Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2023

Open Access 01.12.2023 | Research article

Novel nomograms for predicting the risk of low distal bone strength: development and validation in a Chinese population-based observational study

verfasst von: Congzi Wu, Ting Liu, Zhenyu Shi, Liang Fang, Hongting Jin, Peijian Tong

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2023

Abstract

Background

This study aims to develop nomogram models based on the speed of sound (SOS) measurements results along with demographic information to predict the risk of low bone strength (LBS) of radius appropriate to the Chinese population of a broad age spectrum.

Methods

A population-based cross-sectional study was conducted in 5 outpatient clinics located in Zhejiang, the southern part of China. A total of 38,699 participants from 2013 to 2017 were included. Baseline measurements included SOS of the distal radius and clinical risk factor evaluation. Logistic regression models were used to evaluate prognosis and identify independent predictive factors, which were then utilized to establish nomograms for predicting the low bone strength of radius. The discrimination and calibration of nomograms were validated using the calibration plots, the decision curve analysis (DCA), and the receiver operating characteristics curve (ROC).

Results

A total of 19,845 of the 38,904 participants ranged in age from 10 to 88 years were selected in this process. LBP nomogram model 1 was constructed based on age, weight, height, BMI, and gender. LBP nomogram model 2 was constructed based on age, height, BMI, and gender. The AUCs for model 1 and model 2 were 0.838 (95% CI: 0.832–0.844) and 0.837 (95% CI: 0.831–0.843), respectively. High-quality calibration plots and DCA in nomogram models were noticed, indicated that the constructed nomogram models were clinically useful.

Conclusions

Our study demonstrates that the nomograms established in this study could effectively evaluate the high-risk population groups of distal radius fracture in China.
Hinweise
Congzi Wu, Ting Liu and Zhenyu Shi contributed equally to this work as co-first authors

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
SOS
Speed of sound
LBS
Low bone strength
DCA
Decision curve analysis
ROC
Receiver operating characteristics curve
BMD
Bone mineral density
QUS
Quantitative ultrasound
BMI
Body mass index
AUC
Area under the curve
CI
Confidence interval
NBS
Normal bone strength
DRFs
Distal radius fractures

Introduction

Bone strength is determined by its material and structural properties. Bone mineral density (BMD) is a useful tool for diagnosis. However, this parameter provides information regarding only the quantity of mineral in bone, which is only one component of bone strength [1]. Since bone density does not fully explain the variance in bone strength, it has been suggested that the ability to provide structural information may improve the estimation of bone strength and fracture risk [2, 3].
Quantitative ultrasound (QUS) is a mechanical wave that can be influenced by BMD in addition to bone structure, which are equally important in determination of bone strength [3, 4]. QUS has the advantages of being free of radiation, easy to use, portable, and lower in cost than dual-energy X-ray absorptiometry (DXA) [5] that may aid the identification of individuals at risk for fracture in a primary or secondary care setting, and is also used for long-term monitoring of bone health or integrity [5]. Speed of sound (SOS) is one parameter of skeletal status provided by QUS assessment, and the significance of the low SOS parameters in the fact that it is a signal being predictive of deficient bone strength and future fracture risk [6]. There is ample evidence documenting the ability of SOS which provides information on bone microarchitecture and material properties to assess bone strength, and it is partly independent of BMD and clinical risk factors in predicting fractures [79].
Bone strength of radius has important clinical significance for assessing local bone mass and screening high-risk patients with distal radius fractures [10]. There have been many studies focused on comparing the predictive power of SOS for fractures [5, 11, 12]. Several researches have shown that radius SOS data not only has a significant correlation with the risk of distal radius fractures [6], but also has a potential correlation with age, gender, and body mass index (BMI) [8, 13]. However, the sample size of these studies is relatively small, which is weak evidence for revealing the clinical value of SOS. Therefore, this study collected radial SOS data and demographic information (including height, weight, body mass index, etc.) of community residents from multiple areas in Zhejiang Province. We performed regression analysis on an all-age cohort (10–88 years old) including 38,904 participants and established a validated nomogram prediction model, aiming to explore the influencing factors of bone strength of radius and establish a low bone strength (LBS) of radius prediction model, and expected to provide a new auxiliary method for clinical assessment of the risk of distal radius fractures.

