ME, Patel C, Tsai A, Gundavarapu S, Mao Q (2008) Endoglin (CD105) up-regulation in pulmonary microvasculature of ventilated preterm infants. Am J Respir Crit Care Med 178:180–187PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Bhandari V, Choo-Wing R, Lee CG et al (2006) Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death. Nat Med 12:1286–1293PubMedPubMedCentralCrossRef Bhandari V, Choo-Wing R, Lee CG et al (2006) Hyperoxia causes angiopoietin 2–mediated acute lung injury and necrotic cell death. Nat Med 12:1286–1293PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Ren X, Ustiyan V, Guo M, Wang G, Bolte C, Zhang Y, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV (2019) Postnatal alveologenesis depends on FOXF1 signaling in c-KIT + endothelial progenitor cells. Am J Respir Crit Care Med 200:1164–1176PubMedPubMedCentralCrossRef Ren X, Ustiyan V, Guo M, Wang G, Bolte C, Zhang Y, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV (2019) Postnatal alveologenesis depends on FOXF1 signaling in c-KIT + endothelial progenitor cells. Am J Respir Crit Care Med 200:1164–1176PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Ahlfeld SK, Conway SJ (2012) Aberrant signaling pathways of the lung mesenchyme and their contributions to the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res A 94:3–15CrossRef Ahlfeld SK, Conway SJ (2012) Aberrant signaling pathways of the lung mesenchyme and their contributions to the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res A 94:3–15CrossRef
185.
Zurück zum Zitat Husain AN, Siddiqui NH, Stocker JT (1998) Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 29:710–717PubMedCrossRef Husain AN, Siddiqui NH, Stocker JT (1998) Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 29:710–717PubMedCrossRef
186.
Zurück zum Zitat Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, Bland RD (1997) Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol Lung Cell Mol Physiol 272:L452–L460CrossRef Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, Bland RD (1997) Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol Lung Cell Mol Physiol 272:L452–L460CrossRef
187.
Zurück zum Zitat Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE (2015) Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 308:L1145–L1158PubMedCrossRef Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE (2015) Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 308:L1145–L1158PubMedCrossRef
188.
Zurück zum Zitat Mižíková I, Pfeffer T, Nardiello C et al (2018) Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 285:3056–3076PubMedCrossRef Mižíková I, Pfeffer T, Nardiello C et al (2018) Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 285:3056–3076PubMedCrossRef
189.
Zurück zum Zitat Hilgendorff A, Parai K, Ertsey R et al (2012) Neonatal mice genetically modified to express the elastase inhibitor elafin are protected against the adverse effects of mechanical ventilation on lung growth. Am J Physiol Lung Cell Mol Physiol 303:L215–L227PubMedPubMedCentralCrossRef Hilgendorff A, Parai K, Ertsey R et al (2012) Neonatal mice genetically modified to express the elastase inhibitor elafin are protected against the adverse effects of mechanical ventilation on lung growth. Am J Physiol Lung Cell Mol Physiol 303:L215–L227PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS (2007) FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol Lung Cell Mol Physiol 292:L550–L558PubMedCrossRef Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS (2007) FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol Lung Cell Mol Physiol 292:L550–L558PubMedCrossRef
191.
Zurück zum Zitat Ambalavanan N, Novak ZE (2003) Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates. Pediatr Res 53:240–244PubMedCrossRef Ambalavanan N, Novak ZE (2003) Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates. Pediatr Res 53:240–244PubMedCrossRef
192.
Zurück zum Zitat Jankov RP, Luo X, Campbell A, Belcastro R, Cabacungan J, Johnstone L, Frndova H, Lye SJ, Tanswell AK (2003) Fibroblast growth factor receptor-1 and neonatal compensatory lung growth after exposure to 95% oxygen. Am J Respir Crit Care Med 167:1554–1561PubMedCrossRef Jankov RP, Luo X, Campbell A, Belcastro R, Cabacungan J, Johnstone L, Frndova H, Lye SJ, Tanswell AK (2003) Fibroblast growth factor receptor-1 and neonatal compensatory lung growth after exposure to 95% oxygen. Am J Respir Crit Care Med 167:1554–1561PubMedCrossRef
193.
Zurück zum Zitat Gouveia L, Betsholtz C, Andrae J (2018) PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development. 145:dev161976PubMedCrossRef Gouveia L, Betsholtz C, Andrae J (2018) PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development. 145:dev161976PubMedCrossRef
194.
Zurück zum Zitat Li C, Lee MK, Gao F, et al (2019) The secondary crest myofibroblast PDGFRα controls elastogenesis pathway via a secondary tier of signaling networks during alveologenesis. Development 146(15):dev176354 Li C, Lee MK, Gao F, et al (2019) The secondary crest myofibroblast PDGFRα controls elastogenesis pathway via a secondary tier of signaling networks during alveologenesis. Development 146(15):dev176354
195.
Zurück zum Zitat Lindahl P, Karlsson L, Hellström M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953PubMedCrossRef Lindahl P, Karlsson L, Hellström M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953PubMedCrossRef
197.
