Skip to main content
Erschienen in: Immunologic Research 1/2024

08.09.2023 | REVIEW

Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2

verfasst von: Atika Dhar, Sneh Lata Gupta, Pratima Saini, Kirti Sinha, Ankita Khandelwal, Rohit Tyagi, Alka Singh, Priyanka Sharma, Rishi Kumar Jaiswal

Erschienen in: Immunologic Research | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.
Literatur
1.
Zurück zum Zitat Buxton DB, et al. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation. 2003;108(22):2737–42.PubMedCrossRef Buxton DB, et al. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation. 2003;108(22):2737–42.PubMedCrossRef
2.
Zurück zum Zitat Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn. 2003;3(2):153–61.PubMedCrossRef Jain KK. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn. 2003;3(2):153–61.PubMedCrossRef
3.
Zurück zum Zitat Yezhelyev MV, et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7(8):657–67.PubMedCrossRef Yezhelyev MV, et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7(8):657–67.PubMedCrossRef
4.
Zurück zum Zitat Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol. 2001;19(3):97–101.PubMedCrossRef Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol. 2001;19(3):97–101.PubMedCrossRef
6.
Zurück zum Zitat Roy K, et al. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5(4):387–91.PubMedCrossRef Roy K, et al. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5(4):387–91.PubMedCrossRef
7.
Zurück zum Zitat Gemmati D, et al. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: the role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet. 2022;13:1028081.PubMedPubMedCentralCrossRef Gemmati D, et al. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: the role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet. 2022;13:1028081.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Vaseashta A, Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater. 2005;6(3):312–8.CrossRef Vaseashta A, Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater. 2005;6(3):312–8.CrossRef
9.
Zurück zum Zitat Sachlos E, Gotora D, Czernuszka JT. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006;12(9):2479–87.PubMedCrossRef Sachlos E, Gotora D, Czernuszka JT. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006;12(9):2479–87.PubMedCrossRef
10.
Zurück zum Zitat Farokhzad OC, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103(16):6315–20.PubMedPubMedCentralCrossRef Farokhzad OC, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103(16):6315–20.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Panáček A, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–53.PubMedCrossRef Panáček A, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–53.PubMedCrossRef
12.
Zurück zum Zitat O'Dowd K, et al. Face masks and respirators in the fight against the COVID-19 pandemic: a review of current materials, advances and future perspectives. Materials (Basel). 2020;13(15):3363. O'Dowd K, et al. Face masks and respirators in the fight against the COVID-19 pandemic: a review of current materials, advances and future perspectives. Materials (Basel). 2020;13(15):3363.
13.
Zurück zum Zitat Aydemir D, Ulusu NN. Correspondence: Angiotensin-converting enzyme 2 coated nanoparticles containing respiratory masks, chewing gums and nasal filters may be used for protection against COVID-19 infection. Travel Med Infect Dis. 2020;37:101697.PubMedPubMedCentralCrossRef Aydemir D, Ulusu NN. Correspondence: Angiotensin-converting enzyme 2 coated nanoparticles containing respiratory masks, chewing gums and nasal filters may be used for protection against COVID-19 infection. Travel Med Infect Dis. 2020;37:101697.PubMedPubMedCentralCrossRef
14.
15.
19.
Zurück zum Zitat Guo L, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis. 2020;71(15):778–85.PubMedCrossRef Guo L, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis. 2020;71(15):778–85.PubMedCrossRef
20.
Zurück zum Zitat Hellewell J, et al. Estimating the effectiveness of routine asymptomatic PCR testing at different frequencies for the detection of SARS-CoV-2 infections. BMC Med. 2021;19(1):106.PubMedPubMedCentralCrossRef Hellewell J, et al. Estimating the effectiveness of routine asymptomatic PCR testing at different frequencies for the detection of SARS-CoV-2 infections. BMC Med. 2021;19(1):106.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004;15(3):155–66.PubMedPubMedCentral Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004;15(3):155–66.PubMedPubMedCentral
22.
Zurück zum Zitat Binnicker MJ. Challenges and controversies to testing for COVID-19. J Clin Microbiol. 2020;58(11):e01695-20. Binnicker MJ. Challenges and controversies to testing for COVID-19. J Clin Microbiol. 2020;58(11):e01695-20.
23.
Zurück zum Zitat Li Y, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol. 2020;92(7):903–8.PubMedPubMedCentralCrossRef Li Y, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol. 2020;92(7):903–8.PubMedPubMedCentralCrossRef
24.
25.
Zurück zum Zitat Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn. 2020;20(5):453–4.PubMedCrossRef Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn. 2020;20(5):453–4.PubMedCrossRef
26.
Zurück zum Zitat Liu G, Rusling JF. COVID-19 antibody tests and their limitations. ACS Sens. 2021;6(3):593–612.PubMedCrossRef Liu G, Rusling JF. COVID-19 antibody tests and their limitations. ACS Sens. 2021;6(3):593–612.PubMedCrossRef
27.
Zurück zum Zitat Angeli E, et al. Nanotechnology applications in medicine. Tumori Journal. 2008;94(2):206–15.PubMedCrossRef Angeli E, et al. Nanotechnology applications in medicine. Tumori Journal. 2008;94(2):206–15.PubMedCrossRef
28.