Materials and methods

Study design and participants

This cross-sectional study is a sub-cohort analysis of a study on SOS characteristics at the outpatient clinics of public health organizations in Zhejiang Province of China, including Hangzhou, Wenzhou, Ningbo, Jiaxing, Huzhou, between June 2013 and November 2017, using a total of 38,904 participants aged 10–88 [13]. All participants completed a standardized questionnaire before their scan (including age, medical history, etc.). Height, weight, and body mass index (BMI, kg/m2) were measured. Study exclusion criteria included metabolic and endocrine diseases; bone tumors; renal insufficiency; secondary causes of osteoporosis, such as Cushing’s disease, hyperthyroidism, Crohn’s disease, or rheumatoid arthritis; and use of a bone active agent or hormone therapy within half a year. All participants offered informed consent, and this study was approved by the Institutional Review Board of The First Affiliated Hospital of Zhejiang Chinese Medical University (IRB No. 2018-ZX-02601).

Ultrasound measurement

The study employed the Sunlight Mini-Omni Ultrasound Bone Sonometer (Sunlight; BeamMed Ltd., Israel) with 3 different probes allowing for SOS measurements to be recorded at the radius. First, ultrasound gel was applied to the skin surface at the measurement site to facilitate acoustic coupling. And then the handheld probe was placed at the distal radius. The operator rotated the transducers within the probe around the radius slowly without lifting the probe from the skin surface. The measurement procedure was repeated at least 3 times. After the signal is digitized and stored, the data are sent to a computer for automated analysis. All measurements were handled by a single trained operator throughout the study. The QUS measurement was expressed in SOS, which was provided by the instrument. LBS was defined if SOS < 4100 m/s.

Statistical analysis

IBM SPSS Statistics 25.0 and R 4.0.3 were used for statistical analyses. The chi-square test or Fisher’s exact probability test was used to compare count data. The normal distribution of the data was evaluated by QQ-plot and histogram. Different variables were described by the mean ± SD. When comparing the means between groups, the Student’s t test or one-way ANOVA was used. A p value < 0.05 was taken to indicate statistical significance. Logistics regression analysis was used to consider whether the low bone strength of radius was related to age, weight, height, BMI, and gender. Two models were constructed by backward stepwise regression analysis and L1-penalized least absolute shrinkage and selection operator (LASSO) method, respectively. Risk factors were identified using stepwise logistic regression analysis, and the backward stepwise method was used to select the variables that were eventually included in model 1. Besides, the “glmnet” package was used to perform the LASSO regression for variables selection and multivariable analysis, augmented with tenfold cross-validation for internal validation (model 2). Then, nomogram plots were drawn based on regression analysis. To internally validate, the bootstrapping validation (200 bootstrap resamples) was undertaken for both models to calculate a relatively corrected C-index. Calibration plots were used for the comparison between nomogram-predicted and actual outcomes using a 45-degree line as an optimal model. Additionally, decision curve analysis (DCA) was plotted for the threshold probabilities range of nomograms in association with model 1 and model 2. Finally, time-dependent receiver operating characteristic (ROC) curves, including the area under the curve (AUC) and its 95% confidence interval (95% CI), were analyzed by the pROC package to evaluate the performance of prognostic prediction.

Results

Demographics of participants

A total of 19,845 of the 38,904 participants ranged in age from 10 to 99 years were included in this study, and 19,059 subjects were excluded for reasons. A flow diagram of the inclusion process is demonstrated in Fig. 1.
Baseline characteristics are shown in Table 1. A total of 8545 participants were diagnosed with low bone strength of radius at baseline comprised of 85.7% females with an overall age of 63.71 ± 11.23 years and BMI of 23.31 ± 3.31 kg/m2. As expected, patients with LBS were, on average, older and had shorter height, lower body weight, and higher BMI than those with normal bone strength (NBS). Furthermore, all QUS measurement was significantly lower in the LBS group than in the NBS group. In addition, patients with LBS had a higher proportion of women (7324 (85.7%) versus 6687 (59.2%), p < 0.001) than controls in gender distribution.
Table 1
Characteristics of NBS and LBS individuals
Variables
Total
NBS
LBS
Test statistic
p value
No.
19,845
11,300 (56.94%)
8545 (43.06%)
  