Zurück zum Zitat Fulton CT, Cui TX, Goldsmith AM, Bermick J, Popova AP (2018) Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 8:17070PubMedPubMedCentralCrossRef Fulton CT, Cui TX, Goldsmith AM, Bermick J, Popova AP (2018) Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 8:17070PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Alejandre-Alcázar MA, Michiels-Corsten M, Vicencio AG et al (2008) TGF-β signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 237:259–269PubMedCrossRef Alejandre-Alcázar MA, Michiels-Corsten M, Vicencio AG et al (2008) TGF-β signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 237:259–269PubMedCrossRef
199.
Zurück zum Zitat Chen F, Desai TJ, Qian J, Niederreither K, Lü J, Cardoso WV (2007) Inhibition of Tgfβ signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 134:2969–2979PubMedCrossRef Chen F, Desai TJ, Qian J, Niederreither K, Lü J, Cardoso WV (2007) Inhibition of Tgfβ signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 134:2969–2979PubMedCrossRef
200.
Zurück zum Zitat Kotecha S, Wangoo A, Silverman M, Shaw RJ (1996) Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 128:464–469PubMedCrossRef Kotecha S, Wangoo A, Silverman M, Shaw RJ (1996) Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 128:464–469PubMedCrossRef
201.
Zurück zum Zitat Alejandre-Alcázar MA, Kwapiszewska G, Reiss I et al (2007) Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L537–L549PubMedCrossRef Alejandre-Alcázar MA, Kwapiszewska G, Reiss I et al (2007) Hyperoxia modulates TGF-β/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L537–L549PubMedCrossRef
202.
Zurück zum Zitat Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Roberts JD (2007) TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 293:L151–L161PubMedCrossRef Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Roberts JD (2007) TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 293:L151–L161PubMedCrossRef
203.
Zurück zum Zitat Bruce MC, Schuyler M, Martin RJ, Starcher BC, Tomashefski JF, Wedig KE (1992) Risk factors for the degradation of lung elastic fibers in the ventilated neonate: implications for impaired lung development in bronchopulmonary dysplasia. Am Rev Respir Dis 146:204–212PubMedCrossRef Bruce MC, Schuyler M, Martin RJ, Starcher BC, Tomashefski JF, Wedig KE (1992) Risk factors for the degradation of lung elastic fibers in the ventilated neonate: implications for impaired lung development in bronchopulmonary dysplasia. Am Rev Respir Dis 146:204–212PubMedCrossRef
204.
Zurück zum Zitat Thibeault DW, Mabry SM, Ekekezie II, Truog WE (2000) Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics 106:1452–1459PubMedCrossRef Thibeault DW, Mabry SM, Ekekezie II, Truog WE (2000) Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics 106:1452–1459PubMedCrossRef
205.
Zurück zum Zitat Kumarasamy A, Schmitt I, Nave AH et al (2009) Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs. Am J Respir Crit Care Med 180:1239–1252PubMedPubMedCentralCrossRef Kumarasamy A, Schmitt I, Nave AH et al (2009) Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs. Am J Respir Crit Care Med 180:1239–1252PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Bruce MC, Honaker C, Karathanasis P (1996) Postnatal age at onset of hyperoxic exposure influences developmentally regulated tropoelastin gene expression in the neonatal rat lung. Am J Respir Cell Mol Biol 14:177–185PubMedCrossRef Bruce MC, Honaker C, Karathanasis P (1996) Postnatal age at onset of hyperoxic exposure influences developmentally regulated tropoelastin gene expression in the neonatal rat lung. Am J Respir Cell Mol Biol 14:177–185PubMedCrossRef
207.
Zurück zum Zitat Bhandari V (2013) The potential of non-invasive ventilation to decrease BPD. Semin Perinatol 37:108–114PubMedCrossRef Bhandari V (2013) The potential of non-invasive ventilation to decrease BPD. Semin Perinatol 37:108–114PubMedCrossRef
208.
Zurück zum Zitat Fischer HS, Schmölzer GM, Cheung P-Y, Bührer C (2018) Sustained inflations and avoiding mechanical ventilation to prevent death or bronchopulmonary dysplasia: a meta-analysis. Eur Respir Rev 27:180083PubMedPubMedCentralCrossRef Fischer HS, Schmölzer GM, Cheung P-Y, Bührer C (2018) Sustained inflations and avoiding mechanical ventilation to prevent death or bronchopulmonary dysplasia: a meta-analysis. Eur Respir Rev 27:180083PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Stevens TP, Blennow M, Myers EH, Soll R (2007) Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003063.pub3 Stevens TP, Blennow M, Myers EH, Soll R (2007) Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. https://​doi.​org/​10.​1002/​14651858.​CD003063.​pub3
210.
Zurück zum Zitat Aldana-Aguirre JC, Pinto M, Featherstone RM, Kumar M (2017) Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 102:F17–F23PubMedCrossRef Aldana-Aguirre JC, Pinto M, Featherstone RM, Kumar M (2017) Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 102:F17–F23PubMedCrossRef
211.
Zurück zum Zitat Isayama T, Chai-Adisaksopha C, McDonald SD (2015) Noninvasive ventilation with vs without early surfactant to prevent chronic lung disease in preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169:731PubMedCrossRef Isayama T, Chai-Adisaksopha C, McDonald SD (2015) Noninvasive ventilation with vs without early surfactant to prevent chronic lung disease in preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169:731PubMedCrossRef
212.