Zurück zum Zitat Mahony O, Jones JR. Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution. Nanomedicine (Lond). 2008;3(2):233–45.PubMedCrossRef Mahony O, Jones JR. Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution. Nanomedicine (Lond). 2008;3(2):233–45.PubMedCrossRef
29.
Zurück zum Zitat Campbell GR, et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. J Tissue Eng Regen Med. 2008;2(1):50–60.PubMedCrossRef Campbell GR, et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. J Tissue Eng Regen Med. 2008;2(1):50–60.PubMedCrossRef
30.
Zurück zum Zitat Schoenhagen P, Conyers JL. Nanotechnology and atherosclerosis imaging: emerging diagnostic and therapeutic applications. Recent Pat Cardiovasc Drug Discov. 2008;3(2):98–104.PubMedCrossRef Schoenhagen P, Conyers JL. Nanotechnology and atherosclerosis imaging: emerging diagnostic and therapeutic applications. Recent Pat Cardiovasc Drug Discov. 2008;3(2):98–104.PubMedCrossRef
31.
32.
33.
Zurück zum Zitat Deng S, et al. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology. 2022;20(1):415.PubMedPubMedCentralCrossRef Deng S, et al. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology. 2022;20(1):415.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Vilian ATE, et al. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: a predictive strategy for heart failure. Biosens Bioelectron. 2019;142:111549.PubMedCrossRef Vilian ATE, et al. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: a predictive strategy for heart failure. Biosens Bioelectron. 2019;142:111549.PubMedCrossRef
35.
Zurück zum Zitat Vashist SK, Schneider EM, Luong JH. Surface plasmon resonance-based immunoassay for human C-reactive protein. Analyst. 2015;140(13):4445–52.PubMedCrossRef Vashist SK, Schneider EM, Luong JH. Surface plasmon resonance-based immunoassay for human C-reactive protein. Analyst. 2015;140(13):4445–52.PubMedCrossRef
36.
Zurück zum Zitat Li X, et al. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc Natl Acad Sci U S A. 2017;114(27):7089–94.PubMedPubMedCentralCrossRef Li X, et al. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc Natl Acad Sci U S A. 2017;114(27):7089–94.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Smith BR, Edelman ER. Nanomedicines for cardiovascular disease. Nature Cardiovascular Research. 2023;2(4):351–67.CrossRef Smith BR, Edelman ER. Nanomedicines for cardiovascular disease. Nature Cardiovascular Research. 2023;2(4):351–67.CrossRef
38.
Zurück zum Zitat Jazrawi A, et al. A comparison of skin staining after sentinel lymph node biopsy in women undergoing breast cancer surgery using blue dye and superparamagnetic iron oxide nanoparticle (spio) tracers. Cancers (Basel). 2022;14(23):6017 Jazrawi A, et al. A comparison of skin staining after sentinel lymph node biopsy in women undergoing breast cancer surgery using blue dye and superparamagnetic iron oxide nanoparticle (spio) tracers. Cancers (Basel). 2022;14(23):6017
39.
Zurück zum Zitat Martin DT, et al. Targeting prostate cancer with Clostridium perfringens enterotoxin functionalized nanoparticles co-encapsulating imaging cargo enhances magnetic resonance imaging specificity. Nanomedicine. 2022;40: 102477.PubMedCrossRef Martin DT, et al. Targeting prostate cancer with Clostridium perfringens enterotoxin functionalized nanoparticles co-encapsulating imaging cargo enhances magnetic resonance imaging specificity. Nanomedicine. 2022;40: 102477.PubMedCrossRef
40.
Zurück zum Zitat Tiwari H, et al. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering (Basel, Switzerland). 2023;10(7):760. Tiwari H, et al. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering (Basel, Switzerland). 2023;10(7):760.
41.
Zurück zum Zitat Sun L, et al. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem Eng J. 2021;405: 126733.CrossRef Sun L, et al. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem Eng J. 2021;405: 126733.CrossRef
42.
Zurück zum Zitat Zhang Y, et al. Micro/Nanorobots for medical diagnosis and disease treatment. Micromachines (Basel). 2022;13(5):648. Zhang Y, et al. Micro/Nanorobots for medical diagnosis and disease treatment. Micromachines (Basel). 2022;13(5):648.
43.
44.
Zurück zum Zitat Freitas RA. Nanomedicine, Volume I: Basic capabilities. 1st ed. Routledge: Taylor and Francis group. 1999. Freitas RA. Nanomedicine, Volume I: Basic capabilities. 1st ed. Routledge: Taylor and Francis group. 1999.
45.
Zurück zum Zitat Wang W, Zhou C. A journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the state-of-the-art. Adv Healthcare Mater. 2021;10(2):2001236.CrossRef Wang W, Zhou C. A journey of nanomotors for targeted cancer therapy: principles, challenges, and a critical review of the state-of-the-art. Adv Healthcare Mater. 2021;10(2):2001236.CrossRef
49.
Zurück zum Zitat Rao BS, Uda H. Microfluidic photomask design using CAD software for application in lab-on-chip biomedical nano diagnostics. Adv Mater Res. 2013;795:388–392. Rao BS, Uda H. Microfluidic photomask design using CAD software for application in lab-on-chip biomedical nano diagnostics. Adv Mater Res. 2013;795:388–392.