Region
     
Hangzhou
17,279
9797
7482
321.24
< 0.01
Huzhou
26
8
18
  
 Jiaxing
1853
1275
578
  
 Ningbo
32
26
6
  
 Wenzhou
655
194
461
  
Sex
     
 Male
5834
4613
1221
1650.48
< 0.05
 Female
14,011
6687
7324
  
Age, years
57.96 ± 14.12
52.86 ± 13.94
63.71 ± 11.23
−64.34
< 0.01
 < 24
247
182
65
3080.76
< 0.05
 25–45
3471
3151
320
  
 46–64
9381
5623
3758
  
 65–80
6040
2179
3861
  
 > 80
706
165
541
  
Weight, kg
59.63 ± 9.81
60.83 ± 9.58
58.05 ± 9.87
19.95
< 0.01
Height, cm
160.11 ± 7.26
162.02 ± 6.94
157.58 ± 6.90
44.71
< 0.01
BMI, kg/m2
23.20 ± 3.14
23.12 ± 2.99
23.31 ± 3.31
−4.39
< 0.01
 < 18.5
1026
510
516
92.03
< 0.01
 18.5– 24.9
13,367
7879
5488
  
 25.0–27.9
3993
2202
1791
  
 28.0–31.9
1304
641
663
  
 > 32.0
155
68
87
  
SOS, m/s
4011.11 ± 258.76
4207.27 ± 127.54
3751.70 ± 125.74
250.67
< 0.05
T scores
−1.42 ± 2.32
0.35 ± 1.10
−3.76 ± 1.11
258.69
< 0.01
Z scores
−0.165 ± 1.91
1.10 ± 1.26
−1.84 ± 1.23
165.00
< 0.01
NBS normal bone strength, LBS low bone strength, BMI body mass index, SOS speed of sound

Selection of predictive indicators for low bone strength of radius

The multiple stepwise regression analysis showed that 5 variables, including age, weight, height, BMI, and gender, were statistically significant risk factors. So all of these variables were imported to the binary multivariate logistic regression as model 1. The multivariate logistic regression analysis demonstrated that gender (odds ratio (OR) = 1.125, 95% confidence interval (CI) = 1.008–1.254), age (OR = 1.103, 95% CI = 1.099– 1.107), weight (OR = 1.247, 95% CI = 1.189–1.308), height (OR = 8.435, 95% CI = 8.136–8.745), and BMI (OR = 5.939, 95% CI = 5.258–6.706) were independent risk factors for LBS (Table 2).
Table 2
Models for predicting low bone strength
Intercept and Variable
Model 1
Model 2
Coefficient
Odds Ratio (95% CI)
Coefficient
Odds Ratio (95% CI)
Intercept
20.677
 
−5.286
 
Gender
−2.185
1.125 (1.008 to 1.254)
−2.132
0.118 (0.106 to 0.132)
Age
0.098
1.103 (1.099 to 1.107)
0.097
1.102 (1.098 to 1.106)
Weight
0.221
1.247 (1.189 to 1.308)
NA
NA
Height
−0.170
8.435 (8.136 to 8.745)
−0.006
0.993 (0.987 to 1.000)
BMI
−0.521
5.939 (5.258 to 6.706)
0.038
1.039 (1.028 to 1.050)
BMI body mass index
However, five variables were reduced to 4 potential predictors with nonzero coefficients after LASSO regression selection based on the analysis of tenfold cross-validation. These predictors included age, height, BMI, and gender (Fig. 2). The above-mentioned indicators were included in the multivariate logistic regression as model 2. The multivariate logistic regression analysis revealed that gender (odds ratio (OR) = 0.118, 95% confidence interval (CI) = 0.106–0.132), age (OR = 1.102, 95% CI = 1.098– 1.106), height (OR = 0.993, 95% CI = 0.987–1.000), and BMI (OR = 1.039, 95% CI = 1.028–1.050) were independent risk factors for LBS.