Zurück zum Zitat Rigo V, Lefebvre C, Broux I (2016) Surfactant instillation in spontaneously breathing preterm infants: a systematic review and meta-analysis. Eur J Pediatr 175:1933–1942PubMedCrossRef Rigo V, Lefebvre C, Broux I (2016) Surfactant instillation in spontaneously breathing preterm infants: a systematic review and meta-analysis. Eur J Pediatr 175:1933–1942PubMedCrossRef
213.
Zurück zum Zitat Pierro M, Van Mechelen K, van Westering-Kroon E, Villamor-Martínez E, Villamor E (2022) Endotypes of Prematurity and Phenotypes of Bronchopulmonary Dysplasia: Toward Personalized Neonatology. JPM 12:687PubMedPubMedCentralCrossRef Pierro M, Van Mechelen K, van Westering-Kroon E, Villamor-Martínez E, Villamor E (2022) Endotypes of Prematurity and Phenotypes of Bronchopulmonary Dysplasia: Toward Personalized Neonatology. JPM 12:687PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Logan JW, Lynch SK, Curtiss J, Shepherd EG (2019) Clinical phenotypes and management concepts for severe, established bronchopulmonary dysplasia. Paediatr Respir Rev 31:58–63PubMed Logan JW, Lynch SK, Curtiss J, Shepherd EG (2019) Clinical phenotypes and management concepts for severe, established bronchopulmonary dysplasia. Paediatr Respir Rev 31:58–63PubMed
215.
Zurück zum Zitat Shepherd EG, Clouse BJ, Hasenstab KA, Sitaram S, Malleske DT, Nelin LD, Jadcherla SR (2018) Infant pulmonary function testing and phenotypes in severe bronchopulmonary dysplasia. Pediatrics 141:e20173350PubMedCrossRef Shepherd EG, Clouse BJ, Hasenstab KA, Sitaram S, Malleske DT, Nelin LD, Jadcherla SR (2018) Infant pulmonary function testing and phenotypes in severe bronchopulmonary dysplasia. Pediatrics 141:e20173350PubMedCrossRef
216.
Zurück zum Zitat Collaco JM, McGrath-Morrow SA (2018) Respiratory phenotypes for preterm infants, children, and adults: bronchopulmonary dysplasia and more. Annals ATS 15:530–538CrossRef Collaco JM, McGrath-Morrow SA (2018) Respiratory phenotypes for preterm infants, children, and adults: bronchopulmonary dysplasia and more. Annals ATS 15:530–538CrossRef
217.
Zurück zum Zitat Wu KY, Jensen EA, White AM, Wang Y, Biko DM, Nilan K, Fraga MV, Mercer-Rosa L, Zhang H, Kirpalani H (2020) Characterization of disease phenotype in very preterm infants with severe bronchopulmonary dysplasia. Am J Respir Crit Care Med 201:1398–1406PubMedPubMedCentralCrossRef Wu KY, Jensen EA, White AM, Wang Y, Biko DM, Nilan K, Fraga MV, Mercer-Rosa L, Zhang H, Kirpalani H (2020) Characterization of disease phenotype in very preterm infants with severe bronchopulmonary dysplasia. Am J Respir Crit Care Med 201:1398–1406PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat McGrath-Morrow SA, Collaco JM (2019) Bronchopulmonary dysplasia: what are its links to COPD? Ther Adv Respir Dis 13:175346661989249CrossRef McGrath-Morrow SA, Collaco JM (2019) Bronchopulmonary dysplasia: what are its links to COPD? Ther Adv Respir Dis 13:175346661989249CrossRef
219.
Zurück zum Zitat Baraldi E, Bonetto G, Zacchello F, Filippone M (2005) Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med 171:68–72PubMedCrossRef Baraldi E, Bonetto G, Zacchello F, Filippone M (2005) Low exhaled nitric oxide in school-age children with bronchopulmonary dysplasia and airflow limitation. Am J Respir Crit Care Med 171:68–72PubMedCrossRef
220.
Zurück zum Zitat McElrath TF, Hecht JL, Dammann O et al (2008) Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification. Am J Epidemiol 168:980–989PubMedPubMedCentralCrossRef McElrath TF, Hecht JL, Dammann O et al (2008) Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification. Am J Epidemiol 168:980–989PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Villamor-Martinez E, Álvarez-Fuente M, Ghazi AMT, Degraeuwe P, Zimmermann LJI, Kramer BW, Villamor E (2019) Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression. JAMA Netw Open 2:e1914611PubMedPubMedCentralCrossRef Villamor-Martinez E, Álvarez-Fuente M, Ghazi AMT, Degraeuwe P, Zimmermann LJI, Kramer BW, Villamor E (2019) Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-analysis, and metaregression. JAMA Netw Open 2:e1914611PubMedPubMedCentralCrossRef
222.
Zurück zum Zitat Cohen M, Giladi A, Gorki A-D et al (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:1031-1044.e18PubMedCrossRef Cohen M, Giladi A, Gorki A-D et al (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:1031-1044.e18PubMedCrossRef
223.
Zurück zum Zitat Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM (2020) Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 9:e56890PubMedPubMedCentralCrossRef Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM (2020) Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 9:e56890PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Guo M, Du Y, Gokey JJ et al (2019) Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun 10:37PubMedPubMedCentralCrossRef Guo M, Du Y, Gokey JJ et al (2019) Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun 10:37PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Hagan AS, Zhang B, Ornitz DM (2019) Identification of an FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development 147(2):dev181032 Hagan AS, Zhang B, Ornitz DM (2019) Identification of an FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development 147(2):dev181032
226.