50.
Zurück zum Zitat Sun M, et al. Paper-based microfluidic chip for rapid detection of SARS-CoV-2 N protein. Bioengineered. 2022;13(1):876–83.PubMedCrossRef Sun M, et al. Paper-based microfluidic chip for rapid detection of SARS-CoV-2 N protein. Bioengineered. 2022;13(1):876–83.PubMedCrossRef
51.
Zurück zum Zitat Cojocaru R, et al. Microchip RT-PCR detection of nasopharyngeal SARS-CoV-2 samples. J Mol Diagn. 2021;23(6):683–90.PubMedCrossRef Cojocaru R, et al. Microchip RT-PCR detection of nasopharyngeal SARS-CoV-2 samples. J Mol Diagn. 2021;23(6):683–90.PubMedCrossRef
52.
Zurück zum Zitat Samson R, Navale GR, Dharne MS. Biosensors: frontiers in rapid detection of COVID-19. Biotech. 2020;10(9):385. Samson R, Navale GR, Dharne MS. Biosensors: frontiers in rapid detection of COVID-19. Biotech. 2020;10(9):385.
53.
Zurück zum Zitat Saylan Y, et al. An alternative medical diagnosis method: biosensors for virus detection. Biosensors (Basel). 2019;9(2):65. Saylan Y, et al. An alternative medical diagnosis method: biosensors for virus detection. Biosensors (Basel). 2019;9(2):65.
54.
Zurück zum Zitat Chircov C, Grumezescu AM. Microelectromechanical systems (MEMS) for biomedical applications. Micromachines (Basel). 2022;13(2):164. Chircov C, Grumezescu AM. Microelectromechanical systems (MEMS) for biomedical applications. Micromachines (Basel). 2022;13(2):164.
55.
Zurück zum Zitat Muhsin SA, et al. A microfluidic biosensor architecture for the rapid detection of COVID-19. Anal Chim Acta. 2023;1275: 341378.PubMedCrossRef Muhsin SA, et al. A microfluidic biosensor architecture for the rapid detection of COVID-19. Anal Chim Acta. 2023;1275: 341378.PubMedCrossRef
56.
Zurück zum Zitat Li Z, et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat Nanotechnol. 2021;16(8):942–51.PubMedPubMedCentralCrossRef Li Z, et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat Nanotechnol. 2021;16(8):942–51.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Barghash RF, et al. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings. 2021;11(11):1273.CrossRef Barghash RF, et al. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings. 2021;11(11):1273.CrossRef
58.
Zurück zum Zitat West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng. 2003;5:285–92.PubMedCrossRef West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng. 2003;5:285–92.PubMedCrossRef
59.
Zurück zum Zitat Singh P, et al. Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine. 2021;16(14):1219–35.PubMedCrossRef Singh P, et al. Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine. 2021;16(14):1219–35.PubMedCrossRef
61.
Zurück zum Zitat Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers. 2008;13(7):637–57.PubMedCrossRef Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers. 2008;13(7):637–57.PubMedCrossRef
62.
Zurück zum Zitat Gupta SL, Basu S. Smart nanosensors in healthcare recent developments and applications. In: Kaushik S, Soni V, Skotti E, editors. Nanosensors for futuristic smart and intelligent healthcare systems. Routledge: Taylor and Francis; 2022; Edition 1; pp. 3–18. Gupta SL, Basu S. Smart nanosensors in healthcare recent developments and applications. In: Kaushik S, Soni V, Skotti E, editors. Nanosensors for futuristic smart and intelligent healthcare systems. Routledge: Taylor and Francis; 2022; Edition 1; pp. 3–18.
63.
Zurück zum Zitat Patel PD. (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC, Trends Anal Chem. 2002;21(2):96–115.CrossRef Patel PD. (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC, Trends Anal Chem. 2002;21(2):96–115.CrossRef
64.
Zurück zum Zitat Zhang D, et al. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron. 2010;25(5):1088–94.PubMedCrossRef Zhang D, et al. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron. 2010;25(5):1088–94.PubMedCrossRef
65.
Zurück zum Zitat Qureshi A, Gurbuz Y, Niazi JH. Label-free detection of cardiac biomarker using aptamer based capacitive biosensor. Procedia Engineering. 2010;5:828–30.CrossRef Qureshi A, Gurbuz Y, Niazi JH. Label-free detection of cardiac biomarker using aptamer based capacitive biosensor. Procedia Engineering. 2010;5:828–30.CrossRef
66.
Zurück zum Zitat Dai H, et al. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron. 2010;25(6):1414–9. Dai H, et al. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens Bioelectron. 2010;25(6):1414–9.
68.
Zurück zum Zitat Khan R, et al. Two-dimensional nanostructures for electrochemical biosensor Sensors. 2021;21(10):3369.PubMed Khan R, et al. Two-dimensional nanostructures for electrochemical biosensor Sensors. 2021;21(10):3369.PubMed
70.
Zurück zum Zitat Abdellatif AAH, et al. Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomedicine. 2022;17:1951–70.PubMedPubMedCentralCrossRef Abdellatif AAH, et al. Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomedicine. 2022;17:1951–70.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Simon J, et al. Overview of carbon nanotubes for biomedical applications. Materials (Basel, Switzerland). 2019;12(4):624. Simon J, et al. Overview of carbon nanotubes for biomedical applications. Materials (Basel, Switzerland). 2019;12(4):624.