Construction and validation of Nomogram

Afterward, the nomogram was developed based on model 1 (with age, weight, height, BMI, and gender) or model 2 (with age, height, BMI, and gender) and was used to quantitatively predict the LBS risk (Fig. 3). The C-index of the nomogram was 0.838 (95% CI: 0.832–0.844) for model 1, and 0.837 (95% CI: 0.831–0.843) for model 2, which was identified to be 0.838 via bootstrapping validation in both models (Bootstrap = 200). For orthopedic doctors, the plot was available to locate a patient’s levels of age, weight, height, BMI, and gender in each axis; to draw a line straight upward to the point axis and sum up the total points; and then to draw a line straight down to determine their risk of LBS. The calibration curve illustrated a fair agreement between the predicted probabilities and the observed proportions in both nomograms for model 1 or model 2 (Fig. 4a). On decision curve analysis, the results indicated that using the developed nomograms to predict the LBS probability displayed the better net benefit than either the treat-all or treat-none scheme, indicating that the constructed nomogram models were clinically useful, while nomogram for model 1 and nomogram for model 2 were very similar when the threshold probability is greater than 32% (Fig. 4b). Furthermore, the acceptable AUC values for the ROC curves were also noticed for prediction performance evaluation in model 1 and model 2, respectively (Fig. 5). The AUC for model 1 was virtually identical to that for model 2. However, model 1 with all five factors had a slightly higher AUC value (83.8% ± 0.6%) than model 2 (83.7% ± 0.6%).

Discussion

As far as radius is concerned, the distal radius fractures (DRFs) are the most common hazard. Epidemiological surveys indicate that DRFs are the most common upper limb fractures in patients over 65 years of age [14], and accounting for 26–46% of all skeletal fractures observed in primary care [15, 16]. Younger patients receive a DRF after an adequate trauma, and elderly patients suffer fractures through low-energy mechanisms. DRFs cause a decline in clinically important functions, which is an important reason for mortality or loss of independence in the elderly population [17, 18]. Low-energy fractures are hallmarks of low bone strength, and DRF patients had a 1.51-fold and 1.40-fold higher incidence of hip fracture and spinal fracture, respectively [10, 19]. Although a fall from a standing height is the most common cause of DRFs, sufficient bone strength can withstand this impact more and reduce the risk of DRFs [20]. Bone strength and quality is determined by bone architecture (including geometry and microarchitecture) and material properties (including mineralization and collagen cross-links) [2, 12]. BMD can provide insights regarding material properties and is a significant predictor of bone strength [1]. Nevertheless, the added value of bone architecture in estimating bone strength should not be ignored [3]. SOS may identify aspects of bone quality not completely captured by BMD, such as microarchitecture or material properties, and can be used for bone strength or integrity assessment [3, 8]. Therefore, identifying the low bone strength of radius through SOS can be used to screen high-risk groups of fractures, especially high-risk groups of DRFs, which can help us to intervene in advance and possibly reduce the incidence, associated morbidity, and health care costs of these injuries.
In this study, we constructed prognostic nomogram models based on age, gender, weight, height, and BMI. All these detected factors are closely related to low bone strength. We found patients with lower bone strength of radius were, on average, older, and had shorter height, lower body weight, and higher BMI than those with normal bone strength, and all SOS measurement was significantly lower in the low bone strength group than in the normal bone strength group. Furthermore, patients with low bone strength of radius had a higher proportion of women (7318 (85.7%) versus 6693 (59.2%), p < 0.001) than controls in gender distribution. The two prognostic models were created from the same data source using different statistical methods, and risk factors teased out from one method are not necessarily the same as in another. However, the difference in risk estimates from different models seemed to be minor of clinical concern, since both calibration plots and DCA of the two models aligned almost perfectly. Of note, a high area under the ROC curve (AUC) was noticed for both model 1 and model 2, respectively. The LASSO prognostic model 2 excluded weight and did not perform any better on predicting bone strength of radius. A possible reason for this is that weight was underestimated in the population studies used to develop the models. Additionally, weight might serve as a predictor operating along with other relevant risk factors such as BMI independently, producing a compounding effect on increasing the accuracy of prediction.