Zurück zum Zitat Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X (2018) Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 7:e36865PubMedPubMedCentralCrossRef Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X (2018) Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 7:e36865PubMedPubMedCentralCrossRef
227.
Zurück zum Zitat Vila Ellis L, Cain MP, Hutchison V, Flodby P, Crandall ED, Borok Z, Zhou B, Ostrin EJ, Wythe JD, Chen J (2020) Epithelial vegfa specifies a distinct endothelial population in the mouse lung. Dev Cell 52:617-630.e6PubMedPubMedCentralCrossRef Vila Ellis L, Cain MP, Hutchison V, Flodby P, Crandall ED, Borok Z, Zhou B, Ostrin EJ, Wythe JD, Chen J (2020) Epithelial vegfa specifies a distinct endothelial population in the mouse lung. Dev Cell 52:617-630.e6PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Danopoulos S, Bhattacharya S, Mariani TJ, Al Alam D (2020) Transcriptional characterisation of human lung cells identifies novel mesenchymal lineage markers. Eur Respir J 55:1900746PubMedPubMedCentralCrossRef Danopoulos S, Bhattacharya S, Mariani TJ, Al Alam D (2020) Transcriptional characterisation of human lung cells identifies novel mesenchymal lineage markers. Eur Respir J 55:1900746PubMedPubMedCentralCrossRef
230.
Zurück zum Zitat Miller AJ, Yu Q, Czerwinski M et al (2020) In vitro and in vivo development of the human airway at single-cell resolution. Dev Cell 53:117-128.e6PubMedPubMedCentralCrossRef Miller AJ, Yu Q, Czerwinski M et al (2020) In vitro and in vivo development of the human airway at single-cell resolution. Dev Cell 53:117-128.e6PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat He P, Lim K, Sun D et al (2022) A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185:4841-4860.e25PubMedCrossRef He P, Lim K, Sun D et al (2022) A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185:4841-4860.e25PubMedCrossRef
232.
Zurück zum Zitat Lu J, Zhu X, Shui JE et al (2021) Rho/SMAD/mTOR triple inhibition enables long-term expansion of human neonatal tracheal aspirate-derived airway basal cell-like cells. Pediatr Res 89:502–509PubMedCrossRef Lu J, Zhu X, Shui JE et al (2021) Rho/SMAD/mTOR triple inhibition enables long-term expansion of human neonatal tracheal aspirate-derived airway basal cell-like cells. Pediatr Res 89:502–509PubMedCrossRef
233.
Zurück zum Zitat Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ (2020) Capillary cell-type specialization in the alveolus. Nature 586:785–789PubMedPubMedCentralCrossRef Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ (2020) Capillary cell-type specialization in the alveolus. Nature 586:785–789PubMedPubMedCentralCrossRef
234.
Zurück zum Zitat Alphonse RS, Vadivel A, Fung M et al (2014) Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation 129:2144–2157PubMedPubMedCentralCrossRef Alphonse RS, Vadivel A, Fung M et al (2014) Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation 129:2144–2157PubMedPubMedCentralCrossRef
235.
Zurück zum Zitat Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. eLife 9:e53072PubMedPubMedCentralCrossRef Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. eLife 9:e53072PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Scaffa A, Yao H, Oulhen N, Wallace J, Peterson AL, Rizal S, Ragavendran A, Wessel G, De Paepe ME, Dennery PA (2021) Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol 48:102091PubMedPubMedCentralCrossRef Scaffa A, Yao H, Oulhen N, Wallace J, Peterson AL, Rizal S, Ragavendran A, Wessel G, De Paepe ME, Dennery PA (2021) Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biol 48:102091PubMedPubMedCentralCrossRef
237.
Zurück zum Zitat Polin RA, Abman SH, Rowitch D, Benitz WE (2021) Fetal and Neonatal Physiology, 6th ed. Elsevier, Inc, Philadelphia. ISBN number: 978-0-323-71284-2 Polin RA, Abman SH, Rowitch D, Benitz WE (2021) Fetal and Neonatal Physiology, 6th ed. Elsevier, Inc, Philadelphia. ISBN number: 978-0-323-71284-2
238.
239.
Zurück zum Zitat Ciechanowicz A (2019) Stem cells in lungs. In: Ratajczak MZ (ed) Stem Cells. Springer International Publishing, Cham, pp 261–274CrossRef Ciechanowicz A (2019) Stem cells in lungs. In: Ratajczak MZ (ed) Stem Cells. Springer International Publishing, Cham, pp 261–274CrossRef
240.
241.
Zurück zum Zitat Möbius MA, Thébaud B (2017) Bronchopulmonary dysplasia: where have all the stem cells gone? Chest 152:1043–1052PubMedCrossRef Möbius MA, Thébaud B (2017) Bronchopulmonary dysplasia: where have all the stem cells gone? Chest 152:1043–1052PubMedCrossRef
242.
244.
Zurück zum Zitat Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRef Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRef
245.