73.
Zurück zum Zitat Mukhtar A, et al. Magnetic nanowires in biomedical applications. Nanotechnology. 2020;31(43): 433001.PubMedCrossRef Mukhtar A, et al. Magnetic nanowires in biomedical applications. Nanotechnology. 2020;31(43): 433001.PubMedCrossRef
74.
Zurück zum Zitat Svenson S, Tomalia DA. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev. 2005;57(15):2106–29.PubMedCrossRef Svenson S, Tomalia DA. Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev. 2005;57(15):2106–29.PubMedCrossRef
75.
Zurück zum Zitat Chis AA, et al. Applications and limitations of dendrimers in biomedicine. Molecules (Basel, Switzerland). 2020;25(17):3982. Chis AA, et al. Applications and limitations of dendrimers in biomedicine. Molecules (Basel, Switzerland). 2020;25(17):3982.
76.
Zurück zum Zitat Li J, et al. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot. 2017;2(4):eaam6431. Li J, et al. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot. 2017;2(4):eaam6431.
77.
Zurück zum Zitat Li M, et al. An overview of recent progress in micro/nanorobots for biomedical applications. Advanced Materials Technologies. 2023;8(11):2201928.CrossRef Li M, et al. An overview of recent progress in micro/nanorobots for biomedical applications. Advanced Materials Technologies. 2023;8(11):2201928.CrossRef
79.
Zurück zum Zitat Nakhaei P, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886. Nakhaei P, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886.
80.
Zurück zum Zitat Preethi M, et al. Outlook of various diagnostics and nanodiagnostic techniques for COVID-19. Biosens Bioelectron X. 2022;12:100276.PubMedPubMedCentral Preethi M, et al. Outlook of various diagnostics and nanodiagnostic techniques for COVID-19. Biosens Bioelectron X. 2022;12:100276.PubMedPubMedCentral
82.
Zurück zum Zitat Galindo-Hernandez O, et al. Elevated concentration of microvesicles isolated from peripheral blood in breast cancer patients. Arch Med Res. 2013;44(3):208–14.PubMedCrossRef Galindo-Hernandez O, et al. Elevated concentration of microvesicles isolated from peripheral blood in breast cancer patients. Arch Med Res. 2013;44(3):208–14.PubMedCrossRef
83.
Zurück zum Zitat Moitra P, et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14(6):7617–27.PubMedCrossRef Moitra P, et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14(6):7617–27.PubMedCrossRef
84.
Zurück zum Zitat Zhu X, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron. 2020;166:112437.PubMedPubMedCentralCrossRef Zhu X, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron. 2020;166:112437.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Kim HE, et al. Gold nanostructures modified carbon-based electrode enhanced with methylene blue for point-of-care COVID-19 tests using isothermal amplification. Talanta. 2023;265:124841.PubMedPubMedCentralCrossRef Kim HE, et al. Gold nanostructures modified carbon-based electrode enhanced with methylene blue for point-of-care COVID-19 tests using isothermal amplification. Talanta. 2023;265:124841.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Palestino G, et al. Can nanotechnology help in the fight against COVID-19? Expert Rev Anti Infect Ther. 2020;18(9):849–64.PubMedCrossRef Palestino G, et al. Can nanotechnology help in the fight against COVID-19? Expert Rev Anti Infect Ther. 2020;18(9):849–64.PubMedCrossRef
87.
Zurück zum Zitat Bolourinezhad M, et al. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta. 2023;265: 124804.PubMedPubMedCentralCrossRef Bolourinezhad M, et al. Design of a rapid electrochemical biosensor based on MXene/Pt/C nanocomposite and DNA/RNA hybridization for the detection of COVID-19. Talanta. 2023;265: 124804.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Yang W, et al. Ultra-sensitive and specific detection of pathogenic nucleic acids using composite-excited hyperfine plasma spectroscopy combs sensitized by Au nanoarrays functionalized with 2D Ta(2)C-MXene. Biosens Bioelectron. 2023;235:115358.PubMedPubMedCentralCrossRef Yang W, et al. Ultra-sensitive and specific detection of pathogenic nucleic acids using composite-excited hyperfine plasma spectroscopy combs sensitized by Au nanoarrays functionalized with 2D Ta(2)C-MXene. Biosens Bioelectron. 2023;235:115358.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Seo G, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.PubMedCrossRef Seo G, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.PubMedCrossRef
91.
Zurück zum Zitat Liu Y, et al. Development of a fluorescent immunochromatographic assay based on quantum dot-functionalized two-dimensional monolayer Ti(3)C(2) MXene nanoprobes for the simultaneous detection of influenza A virus and SARS-CoV-2. ACS Appl Mater Interfaces. 2023;15(30):35872–83.PubMedCrossRef Liu Y, et al. Development of a fluorescent immunochromatographic assay based on quantum dot-functionalized two-dimensional monolayer Ti(3)C(2) MXene nanoprobes for the simultaneous detection of influenza A virus and SARS-CoV-2. ACS Appl Mater Interfaces. 2023;15(30):35872–83.PubMedCrossRef
92.