Recent studies have shown that age was a major determinant of SOS in both sexes. In females, SOS values had a much stronger correlation with age than male subjects [13]. Correspondingly, age and sex have a pronounced effect on the incidence rates of DRFs in the elderly population. Results of a large national registry of DRFs in adults showed that the vast majority of DRFs occurred in elderly women (≥ 50 years) [20]. Parallel to increasing age and decreasing estrogen, postmenopausal women experience loss and breakdown of bone mass [21]. The substantial increase in the number of fractures in postmenopausal women, and the ratio between women and men of 4:1, which could explain the lower bone strength of radius in women in our study [22]. Although it has been found in our research and similar studies that the SOS parameters of radius of men are more optimistic than women, it is worth noting that men over the age of 65 with DRFs are more likely to have post-fracture disability and fracture displacement and significantly associated with DRFs pattern complexity [23], indicating that there are also potential threats to the bone strength of the elderly male population [24]. Therefore, the assessment of future fracture risk among men with low radius SOS should not be neglected. Additionally, we found that the height of the low bone strength group significantly reduced compared with the normal group, which may be related to the damage of bone strength caused by osteoporosis [25, 26]. Height loss is a frequent manifestation of vertebral osteoporosis and is easy to measure in healthcare settings [27]. A significant association was observed between weight and bone strength which also corresponded to a previous study. It suggested that fat mass negatively correlated with BMD in young people [28]. Furthermore, integrating weight with age could modestly improve the prognosis of low bone strength in model 1 compared with the adjusted weight in model 2 because it is more sensitive and specific. Height and weight are also closely related to the range of BMI. A strong correlation between BMI and SOS parameters has been observed in diabetic patients [12]. Our findings are also indicated the correlation between BMI and SOS parameters; that is, higher BMI can predict lower bone strength of radius, an effect likely mediated by mechanical loading on bone [29]. In fact, fat mass and lean mass both cause mechanical loading on bone, and the relative effect of these two determinants of body composition on bone strength still remains controversial [2931]. Logistic regression analysis showed that BMI was independent risk factors for DRFs [21], and a higher BMI increases the odds of a complex DRF [15]. However, others have shown that BMI does not affect the incidence of DRFs [32, 33], and other studies failed to detect the association between SOS or all three QUS measurements with BMI [34, 35]. In summary, we believe that changes in such indicators often cannot be understood separately, and the relation of SOS measures with BMI needs further investigation. Moreover, the nomograms as shown in this study are useful methods for communicating fractures risk to an individual patient, because they objectively incorporated many risk data of the individual patient.
The present findings should be interpreted within the context of some potential advantages and disadvantages. A major strength of the study is that the sample size was large, to allow for a reliable evaluation of relations between bone strength of radius and influencing factors. Moreover, this study includes both male and female populations across a broader age spectrum, which was quite rare in the same-topic study. In addition, SOS of radius provides relatively comprehensive bone strength information, while lower bone strength of radius is an independent risk factor for DRFs, which can provide a practical reference for clinical risk assessment of DRFs [6]. Nevertheless, our study has some limitations. First, SOS has some limitations due to the QUS device. For example, SOS results cannot be compared across devices, and the response to bone strength and ability to predict fractures of SOS is not as well studied as that of BMD. Additionally, this study was limited by its cross-sectional nature, with restriction of study cohort to only the Chinese population. However, the selection of grouping and modeling methods is fully based on the characteristics of the data, which provides a reference to other similar research. Although we used backward stepwise regression and LASSO regression to make models to compare which analysis method is better, there is only a slight difference between the two from the internal-verification effect of the model. Thus, external validation will be needed to clarify it further.