Zurück zum Zitat Watson JK, Rulands S, Wilkinson AC, Wuidart A, Ousset M, Van Keymeulen A, Göttgens B, Blanpain C, Simons BD, Rawlins EL (2015) Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Rep 12:90–101PubMedPubMedCentralCrossRef Watson JK, Rulands S, Wilkinson AC, Wuidart A, Ousset M, Van Keymeulen A, Göttgens B, Blanpain C, Simons BD, Rawlins EL (2015) Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Rep 12:90–101PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Wang G, Lou HH, Salit J et al (2019) Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity. Respir Res 20:196PubMedPubMedCentralCrossRef Wang G, Lou HH, Salit J et al (2019) Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity. Respir Res 20:196PubMedPubMedCentralCrossRef
247.
Zurück zum Zitat Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294PubMedCrossRef Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294PubMedCrossRef
248.
Zurück zum Zitat Morimoto M, Liu Z, Cheng H-T, Winters N, Bader D, Kopan R (2010) Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 123:213–224PubMedPubMedCentralCrossRef Morimoto M, Liu Z, Cheng H-T, Winters N, Bader D, Kopan R (2010) Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 123:213–224PubMedPubMedCentralCrossRef
249.
Zurück zum Zitat Avasthi P, Marshall WF (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83:S30–S42PubMedCrossRef Avasthi P, Marshall WF (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83:S30–S42PubMedCrossRef
250.
Zurück zum Zitat Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BLM (2009) The role of Scgb1a1+ clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4:525–534PubMedPubMedCentralCrossRef Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BLM (2009) The role of Scgb1a1+ clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4:525–534PubMedPubMedCentralCrossRef
251.
Zurück zum Zitat Frank DB, Penkala IJ, Zepp JA et al (2019) Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc Natl Acad Sci USA 116:4362–4371PubMedPubMedCentralCrossRef Frank DB, Penkala IJ, Zepp JA et al (2019) Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc Natl Acad Sci USA 116:4362–4371PubMedPubMedCentralCrossRef
252.
Zurück zum Zitat Mižíková I, Thébaud B (2021) Looking at the developing lung in single-cell resolution. Am J Physiol Lung Cell Mol Physiol 320:L680–L687PubMedCrossRef Mižíková I, Thébaud B (2021) Looking at the developing lung in single-cell resolution. Am J Physiol Lung Cell Mol Physiol 320:L680–L687PubMedCrossRef
253.
Zurück zum Zitat Fujino N, Kubo H, Suzuki T et al (2011) Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest 91:363–378PubMedCrossRef Fujino N, Kubo H, Suzuki T et al (2011) Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest 91:363–378PubMedCrossRef
254.
Zurück zum Zitat Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1973) Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol 70:175–198PubMedPubMedCentral Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1973) Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol 70:175–198PubMedPubMedCentral
255.
Zurück zum Zitat Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:3025–3036PubMedPubMedCentralCrossRef Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:3025–3036PubMedPubMedCentralCrossRef
256.
257.
Zurück zum Zitat Hou A, Fu J, Yang H, Zhu Y, Pan Y, Xu S, Xue X (2015) Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats. Am J Physiol Lung Cell Mol Physiol 308:L861–L872PubMedCrossRef Hou A, Fu J, Yang H, Zhu Y, Pan Y, Xu S, Xue X (2015) Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats. Am J Physiol Lung Cell Mol Physiol 308:L861–L872PubMedCrossRef
258.
Zurück zum Zitat Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, Thickett DR, Pongracz JE (2019) Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res 20:204PubMedPubMedCentralCrossRef Abdelwahab EMM, Rapp J, Feller D, Csongei V, Pal S, Bartis D, Thickett DR, Pongracz JE (2019) Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res 20:204PubMedPubMedCentralCrossRef
259.
Zurück zum Zitat Gonzalez RF, Allen L, Dobbs LG (2009) Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro. Am J Physiol Lung Cell Mol Physiol 297:L1045–L1055PubMedPubMedCentralCrossRef Gonzalez RF, Allen L, Dobbs LG (2009) Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro. Am J Physiol Lung Cell Mol Physiol 297:L1045–L1055PubMedPubMedCentralCrossRef
260.
Zurück zum Zitat Danto SI, Shannon JM, Borok Z, Zabski SM, Crandall ED (1995) Reversible transdifferentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 12:497–502PubMedCrossRef Danto SI, Shannon JM, Borok Z, Zabski SM, Crandall ED (1995) Reversible transdifferentiation of alveolar epithelial cells. Am J Respir Cell Mol Biol 12:497–502PubMedCrossRef
261.
Zurück zum Zitat Jain R, Barkauskas CE, Takeda N et al (2015) Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nat Commun 6:6727PubMedCrossRef Jain R, Barkauskas CE, Takeda N et al (2015) Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nat Commun 6:6727PubMedCrossRef
262.
Zurück zum Zitat Basil MC, Cardenas-Diaz FL, Kathiriya JJ et al (2022) Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604:120–126PubMedPubMedCentralCrossRef Basil MC, Cardenas-Diaz FL, Kathiriya JJ et al (2022) Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604:120–126PubMedPubMedCentralCrossRef
263.
Zurück zum Zitat Thébaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985PubMedPubMedCentralCrossRef Thébaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985PubMedPubMedCentralCrossRef
264.
Zurück zum Zitat Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159PubMedCrossRef Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159PubMedCrossRef
265.