Zurück zum Zitat Tao S, et al. SARS-Cov-2 spike-S1 antigen test strip with high sensitivity endowed by high-affinity antibodies and brightly fluorescent QDs/silica nanospheres. ACS Appl Mater Interfaces. 2023;15(23):27612–23.PubMedCrossRef Tao S, et al. SARS-Cov-2 spike-S1 antigen test strip with high sensitivity endowed by high-affinity antibodies and brightly fluorescent QDs/silica nanospheres. ACS Appl Mater Interfaces. 2023;15(23):27612–23.PubMedCrossRef
93.
Zurück zum Zitat Bai L, et al. A polyaniline functionalized NiFeP nanosheet array-based electrochemical immunosensor using Au/Cu(2)O nanocubes as a signal amplifier for the detection of SARS-CoV-2 nucleocapsid protein. Analyst. 2023;148(14):3359–70.PubMedCrossRef Bai L, et al. A polyaniline functionalized NiFeP nanosheet array-based electrochemical immunosensor using Au/Cu(2)O nanocubes as a signal amplifier for the detection of SARS-CoV-2 nucleocapsid protein. Analyst. 2023;148(14):3359–70.PubMedCrossRef
94.
Zurück zum Zitat Singh AV, et al. Interfacial water in the SARS spike protein: investigating the interaction with human ACE2 receptor and in vitro uptake in A549 cells. Langmuir. 2022;38(26):7976–88.PubMedCrossRef Singh AV, et al. Interfacial water in the SARS spike protein: investigating the interaction with human ACE2 receptor and in vitro uptake in A549 cells. Langmuir. 2022;38(26):7976–88.PubMedCrossRef
95.
Zurück zum Zitat Yeh Y-T, et al. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci Adv. 2016;2(10):e1601026.PubMedPubMedCentralCrossRef Yeh Y-T, et al. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Sci Adv. 2016;2(10):e1601026.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Pramanik A, et al. The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Adv. 2021;3(6):1588–96.PubMedPubMedCentralCrossRef Pramanik A, et al. The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Adv. 2021;3(6):1588–96.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Han Y, Král P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano. 2020;14(4):5143–7.PubMedCrossRef Han Y, Král P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano. 2020;14(4):5143–7.PubMedCrossRef
102.
Zurück zum Zitat Ma Q, et al. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter. 2020;3(1):287–301.PubMedPubMedCentralCrossRef Ma Q, et al. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter. 2020;3(1):287–301.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Serebrovska Z, et al. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother. 2017;92:69–77.PubMedCrossRef Serebrovska Z, et al. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother. 2017;92:69–77.PubMedCrossRef
106.
Zurück zum Zitat Balagna C, et al. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics. 2020;1:100006–100006.PubMedCentralCrossRef Balagna C, et al. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics. 2020;1:100006–100006.PubMedCentralCrossRef
107.
Zurück zum Zitat Srivastava AK, et al. Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. Mater Today Chem. 2020;18:100385.PubMedPubMedCentralCrossRef Srivastava AK, et al. Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. Mater Today Chem. 2020;18:100385.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Peng S, et al. Particulate alum via pickering emulsion for an enhanced COVID-19 vaccine adjuvant. Adv Mater. 2020;32(40):2004210.CrossRef Peng S, et al. Particulate alum via pickering emulsion for an enhanced COVID-19 vaccine adjuvant. Adv Mater. 2020;32(40):2004210.CrossRef
111.
Zurück zum Zitat Kwon PS, et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat Chem. 2020;12(1):26–35.PubMedCrossRef Kwon PS, et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat Chem. 2020;12(1):26–35.PubMedCrossRef
112.
Zurück zum Zitat Jones W, et al. Nanomaterials in construction – what is being used, and where? Proceedings of the Institution of Civil Engineers - Construction Materials. 2019;172(2):49–62.CrossRef Jones W, et al. Nanomaterials in construction – what is being used, and where? Proceedings of the Institution of Civil Engineers - Construction Materials. 2019;172(2):49–62.CrossRef
113.
Zurück zum Zitat Lauster D, et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat Nanotechnol. 2020;15(5):373–9.PubMedCrossRef Lauster D, et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat Nanotechnol. 2020;15(5):373–9.PubMedCrossRef
114.
Zurück zum Zitat Singh AV, et al. Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: influence of shape and environmental factors on particokinetics/particle aerodynamics. Sci Total Environ. 2023;860: 160503.PubMedCrossRef Singh AV, et al. Coronavirus-mimicking nanoparticles (CorNPs) in artificial saliva droplets and nanoaerosols: influence of shape and environmental factors on particokinetics/particle aerodynamics. Sci Total Environ. 2023;860: 160503.PubMedCrossRef
115.
Zurück zum Zitat Soni V, et al. Genomic surveillance of bacterial pathogens: expanding horizons. In: Rajesh P, editor. Genomic surveillance and pandemic preparedness. Academic Press; 2023;71–117. Soni V, et al. Genomic surveillance of bacterial pathogens: expanding horizons. In: Rajesh P, editor. Genomic surveillance and pandemic preparedness. Academic Press; 2023;71–117.
116.
