Skip to main content
Erschienen in: Journal of Clinical Immunology 4/2024

Open Access 01.04.2024 | Letter to Editor

Monozygotic Twins with MAGT1 Deficiency and Epstein–Barr virus-positive Classic Hodgkin Lymphoma Receiving anti-CD30 CAR T-cell Immunotherapy: A case Report

verfasst von: Jiachen Wang, Mi Zhou, Jianfeng Zhou, Min Xiao, Liang Huang

Erschienen in: Journal of Clinical Immunology | Ausgabe 4/2024

Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10875-024-01690-0.
Jiachen Wang and Mi Zhou contributed equally as first authors to this work. Min Xiao and Liang Huang contributed equally as corresponding authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
1000G
1000 Genomes Project
allo-HSCT
allogeneic hematopoietic stem cell transplantation
anti-PD-1
anti-programmed cell death protein 1 antibody
autoHSCT
autologous hematopoietic stem cell transplantation
Bio-RAID
Biology Research and Development,chimeric antigen receptor
CD107a
cluster of differentiation 107a
CD3ζ
CD3-zeta chain
ChiCTR
Chinese clinical trial registry
cHL
classic Hodgkin lymphoma
CR
complete remission
CRS
cytokine release syndrome
CTL
cytotoxic T lymphocyte
delins
deletion/insertion
ddPCR
droplet digital polymerase chain reaction
DNA
deoxyribonucleic acid
DNM
de novo mutation
Dr.
doctor
EBV
Epstein-Barr virus
EGFP
enhanced green fluorescent protein
FDG-PET/CT
fluorodeoxyglucose positron emission tomography/computed tomography
ExAC
Exome Aggregation Consortium
Prof
professor
fs
frame shift
FFPE
formalin-fixed,paraffin-embedded
GenomAD
Genome Aggregation Database
Gly
glycine
HD
healthy donor,IEI,Inborn Errors of Immunity
IFNγ
Interferon-gamma
IL-6
interleukin-6
IUIS
Union of Immunological Societies Expert Committee
MAF
minor allele frequency
MAGT1
magnesium transporter 1
NCBI
National Center for Biotechnology Information
NGS
next-generation sequencing
No
number
NK
natural killer
NKG2D
natural killer group 2,member D
PET/CT
positron emission tomography/computed tomography
PBMC
peripheral blood mononuclear cell
PD
progressive disease
PID
primary immunodeficiency
r/r
relapsed/refractory
SD
stable disease
scFv
single chain variable fragment
SP
signal peptide
TCR
T-cell receptor
VL
variable L chain
Val
Valine
VH
variable H chain
WGS
whole-genome sequencing
XMEN
X-linked immunodeficiency with magnesium defect,EBV infection,and neoplasia

To the Editor,

Epstein-Barr virus (EBV)-positive classical Hodgkin lymphoma (cHL) is the most common malignancy in patients with “X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia” (XMEN). Aberrant expression of MAGT1 leads to XMEN, a congenital disorder of combined primary immunodeficiency (PID) characterized by increased susceptibility to chronic EBV infection and EBV-associated lymphoproliferation [1]. Patients with variants in MAGT1 suffer from an N-linked glycosylation defect, resulting in low CD4+ cell counts with an inverted CD4:CD8 ratio, reduced expression of NKG2D (a natural killer (NK)-cell activating receptor) on NK cells and cytotoxic T lymphocytes (CTLs), and impaired T-cell activation through NKG2D [2].
A variety of approaches have been used to control this disease. However, the therapeutic effects are limited [3]. A new approach involving chimeric antigen receptor (CAR) T cells specific for CD30 can be used to treat relapsed or refractory (r/r) HL. Previously, we reported the safety, efficacy and robust long-term performance of CD30 CAR T-cell immunotherapy in our center [4]. However, there have been no reports on CAR T-cell therapy for lymphoma in XMEN thus far. Here, we present the first case of an identical twin with MAGT1-deficient cHL receiving murine CD30 CAR T-cell therapy and hope to provide insight into a therapeutic strategy for such patients.