Zurück zum Zitat Galambos C, Ng Y-S, Ali A, Noguchi A, Lovejoy S, D’Amore PA, deMello DE (2002) Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol 27:194–203PubMedCrossRef Galambos C, Ng Y-S, Ali A, Noguchi A, Lovejoy S, D’Amore PA, deMello DE (2002) Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol 27:194–203PubMedCrossRef
266.
Zurück zum Zitat Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607PubMedCrossRef Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607PubMedCrossRef
267.
Zurück zum Zitat Asikainen TM, Waleh NS, Schneider BK, Clyman RI, White CW (2006) Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo. Am J Physiol Lung Cell Mol Physiol 291:L588–L595PubMedCrossRef Asikainen TM, Waleh NS, Schneider BK, Clyman RI, White CW (2006) Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo. Am J Physiol Lung Cell Mol Physiol 291:L588–L595PubMedCrossRef
268.
Zurück zum Zitat Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR, Abman SH (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289:L529–L535PubMedCrossRef Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR, Abman SH (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289:L529–L535PubMedCrossRef
269.
Zurück zum Zitat Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH (2006) Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 291:L1068–L1078PubMedCrossRef Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH (2006) Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 291:L1068–L1078PubMedCrossRef
270.
Zurück zum Zitat Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180:1122–1130PubMedPubMedCentralCrossRef Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180:1122–1130PubMedPubMedCentralCrossRef
271.
Zurück zum Zitat Pierro M, Ionescu L, Montemurro T et al (2013) Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax 68:475–484PubMedCrossRef Pierro M, Ionescu L, Montemurro T et al (2013) Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax 68:475–484PubMedCrossRef
272.
Zurück zum Zitat Sutsko RP, Young KC, Ribeiro A, Torres E, Rodriguez M, Hehre D, Devia C, McNiece I, Suguihara C (2013) Long-term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury. Pediatr Res 73:46–53PubMedCrossRef Sutsko RP, Young KC, Ribeiro A, Torres E, Rodriguez M, Hehre D, Devia C, McNiece I, Suguihara C (2013) Long-term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury. Pediatr Res 73:46–53PubMedCrossRef
273.
Zurück zum Zitat van Haaften T, Byrne R, Bonnet S et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131–1142PubMedPubMedCentralCrossRef van Haaften T, Byrne R, Bonnet S et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131–1142PubMedPubMedCentralCrossRef
274.
Zurück zum Zitat Chang YS, Oh W, Choi SJ, Sung DK, Kim SY, Choi EY, Kang S, Jin HJ, Yang YS, Park WS (2009) Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell Transplant 18:869–886PubMedCrossRef Chang YS, Oh W, Choi SJ, Sung DK, Kim SY, Choi EY, Kang S, Jin HJ, Yang YS, Park WS (2009) Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell Transplant 18:869–886PubMedCrossRef
275.
Zurück zum Zitat Ahn SY, Chang YS, Kim JH, Sung SI, Park WS (2017) Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J Pediatr 185:49-54.e2PubMedCrossRef Ahn SY, Chang YS, Kim JH, Sung SI, Park WS (2017) Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J Pediatr 185:49-54.e2PubMedCrossRef
276.
Zurück zum Zitat Ahn SY, Chang YS, Lee MH, Sung SI, Lee BS, Kim KS, Kim A-R, Park WS (2021) Stem cells for bronchopulmonary dysplasia in preterm infants: a randomized controlled phase II trial. Stem Cells Transl Med 10:1129–1137PubMedPubMedCentralCrossRef Ahn SY, Chang YS, Lee MH, Sung SI, Lee BS, Kim KS, Kim A-R, Park WS (2021) Stem cells for bronchopulmonary dysplasia in preterm infants: a randomized controlled phase II trial. Stem Cells Transl Med 10:1129–1137PubMedPubMedCentralCrossRef
277.
Zurück zum Zitat Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164:966-972.e6PubMedCrossRef Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164:966-972.e6PubMedCrossRef
278.
Zurück zum Zitat Powell SB, Silvestri JM (2019) Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J Pediatr 210:209-213.e2PubMedCrossRef Powell SB, Silvestri JM (2019) Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants. J Pediatr 210:209-213.e2PubMedCrossRef
279.
Zurück zum Zitat Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7:1535750PubMedPubMedCentralCrossRef Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 7:1535750PubMedPubMedCentralCrossRef
280.
Zurück zum Zitat Lesage F, Thébaud B (2022) Mesenchymal stromal cell-derived extracellular vesicles for neonatal lung disease: tiny particles, major promise, rigorous requirements for clinical translation. Cells 11:1176PubMedPubMedCentralCrossRef Lesage F, Thébaud B (2022) Mesenchymal stromal cell-derived extracellular vesicles for neonatal lung disease: tiny particles, major promise, rigorous requirements for clinical translation. Cells 11:1176PubMedPubMedCentralCrossRef
281.
Zurück zum Zitat Reis M, Willis GR, Fernandez-Gonzalez A et al (2021) Mesenchymal stromal cell-derived extracellular vesicles restore thymic architecture and T cell function disrupted by neonatal hyperoxia. Front Immunol 12:640595PubMedPubMedCentralCrossRef Reis M, Willis GR, Fernandez-Gonzalez A et al (2021) Mesenchymal stromal cell-derived extracellular vesicles restore thymic architecture and T cell function disrupted by neonatal hyperoxia. Front Immunol 12:640595PubMedPubMedCentralCrossRef
282.