Zurück zum Zitat Kundu P, et al. Cancer nanotheranostics: a nanomedicinal approach for cancer therapy and diagnosis. Anti Cancer Agents Med Chem. 2020;20(11):1288–1299. Kundu P, et al. Cancer nanotheranostics: a nanomedicinal approach for cancer therapy and diagnosis. Anti Cancer Agents Med Chem. 2020;20(11):1288–1299.
117.
Zurück zum Zitat Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10(13):5932–42.PubMedPubMedCentralCrossRef Itani R, Tobaiqy M, Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10(13):5932–42.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Madamsetty VS, et al. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine: Nanotechnology. Biol Med. 2019;18:112–21. Madamsetty VS, et al. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine: Nanotechnology. Biol Med. 2019;18:112–21.
120.
Zurück zum Zitat Vemuri R, et al. Effect on structural and magnetic properties of Mg2+ substituted cobalt nano ferrite. Results in Physics. 2019;12:947–52.CrossRef Vemuri R, et al. Effect on structural and magnetic properties of Mg2+ substituted cobalt nano ferrite. Results in Physics. 2019;12:947–52.CrossRef
121.
Zurück zum Zitat Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discovery Today. 2014;19(4):474–81.PubMedCrossRef Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discovery Today. 2014;19(4):474–81.PubMedCrossRef
122.
Zurück zum Zitat Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng, C. 2020;112. Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng, C. 2020;112.
123.
Zurück zum Zitat Justino CI, Duarte AC, Rocha-Santos TA. Immunosensors in clinical laboratory diagnostics. Adv Clin Chem. 2016;73:65–108.PubMedCrossRef Justino CI, Duarte AC, Rocha-Santos TA. Immunosensors in clinical laboratory diagnostics. Adv Clin Chem. 2016;73:65–108.PubMedCrossRef
125.
Zurück zum Zitat Gao Y, et al. Nanotechnology-enabled COVID-19 mRNA vaccines. Encyclopedia. 2021;1(3):773–80.CrossRef Gao Y, et al. Nanotechnology-enabled COVID-19 mRNA vaccines. Encyclopedia. 2021;1(3):773–80.CrossRef
126.
Zurück zum Zitat Gupta SL, et al. An assessment of the strategy and status of COVID-19 vaccination in India. Immunol Res. 2023;71(4):565–577. Gupta SL, et al. An assessment of the strategy and status of COVID-19 vaccination in India. Immunol Res. 2023;71(4):565–577.
127.
Zurück zum Zitat Huang X, et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat Nanotechnol. 2022;17(10):1027–37.PubMedCrossRef Huang X, et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat Nanotechnol. 2022;17(10):1027–37.PubMedCrossRef
128.
Zurück zum Zitat Tenchov R, et al. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–7015.PubMedCrossRef Tenchov R, et al. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–7015.PubMedCrossRef
130.
131.
Zurück zum Zitat Goepfert PA, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1–2, dose-ranging study. Lancet Infect Dis. 2021;21(9):1257–70.PubMedPubMedCentralCrossRef Goepfert PA, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1–2, dose-ranging study. Lancet Infect Dis. 2021;21(9):1257–70.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82.PubMedCrossRef Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82.PubMedCrossRef
133.
Zurück zum Zitat Huo J, et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat Commun. 2021;12(1):5469.PubMedPubMedCentralCrossRef Huo J, et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat Commun. 2021;12(1):5469.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Zupancic JM, et al. Engineered multivalent nanobodies potently and broadly neutralize SARS-CoV-2 variants. Adv Ther (Weinh). 2021;4(8):2100099.PubMedCrossRef Zupancic JM, et al. Engineered multivalent nanobodies potently and broadly neutralize SARS-CoV-2 variants. Adv Ther (Weinh). 2021;4(8):2100099.PubMedCrossRef
135.
Zurück zum Zitat Koenig PA, et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science. 2021;371(6530):eabe6230. Koenig PA, et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science. 2021;371(6530):eabe6230.
136.
Zurück zum Zitat Liu H, et al. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. Cell Rep Med. 2023;4(2):100918.PubMedPubMedCentralCrossRef Liu H, et al. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. Cell Rep Med. 2023;4(2):100918.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Rao L, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A. 2020;117(44):27141–7.PubMedPubMedCentralCrossRef Rao L, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A. 2020;117(44):27141–7.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Rao L, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci. 2020;117(44):27141–7.PubMedPubMedCentralCrossRef Rao L, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci. 2020;117(44):27141–7.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Chakraborty A, et al. Mechanism of antiviral activities of nanoviricide’s platform technology based biopolymer (NV-CoV-2). AIMS Public Health. 2022;9(2):415–22.PubMedPubMedCentralCrossRef Chakraborty A, et al. Mechanism of antiviral activities of nanoviricide’s platform technology based biopolymer (NV-CoV-2). AIMS Public Health. 2022;9(2):415–22.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Salamończyk GM. A fast and convenient synthesis of new water-soluble, polyanionic dendrimers. Molecules. 2021;26(16):4754. Salamończyk GM. A fast and convenient synthesis of new water-soluble, polyanionic dendrimers. Molecules. 2021;26(16):4754.
142.
Zurück zum Zitat Zhang J, et al. Spatially patterned neutralizing icosahedral DNA nanocage for efficient SARS-CoV-2 blocking. J Am Chem Soc. 2022;144(29):13146–53.PubMedCrossRef Zhang J, et al. Spatially patterned neutralizing icosahedral DNA nanocage for efficient SARS-CoV-2 blocking. J Am Chem Soc. 2022;144(29):13146–53.PubMedCrossRef
144.