Conclusions

In summary, our study demonstrates that the nomograms established in this study could effectively evaluate the risk of low distal bone strength in the Chinese population. Calibration plots, DCA, and ROC analysis verify the acceptable predictive value of the models. The nomograms may provide a referential basis for identifying the high-risk population groups of distal radius fracture.

Acknowledgements

We thank Qinwen Ge, Jinjin Ma, Penghe Wang, Huihui Xu, Qinghe Zeng, Jieyi Wang, Jiali Chen, Pinger Wang, Wenhua Yuan, and Taotao Xu from Zhejiang Chinese Medical University for measurement/data interpretation-related writing assistance.

Declarations

This study was performed in line with the principles of the Declaration of Helsinki. All participants offered informed consent, and this study was approved by the Institutional Review Board of The First Affiliated Hospital of Zhejiang Chinese Medical University (IRB No. 2018-ZX-02601).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Friedman AW. Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol. 2006;12(2):70–7.CrossRef Friedman AW. Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol. 2006;12(2):70–7.CrossRef
2.
Zurück zum Zitat Fonseca H, Moreira-Goncalves D, Coriolano HJ, et al. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44(1):37–53.CrossRef Fonseca H, Moreira-Goncalves D, Coriolano HJ, et al. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014;44(1):37–53.CrossRef
3.
Zurück zum Zitat Njeh CFFT, Diessel E, et al. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int. 2001;12(1):1–15.CrossRef Njeh CFFT, Diessel E, et al. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int. 2001;12(1):1–15.CrossRef
4.
Zurück zum Zitat Goossens L, Vanderoost J, Jaecques S, et al. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1234–42.CrossRef Goossens L, Vanderoost J, Jaecques S, et al. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1234–42.CrossRef
5.
Zurück zum Zitat Chong KH, Poh BK, Jamil NA, et al. Radial quantitative ultrasound and dual energy x-ray absorptiometry: intermethod agreement for bone status assessment in children. Biomed Res Int. 2015;2015: 232876. Chong KH, Poh BK, Jamil NA, et al. Radial quantitative ultrasound and dual energy x-ray absorptiometry: intermethod agreement for bone status assessment in children. Biomed Res Int. 2015;2015: 232876.
6.
Zurück zum Zitat McCloskey EV, Kanis JA, Oden A, et al. Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int. 2015;26(7):1979–87.CrossRef McCloskey EV, Kanis JA, Oden A, et al. Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int. 2015;26(7):1979–87.CrossRef
7.
Zurück zum Zitat Maimoun L, Renard E, Huguet H, et al. The quantitative ultrasound method for assessing low bone mass in women with anorexia nervosa. Arch Osteoporos. 2021;16(1):13.CrossRef Maimoun L, Renard E, Huguet H, et al. The quantitative ultrasound method for assessing low bone mass in women with anorexia nervosa. Arch Osteoporos. 2021;16(1):13.CrossRef
8.
Zurück zum Zitat Rivas-Ruiz R, Clark P, Talavera JO, et al. Bone speed of sound throughout lifetime assessed with quantitative ultrasound in a Mexican population. J Clin Densitom. 2015;18(1):68–75.CrossRef Rivas-Ruiz R, Clark P, Talavera JO, et al. Bone speed of sound throughout lifetime assessed with quantitative ultrasound in a Mexican population. J Clin Densitom. 2015;18(1):68–75.CrossRef
9.
Zurück zum Zitat Bossy E, Talmant M, Peyrin F, et al. An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res. 2004;19(9):1548–56.CrossRef Bossy E, Talmant M, Peyrin F, et al. An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res. 2004;19(9):1548–56.CrossRef
10.
Zurück zum Zitat MacIntyre NJ, Dewan N. Epidemiology of distal radius fractures and factors predicting risk and prognosis. J Hand Ther. 2016;29(2):136–45.CrossRef MacIntyre NJ, Dewan N. Epidemiology of distal radius fractures and factors predicting risk and prognosis. J Hand Ther. 2016;29(2):136–45.CrossRef
11.
Zurück zum Zitat Marin F, Gonzalez-Macias J, Diez-Perez A, et al. Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res. 2006;21(7):1126–35.CrossRef Marin F, Gonzalez-Macias J, Diez-Perez A, et al. Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res. 2006;21(7):1126–35.CrossRef
12.