Zurück zum Zitat Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197:104–116PubMedPubMedCentralCrossRef Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197:104–116PubMedPubMedCentralCrossRef
283.
Zurück zum Zitat Willis GR, Reis M, Gheinani AH et al (2021) Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic and transcriptomic reprogramming of myeloid cells. Am J Respir Crit Care Med 204:1418–1432PubMedPubMedCentralCrossRef Willis GR, Reis M, Gheinani AH et al (2021) Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic and transcriptomic reprogramming of myeloid cells. Am J Respir Crit Care Med 204:1418–1432PubMedPubMedCentralCrossRef
284.
Zurück zum Zitat Bellio MA, Young KC, Milberg J et al (2021) Amniotic fluid-derived extracellular vesicles: characterization and therapeutic efficacy in an experimental model of bronchopulmonary dysplasia. Cytotherapy 23:1097–1107PubMedCrossRef Bellio MA, Young KC, Milberg J et al (2021) Amniotic fluid-derived extracellular vesicles: characterization and therapeutic efficacy in an experimental model of bronchopulmonary dysplasia. Cytotherapy 23:1097–1107PubMedCrossRef
285.
Zurück zum Zitat Sharma M, Bellio MA, Benny M et al (2022) Mesenchymal stem cell-derived extracellular vesicles prevent experimental bronchopulmonary dysplasia complicated by pulmonary hypertension. Stem Cells Transl Med 11:828–840PubMedPubMedCentralCrossRef Sharma M, Bellio MA, Benny M et al (2022) Mesenchymal stem cell-derived extracellular vesicles prevent experimental bronchopulmonary dysplasia complicated by pulmonary hypertension. Stem Cells Transl Med 11:828–840PubMedPubMedCentralCrossRef
286.
Zurück zum Zitat Abele AN, Taglauer ES, Almeda M, Wilson N, Abikoye A, Seedorf GJ, Mitsialis SA, Kourembanas S, Abman SH (2022) Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. Am J Physiol Lung Cell Mol Physiol 322:L179–L190PubMedCrossRef Abele AN, Taglauer ES, Almeda M, Wilson N, Abikoye A, Seedorf GJ, Mitsialis SA, Kourembanas S, Abman SH (2022) Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. Am J Physiol Lung Cell Mol Physiol 322:L179–L190PubMedCrossRef
287.
Zurück zum Zitat Lithopoulos MA, Strueby L, O’Reilly M et al (2022) Pulmonary and neurologic effects of mesenchymal stromal cell extracellular vesicles in a multifactorial lung injury model. Am J Respir Crit Care Med 205:1186–1201PubMedCrossRef Lithopoulos MA, Strueby L, O’Reilly M et al (2022) Pulmonary and neurologic effects of mesenchymal stromal cell extracellular vesicles in a multifactorial lung injury model. Am J Respir Crit Care Med 205:1186–1201PubMedCrossRef
288.
Zurück zum Zitat Hennrick KT, Keeton AG, Nanua S et al (2007) Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med 175:1158–1164PubMedCrossRef Hennrick KT, Keeton AG, Nanua S et al (2007) Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med 175:1158–1164PubMedCrossRef
289.
Zurück zum Zitat Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM, Schumacher RE, Weiner GM, Filbrun AG, Hershenson MB (2010) Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia. Pediatrics 126:e1127–e1133PubMedCrossRef Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM, Schumacher RE, Weiner GM, Filbrun AG, Hershenson MB (2010) Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia. Pediatrics 126:e1127–e1133PubMedCrossRef
290.
Zurück zum Zitat Reicherzer T, Häffner S, Shahzad T et al (2018) Activation of the NF-κB pathway alters the phenotype of MSCs in the tracheal aspirates of preterm infants with severe BPD. Am J Physiol Lung Cell Mol Physiol 315:L87–L101PubMedCrossRef Reicherzer T, Häffner S, Shahzad T et al (2018) Activation of the NF-κB pathway alters the phenotype of MSCs in the tracheal aspirates of preterm infants with severe BPD. Am J Physiol Lung Cell Mol Physiol 315:L87–L101PubMedCrossRef
291.
Zurück zum Zitat Möbius MA, Freund D, Vadivel A, Koss S, McConaghy S, Ohls RK, Rüdiger M, Thébaud B (2019) Oxygen disrupts human fetal lung mesenchymal cells. Implications for Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 60:592–600PubMedCrossRef Möbius MA, Freund D, Vadivel A, Koss S, McConaghy S, Ohls RK, Rüdiger M, Thébaud B (2019) Oxygen disrupts human fetal lung mesenchymal cells. Implications for Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 60:592–600PubMedCrossRef
292.
Zurück zum Zitat Collins JJP, Lithopoulos MA, dos Santos CC, Issa N, Möbius MA, Ito C, Zhong S, Vadivel A, Thébaud B (2018) Impaired angiogenic supportive capacity and altered gene expression profile of resident CD146 + mesenchymal stromal cells isolated from hyperoxia-injured neonatal rat lungs. Stem Cells and Development 27:1109–1124PubMedCrossRef Collins JJP, Lithopoulos MA, dos Santos CC, Issa N, Möbius MA, Ito C, Zhong S, Vadivel A, Thébaud B (2018) Impaired angiogenic supportive capacity and altered gene expression profile of resident CD146 + mesenchymal stromal cells isolated from hyperoxia-injured neonatal rat lungs. Stem Cells and Development 27:1109–1124PubMedCrossRef
293.