Zurück zum Zitat Đorđević S, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res. 2022;12(3):500–25.PubMedCrossRef Đorđević S, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res. 2022;12(3):500–25.PubMedCrossRef
145.
Zurück zum Zitat Hua S, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.PubMedPubMedCentralCrossRef Hua S, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.PubMedPubMedCentralCrossRef
146.
148.
149.
Zurück zum Zitat Gaspar R. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine. 2007;2(2):143–7.PubMedCrossRef Gaspar R. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine. 2007;2(2):143–7.PubMedCrossRef
150.
Zurück zum Zitat Tinkle S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35–56.PubMedCrossRef Tinkle S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35–56.PubMedCrossRef
151.
Zurück zum Zitat Sainz V, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–10.PubMedCrossRef Sainz V, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–10.PubMedCrossRef
152.
Zurück zum Zitat Brownsword R. Regulating nanomedicine—the smallest of our concerns? NanoEthics. 2008;2(1):73–86.CrossRef Brownsword R. Regulating nanomedicine—the smallest of our concerns? NanoEthics. 2008;2(1):73–86.CrossRef
153.
Zurück zum Zitat Uskoković V. Nanomedicine for the poor: a lost cause or an idea whose time has yet to come? Nanomedicine (Lond). 2021;16(14):1203–18.PubMedCrossRef Uskoković V. Nanomedicine for the poor: a lost cause or an idea whose time has yet to come? Nanomedicine (Lond). 2021;16(14):1203–18.PubMedCrossRef
154.
Zurück zum Zitat Kwatra Shubhika. Nanotechnology and medicine – The upside and the downside. International Journal of Drug Development and Research. 2013;5(1):1–10. Kwatra Shubhika. Nanotechnology and medicine – The upside and the downside. International Journal of Drug Development and Research. 2013;5(1):1–10.
155.
Zurück zum Zitat Meetoo D. Nanotechnology: is there a need for ethical principles? British Journal of Nursing. 2009;18(20):1264–8.PubMedCrossRef Meetoo D. Nanotechnology: is there a need for ethical principles? British Journal of Nursing. 2009;18(20):1264–8.PubMedCrossRef
156.
Zurück zum Zitat Fisher E, et al. Responsible healthcare innovation: anticipatory governance of nanodiagnostics for theranostics medicine. Expert Rev Mol Diagn. 2012;12(8):857–70.PubMedCrossRef Fisher E, et al. Responsible healthcare innovation: anticipatory governance of nanodiagnostics for theranostics medicine. Expert Rev Mol Diagn. 2012;12(8):857–70.PubMedCrossRef
159.
Zurück zum Zitat Ahmed MK, Afifi M, Uskoković V. Protecting healthcare workers during COVID-19 pandemic with nanotechnology: a protocol for a new device from Egypt. J Infect Public Health. 2020;13(9):1243–6.PubMedPubMedCentralCrossRef Ahmed MK, Afifi M, Uskoković V. Protecting healthcare workers during COVID-19 pandemic with nanotechnology: a protocol for a new device from Egypt. J Infect Public Health. 2020;13(9):1243–6.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Hua R, et al. A sensitive potentiometric resolved ratiometric photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosens Bioelectron. 2018;106:57–63.PubMedCrossRef Hua R, et al. A sensitive potentiometric resolved ratiometric photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosens Bioelectron. 2018;106:57–63.PubMedCrossRef
161.
Zurück zum Zitat Parisi C, Vigani M, Rodríguez-Cerezo E. Agricultural nanotechnologies: what are the current possibilities? Nano Today. 2015;10(2):124–7.CrossRef Parisi C, Vigani M, Rodríguez-Cerezo E. Agricultural nanotechnologies: what are the current possibilities? Nano Today. 2015;10(2):124–7.CrossRef
162.
Zurück zum Zitat Li C, et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol. 2009;1(1):37–45.PubMedCrossRef Li C, et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol. 2009;1(1):37–45.PubMedCrossRef
163.
Zurück zum Zitat Owen R, Depledge M. Nanotechnology and the environment: risks and rewards. Mar Pollut Bull. 2005;50(6):609–12.PubMedCrossRef Owen R, Depledge M. Nanotechnology and the environment: risks and rewards. Mar Pollut Bull. 2005;50(6):609–12.PubMedCrossRef
165.
Zurück zum Zitat Singh AV, et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol. 2023;97(4):963–79.PubMedPubMedCentralCrossRef Singh AV, et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol. 2023;97(4):963–79.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Singh AV, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthcare Mater. 2020;9(17):1901862.CrossRef Singh AV, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthcare Mater. 2020;9(17):1901862.CrossRef
168.
Zurück zum Zitat Chandrasekar V, et al. Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access. 2023;11:52726–39.CrossRef Chandrasekar V, et al. Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access. 2023;11:52726–39.CrossRef
169.
Zurück zum Zitat Gomes JC, et al. IKONOS: an intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images. Research on Biomedical Engineering. 2022;38(1):15–28. Gomes JC, et al. IKONOS: an intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images. Research on Biomedical Engineering. 2022;38(1):15–28.
170.