Zurück zum Zitat Conti F, Balducci S, Pugliese L, et al. Correlates of calcaneal quantitative ultrasound parameters in patients with diabetes: the study on the assessment of determinants of muscle and bone strength abnormalities in diabetes. J Diabetes Res. 2017;2017:4749619.CrossRef Conti F, Balducci S, Pugliese L, et al. Correlates of calcaneal quantitative ultrasound parameters in patients with diabetes: the study on the assessment of determinants of muscle and bone strength abnormalities in diabetes. J Diabetes Res. 2017;2017:4749619.CrossRef
13.
Zurück zum Zitat Huang L, Pan J, Jin H, et al. Characteristics of distal radius speed of sound data in Chinese mainland men and women. J Clin Densitom. 2015;18(2):245–51.CrossRef Huang L, Pan J, Jin H, et al. Characteristics of distal radius speed of sound data in Chinese mainland men and women. J Clin Densitom. 2015;18(2):245–51.CrossRef
14.
Zurück zum Zitat Ikpeze TC, Smith HC, Lee DJ, et al. Distal radius fracture outcomes and rehabilitation. Geriatr Orthop Surg Rehabil. 2016;7(4):202–5.CrossRef Ikpeze TC, Smith HC, Lee DJ, et al. Distal radius fracture outcomes and rehabilitation. Geriatr Orthop Surg Rehabil. 2016;7(4):202–5.CrossRef
15.
Zurück zum Zitat Montague MD, Lewis JT, Moushmoush O, et al. Distal radius fractures: does obesity affect fracture pattern, treatment, and functional outcomes? Hand (N Y). 2019;14(3):398–401.CrossRef Montague MD, Lewis JT, Moushmoush O, et al. Distal radius fractures: does obesity affect fracture pattern, treatment, and functional outcomes? Hand (N Y). 2019;14(3):398–401.CrossRef
16.
Zurück zum Zitat Dewan N, MacDermid JC, Grewal R, et al. Recovery patterns over 4 years after distal radius fracture: descriptive changes in fracture-specific pain/disability, fall risk factors, bone mineral density, and general health status. J Hand Ther. 2018;31(4):451–64.CrossRef Dewan N, MacDermid JC, Grewal R, et al. Recovery patterns over 4 years after distal radius fracture: descriptive changes in fracture-specific pain/disability, fall risk factors, bone mineral density, and general health status. J Hand Ther. 2018;31(4):451–64.CrossRef
17.
Zurück zum Zitat Nellans KW, Kowalski E, Chung KC. The epidemiology of distal radius fractures. Hand Clin. 2012;28(2):113–25.CrossRef Nellans KW, Kowalski E, Chung KC. The epidemiology of distal radius fractures. Hand Clin. 2012;28(2):113–25.CrossRef
18.
Zurück zum Zitat Choi HG, Kim DS, Lee B, et al. High risk of hip and spinal fractures after distal radius fracture: a longitudinal follow-up study using a national sample cohort. Int J Environ Res Public Health. 2021;18(14):7391.CrossRef Choi HG, Kim DS, Lee B, et al. High risk of hip and spinal fractures after distal radius fracture: a longitudinal follow-up study using a national sample cohort. Int J Environ Res Public Health. 2021;18(14):7391.CrossRef
19.
Zurück zum Zitat Beil FT, Barvencik F, Gebauer M, et al. The distal radius, the most frequent fracture localization in humans: a histomorphometric analysis of the microarchitecture of 60 human distal radii and its changes in aging. J Trauma. 2011;70(1):154–8. Beil FT, Barvencik F, Gebauer M, et al. The distal radius, the most frequent fracture localization in humans: a histomorphometric analysis of the microarchitecture of 60 human distal radii and its changes in aging. J Trauma. 2011;70(1):154–8.
20.
Zurück zum Zitat Rundgren J, Bojan A, Mellstrand Navarro C, et al. Epidemiology, classification, treatment and mortality of distal radius fractures in adults: an observational study of 23,394 fractures from the national Swedish fracture register. BMC Musculoskelet Disord. 2020;21(1):88.CrossRef Rundgren J, Bojan A, Mellstrand Navarro C, et al. Epidemiology, classification, treatment and mortality of distal radius fractures in adults: an observational study of 23,394 fractures from the national Swedish fracture register. BMC Musculoskelet Disord. 2020;21(1):88.CrossRef
21.
Zurück zum Zitat Xu W, Ni C, Yu R, et al. Risk factors for distal radius fracture in postmenopausal women. Der Orthopade. 2017;46(5):447–50.CrossRef Xu W, Ni C, Yu R, et al. Risk factors for distal radius fracture in postmenopausal women. Der Orthopade. 2017;46(5):447–50.CrossRef
22.
Zurück zum Zitat Kwon G-D, Jang S, Lee A, et al. Incidence and mortality after distal radius fractures in adults aged 50 years and older in Korea. J Korean Med. 2016;31:630–4.CrossRef Kwon G-D, Jang S, Lee A, et al. Incidence and mortality after distal radius fractures in adults aged 50 years and older in Korea. J Korean Med. 2016;31:630–4.CrossRef
23.