Zurück zum Zitat Mižíková I, Lesage F, Cyr-Depauw C et al (2022) Single-cell RNA sequencing-based characterization of resident lung mesenchymal stromal cells in bronchopulmonary dysplasia. Stem Cells 40:479–492PubMedPubMedCentralCrossRef Mižíková I, Lesage F, Cyr-Depauw C et al (2022) Single-cell RNA sequencing-based characterization of resident lung mesenchymal stromal cells in bronchopulmonary dysplasia. Stem Cells 40:479–492PubMedPubMedCentralCrossRef
294.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRef
295.
Zurück zum Zitat Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, Qian W, Han X (2014) Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells: Isolation and characterization of LR-MSCs. Cell Biol Int 38:405–411PubMedCrossRef Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, Qian W, Han X (2014) Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells: Isolation and characterization of LR-MSCs. Cell Biol Int 38:405–411PubMedCrossRef
296.
Zurück zum Zitat Rolandsson Enes S, Andersson Sjöland A, Skog I, Hansson L, Larsson H, Le Blanc K, Eriksson L, Bjermer L, Scheding S, Westergren-Thorsson G (2016) MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep 6:29160PubMedPubMedCentralCrossRef Rolandsson Enes S, Andersson Sjöland A, Skog I, Hansson L, Larsson H, Le Blanc K, Eriksson L, Bjermer L, Scheding S, Westergren-Thorsson G (2016) MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep 6:29160PubMedPubMedCentralCrossRef
297.
Zurück zum Zitat McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the Sca-1 positive cell fraction. Stem Cells 27:623–633PubMedCrossRef McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the Sca-1 positive cell fraction. Stem Cells 27:623–633PubMedCrossRef
298.
Zurück zum Zitat Chu X, Lingampally A, Moiseenko A et al (2022) GLI1+ cells are a source of repair-supportive mesenchymal cells (RSMCs) during airway epithelial regeneration. Cell Mol Life Sci 79:581PubMedPubMedCentralCrossRef Chu X, Lingampally A, Moiseenko A et al (2022) GLI1+ cells are a source of repair-supportive mesenchymal cells (RSMCs) during airway epithelial regeneration. Cell Mol Life Sci 79:581PubMedPubMedCentralCrossRef
299.
Zurück zum Zitat Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015) perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66PubMedCrossRef Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015) perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66PubMedCrossRef
300.
Zurück zum Zitat Wu Y, Zhou X, Yuan W et al (2022) Gli1+ mesenchymal stem cells in bone and teeth. CSCR 17:494–502CrossRef Wu Y, Zhou X, Yuan W et al (2022) Gli1+ mesenchymal stem cells in bone and teeth. CSCR 17:494–502CrossRef
301.
Zurück zum Zitat Chen J, Li M, Liu A-Q et al (2020) Gli1+ cells couple with type H vessels and are required for type H vessel formation. Stem Cell Reports 15:110–124PubMedPubMedCentralCrossRef Chen J, Li M, Liu A-Q et al (2020) Gli1+ cells couple with type H vessels and are required for type H vessel formation. Stem Cell Reports 15:110–124PubMedPubMedCentralCrossRef
302.
Zurück zum Zitat Peng J, Li F, Wang J et al (2022) Identification of a rare Gli1+ progenitor cell population contributing to liver regeneration during chronic injury. Cell Discov 8:118PubMedPubMedCentralCrossRef Peng J, Li F, Wang J et al (2022) Identification of a rare Gli1+ progenitor cell population contributing to liver regeneration during chronic injury. Cell Discov 8:118PubMedPubMedCentralCrossRef
303.
Zurück zum Zitat Cao H, Chen X, Hou J, Wang C, Xiang Z, Shen Y, Han X (2020) The Shh/Gli signaling cascade regulates myofibroblastic activation of lung-resident mesenchymal stem cells via the modulation of Wnt10a expression during pulmonary fibrogenesis. Lab Invest 100:363–377PubMedCrossRef Cao H, Chen X, Hou J, Wang C, Xiang Z, Shen Y, Han X (2020) The Shh/Gli signaling cascade regulates myofibroblastic activation of lung-resident mesenchymal stem cells via the modulation of Wnt10a expression during pulmonary fibrogenesis. Lab Invest 100:363–377PubMedCrossRef
Metadaten
Titel
Perinatal origins of bronchopulmonary dysplasia—deciphering normal and impaired lung development cell by cell
verfasst von
I. Mižíková
B. Thébaud
Publikationsdatum
01.12.2023
Verlag
Springer International Publishing
Erschienen in
Molecular and Cellular Pediatrics / Ausgabe 1/2023
Elektronische ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-023-00158-2

Weitere Artikel der Ausgabe 1/2023

Molecular and Cellular Pediatrics 1/2023 Zur Ausgabe

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Frühe Hypertonie erhöht späteres kardiovaskuläres Risiko

Wie wichtig es ist, pädiatrische Patienten auf Bluthochdruck zu screenen, zeigt eine kanadische Studie: Hypertone Druckwerte in Kindheit und Jugend steigern das Risiko für spätere kardiovaskuläre Komplikationen.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.