Zurück zum Zitat de Santana MA, et al. An intelligent tool to support diagnosis of COVID-19 by texture analysis of computerized tomography X-ray images and machine learning. In: Pani SK, et al., editors. Assessing COVID-19 and other pandemics and epidemics using computational modelling and data analysis. Cham: Springer International Publishing; 2022. p. 259–82.CrossRef de Santana MA, et al. An intelligent tool to support diagnosis of COVID-19 by texture analysis of computerized tomography X-ray images and machine learning. In: Pani SK, et al., editors. Assessing COVID-19 and other pandemics and epidemics using computational modelling and data analysis. Cham: Springer International Publishing; 2022. p. 259–82.CrossRef
171.
Zurück zum Zitat Shiri I, et al. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network. Eur Radiol. 2021;31(3):1420–31.PubMedCrossRef Shiri I, et al. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network. Eur Radiol. 2021;31(3):1420–31.PubMedCrossRef
172.
Zurück zum Zitat Ardakani AA, et al. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks. Comput Biol Med. 2020;121: 103795.PubMedPubMedCentralCrossRef Ardakani AA, et al. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks. Comput Biol Med. 2020;121: 103795.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Singh AV, et al. Digital transformation in toxicology: improving communication and efficiency in risk assessment. ACS Omega. 2023;8(24):21377–90.PubMedPubMedCentralCrossRef Singh AV, et al. Digital transformation in toxicology: improving communication and efficiency in risk assessment. ACS Omega. 2023;8(24):21377–90.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Singh AV, et al. Integrative toxicogenomics: advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother. 2023;163: 114784.PubMedCrossRef Singh AV, et al. Integrative toxicogenomics: advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother. 2023;163: 114784.PubMedCrossRef
175.
Zurück zum Zitat Nitulescu GM, et al. Comprehensive analysis of drugs to treat SARS-CoV-2 infection: mechanistic insights into current COVID-19 therapies (review). Int J Mol Med. 2020;46(2):467–88.PubMedPubMedCentralCrossRef Nitulescu GM, et al. Comprehensive analysis of drugs to treat SARS-CoV-2 infection: mechanistic insights into current COVID-19 therapies (review). Int J Mol Med. 2020;46(2):467–88.PubMedPubMedCentralCrossRef
177.
178.
Zurück zum Zitat Gunn BM, et al. A role for Fc function in therapeutic monoclonal antibody-mediated protection against Ebola virus. Cell Host Microbe. 2018;24(2):221–233.e5.PubMedPubMedCentralCrossRef Gunn BM, et al. A role for Fc function in therapeutic monoclonal antibody-mediated protection against Ebola virus. Cell Host Microbe. 2018;24(2):221–233.e5.PubMedPubMedCentralCrossRef
179.
180.
Zurück zum Zitat Saini P, et al. Siglec-9 restrains antibody-dependent natural killer cell cytotoxicity against SARS-CoV-2. MBio. 2023;14(1):0339322.CrossRef Saini P, et al. Siglec-9 restrains antibody-dependent natural killer cell cytotoxicity against SARS-CoV-2. MBio. 2023;14(1):0339322.CrossRef
181.
Zurück zum Zitat Golchin A. Cell-based therapy for severe COVID-19 patients: clinical trials and cost-utility. Stem Cell Rev Rep. 2021;17(1):56–62.PubMedCrossRef Golchin A. Cell-based therapy for severe COVID-19 patients: clinical trials and cost-utility. Stem Cell Rev Rep. 2021;17(1):56–62.PubMedCrossRef
182.
Zurück zum Zitat Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present or future. Stem Cell Reviews and Reports. 2020;16(3):427–33.PubMedPubMedCentralCrossRef Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present or future. Stem Cell Reviews and Reports. 2020;16(3):427–33.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Gupta SL, Jaiswal RK. Relevant of neutralizing antibody during SARS-CoV-2 infection and their therapeutic usage. Mol Biol Rep. 2022;49(10):10137–40.PubMedPubMedCentralCrossRef Gupta SL, Jaiswal RK. Relevant of neutralizing antibody during SARS-CoV-2 infection and their therapeutic usage. Mol Biol Rep. 2022;49(10):10137–40.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat van Dijk H, et al. Determinants of stakeholders’ attitudes towards a new technology: nanotechnology applications for food, water, energy and medicine. J Risk Res. 2017;20(2):277–98.CrossRef van Dijk H, et al. Determinants of stakeholders’ attitudes towards a new technology: nanotechnology applications for food, water, energy and medicine. J Risk Res. 2017;20(2):277–98.CrossRef
187.
Zurück zum Zitat Sadiku M, et al. Future of nanotechnology. International Journal Of Scientific Advances. 2021;2(2);131–134. Sadiku M, et al. Future of nanotechnology. International Journal Of Scientific Advances. 2021;2(2);131–134.
Metadaten
Titel
Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2
verfasst von
Atika Dhar
Sneh Lata Gupta
Pratima Saini
Kirti Sinha
Ankita Khandelwal
Rohit Tyagi
Alka Singh
Priyanka Sharma
Rishi Kumar Jaiswal
Publikationsdatum
08.09.2023
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 1/2024
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-023-09416-x

Weitere Artikel der Ausgabe 1/2024

Immunologic Research 1/2024 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.