Zurück zum Zitat Daniels AM, Theelen LMA, Wyers CE, et al. Bone microarchitecture and distal radius fracture pattern complexity. J Orthop Res. 2019;37(8):1690–7.CrossRef Daniels AM, Theelen LMA, Wyers CE, et al. Bone microarchitecture and distal radius fracture pattern complexity. J Orthop Res. 2019;37(8):1690–7.CrossRef
24.
Zurück zum Zitat Egund L, McGuigan FE, Egund N, et al. Patient-related outcome, fracture displacement and bone mineral density following distal radius fracture in young and older men. BMC Musculoskelet Disord. 2020;21(1):816.CrossRef Egund L, McGuigan FE, Egund N, et al. Patient-related outcome, fracture displacement and bone mineral density following distal radius fracture in young and older men. BMC Musculoskelet Disord. 2020;21(1):816.CrossRef
25.
Zurück zum Zitat Shin YH, Hong WK, Kim J, et al. Osteoporosis care after distal radius fracture reduces subsequent hip or spine fractures: a 4-year longitudinal study. Osteoporos Int. 2020;31(8):1471–6.CrossRef Shin YH, Hong WK, Kim J, et al. Osteoporosis care after distal radius fracture reduces subsequent hip or spine fractures: a 4-year longitudinal study. Osteoporos Int. 2020;31(8):1471–6.CrossRef
26.
Zurück zum Zitat Eggertsen R, Mellström D. Height loss in women caused by vertebral fractures and osteoporosis. Upsala J Med Sci. 2007;112(2):213–9.CrossRef Eggertsen R, Mellström D. Height loss in women caused by vertebral fractures and osteoporosis. Upsala J Med Sci. 2007;112(2):213–9.CrossRef
27.
Zurück zum Zitat Kantor S, Ossa K, Hoshawwoodard S, et al. Height Loss and Osteoporosis of the Hip. J Clin Densitom. 2004;7(1):65–70.CrossRef Kantor S, Ossa K, Hoshawwoodard S, et al. Height Loss and Osteoporosis of the Hip. J Clin Densitom. 2004;7(1):65–70.CrossRef
28.
Zurück zum Zitat Cheng Q, Zhu YX, Zhang MX, et al. Age and sex effects on the association between body composition and bone mineral density in healthy Chinese men and women. Menopause. 2012;19(4):448–55.CrossRef Cheng Q, Zhu YX, Zhang MX, et al. Age and sex effects on the association between body composition and bone mineral density in healthy Chinese men and women. Menopause. 2012;19(4):448–55.CrossRef
29.
Zurück zum Zitat Walsh JS, Vilaca T. Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int. 2017;100(5):528–35.CrossRef Walsh JS, Vilaca T. Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int. 2017;100(5):528–35.CrossRef
30.
31.
Zurück zum Zitat Premaor MO, Comim FV, Compston JE. Obesity and fractures. Arq Bras Endocrinol Metabol. 2014;58(5):470–7.CrossRef Premaor MO, Comim FV, Compston JE. Obesity and fractures. Arq Bras Endocrinol Metabol. 2014;58(5):470–7.CrossRef
32.
Zurück zum Zitat Gnudi S, Sitta E, Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab. 2009;27(4):479–84.CrossRef Gnudi S, Sitta E, Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab. 2009;27(4):479–84.CrossRef
33.
Zurück zum Zitat Premaor MO, Compston JE, Fina Aviles F, et al. The association between fracture site and obesity in men: a population-based cohort study. J Bone Miner Res. 2013;28(8):1771–7.CrossRef Premaor MO, Compston JE, Fina Aviles F, et al. The association between fracture site and obesity in men: a population-based cohort study. J Bone Miner Res. 2013;28(8):1771–7.CrossRef
34.
Zurück zum Zitat Steinschneider M, Hagag P, Rapoport MJ, et al. Discordant effect of body mass index on bone mineral density and speed of sound. BMC Musculoskelet Disord. 2003;4:15.CrossRef Steinschneider M, Hagag P, Rapoport MJ, et al. Discordant effect of body mass index on bone mineral density and speed of sound. BMC Musculoskelet Disord. 2003;4:15.CrossRef
35.
Zurück zum Zitat Sosa M, Saavedra P, Jódar E, et al. Bone mineral density and risk of fractures in aging, obese post-menopausal women with type 2 diabetes. The GIUMO Study. Aging Clin Exp Res. 2009;21(1):27–32.CrossRef Sosa M, Saavedra P, Jódar E, et al. Bone mineral density and risk of fractures in aging, obese post-menopausal women with type 2 diabetes. The GIUMO Study. Aging Clin Exp Res. 2009;21(1):27–32.CrossRef
Metadaten
Titel
Novel nomograms for predicting the risk of low distal bone strength: development and validation in a Chinese population-based observational study
verfasst von
Congzi Wu
Ting Liu
Zhenyu Shi
Liang Fang
Hongting Jin
Peijian Tong
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2023
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-023-03546-6

Weitere Artikel der Ausgabe 1/2023

Journal of Orthopaedic Surgery and Research 1/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.