Case Presentation

The monozygotic twins were diagnosed with the cHL (mixed cellularity) at three and nine years of age. Twin 1 and twin 2 developed progressive disease (PD) after receiving chemotherapy, autologous HSCT, anti-CD30 antibodies, and anti-PD-1 monoclonal antibodies. Supplemental Table 1 shows the therapeutic clinical therapy and disease state timeline of this case.
The twins were referred to our hospital to receive murine anti-CD30 CAR T cell therapy. Before treatment, CD30 target antigen expression was confirmed by immunohistochemical staining of the initially diagnosed lymph nodes (Supplemental Fig. 1). The structure (Fig. 1A) and manufacturing of CAR T cells are described in the Supplemental Methods as previously described [4]. The twins were given a standard dose of the FC regimen on days − 5 to -3 as lymphodepletion. Anti-CD30 CAR T cells (4 × 106 kg/day) were infused on days 0–3 and days 0–5 for twins 1 and 2, respectively (Fig. 1B). T cells with the anti-CD30 CAR transgene expanded and persisted well in the twins compared with the previously reported average level in our center [4]. The key factors related to the therapeutic effect of CAR-T cells are presented in Supplemental Table 2. Compared to those of twin 2, twin 1 had a higher level of CAR T-cell expansion and longer persistence (Fig. 1C and D, Supplemental Table 3), and the level of interleukin-6 (IL-6) was greater in twin 1 (Fig. 1E). Grade 1 and grade 0 cytokine release syndrome (CRS) were observed in twin 1 and twin 2, respectively (Fig. 1F). Neither of the twins experienced any significant infections or neurological symptoms before or after CAR-T cell therapy. The twins achieved complete remission (CR) at + 3 months after CAR T-cell infusion. Twenty-three months later, twin 1 developed PD, but twin 2 remained in CR (Fig. 1G). Then, twins 1 and 2 received 200 mg of anti-PD-1 antibody every 1–2 months and every 2 months, respectively. As of December 2023, Twin-1 was maintained in stable disease (SD), and Twin-2 remained in CR.
In contrast, the twins’ half-brother, who shares the same mother and is 10 years older, currently remain healthy. The patients did not have a family history of cancer. To explore potential inborn errors of immunity (IEIs) underlying the persistent refractoriness of these young twins, whole-genome sequencing (WGS) was retrospectively performed on the peripheral blood mononuclear cells (PBMCs) of the twins and their older half-brother. WGS data have been uploaded to the National Center for Biotechnology Information (NCBI): PRJNA809536. The 2022 Immunological Societies Expert Committee (IUIS) updated gene list was included in the analysis. The filtered nonsynonymous variants are showed in Supplemental Table 4. Alterations that the twins shared but the half-brother lacked were selected. Among these, a complex hemizygous frameshift variant in MAGT1 (c.131_134delinsGTGGTGGTTTTGGTGTGT, p.Val44Glyfs*38, NM_032121.5), which has never been reported in public databases (1000G, ExAC, and GenomAD), was identified (Fig. 1J). Sanger sequencing confirmed that the twins were hemizygous for the MAGT1 frameshift variant, while their half-brother and mother carried the wild-type gene (Fig. 1H, I). In addition, XMEN-related clinical manifestations and laboratory findings of the twins were identified [1] and shown in Supplemental Fig. 2A-3 H.
Furthermore, several functional experiments in vitro were performed to explore the characteristics of XMEN. As the CAR30 transgene was detected at zero copy number by droplet digital polymerase chain reaction (ddPCR) in both twins, there was no impact on the activity of CAR T-cells in vitro. First, NKG2D, the best biomarker of XMEN disease, was assessed, and it was found to be decreased in both CD8+ T cells and NK cells from twins compared those from mothers and two healthy donors (Fig. 1K, Supplemental Fig. 3). Second, the twins’ CD8+ T cells and NK cells had impaired expression of perforin (Fig. 1L, Supplemental Fig. 4) and diminished cytotoxicity when stimulated (Fig. 1M). Third, degranulation assays indicated that activated CTLs and NK cells were normal, while resting CTLs and NK cells were deficient (Fig. 1N, Supplemental Fig. 5).

Discussion and Conclusions

XMEN is caused by loss-of-function variants in MAGT1. In the present case, identical twins suffered from the same type of disease due to the same MAGT1 hemizygous deletion. In addition, next-generation sequencing (NGS) revealed typical genetic aberrations (Supplemental Table 4) in cHL according to the initial diagnosis via formalin-fixed, paraffin-embedded (FFPE) sequencing, indicating that germline MAGT1 alteration was the pathogenic driving factor [5].
In the present patients, MAGT1 germline mutation screening was not performed during diagnosis or at the beginning of CAR T-cell therapy. Our case underscores the importance of identifying MAGT1 deficiency in young patients with EBV-positive lymphoproliferative disease through high-throughput sequencing.
There is no international consensus on the treatment of XMEN. Anti-CD20 therapy with rituximab for EBV control has not been recommended because of its inconsistent efficacy and lack of effect on chronic EBV infection [1]. Magnesium supplementation therapy has been proven ineffective in a clinical trial (US National Institutes of Health ClinicalTrials.gov#NCT02496676). HSCT has also been attempted in some patients, but posttransplant mortality remains high [3]. Recently, Brault et al. presented data on a novel gene-editing approach that utilizes CRISPR-Cas9 to compensate for the deletion of the MAGT1 gene [6]. Despite this exciting progress, there is still a long way to go for clinical applications of this new technique.
This case provides evidence for the use of anti-CD30 CAR T-cell therapy in hematologic malignancy patients with germline MAGT1 variants. Although XMEN patients had significant CTL dysfunction, both twins achieved CR after CAR T-cell immunotherapy (twin 1 developed PD twenty-three months later). We suspect that the CAR T-cell component might compensate for the T-cell defects, and that other cytotoxic mechanisms of CAR-T cell, such as cytokine-mediated killing (e.g., killing via IFNγ), may compensate for the perforin-deficient effects on cytotoxicity. Since this was a retrospective study, CAR T-cell functional experiments were not performed in vitro. It took twenty-three months for twin 1 to relapse, while twin 2 remained in CR. Compared to twin 2, twin 1 had a greater disease load, lower infusion dose of CAR T cells, stronger CAR transgene amplification, and greater CRS. This result suggested that a low tumor load and an adequate infusion dose of CAR T cells are necessary for prolonged CR.
Although allo-HSCT can be curative for immunodeficient patients, most XMEN patients die from transplant-related complications [3]. The decision for allo-HSCT in patients with XMEN, should be balanced against the risks and the availability of a suitable donor. In this case, we recommended that Twin-1 received allo-HSCT from an unrelated healthy donor as a salvage approach when the disease progressed after CAR T-cell therapy. However, his parents repeatedly declined HSCT and requested that he take anti-PD-1 antibodies for maintenance.
In conclusion, if lymphoma is diagnosed at a young age or has a poor therapeutic outcome, it should be suspected to be a possible IEI. A novel inherited germline alteration in MAGT1 was identified, and this case is the first time CAR T-cell immunotherapy has been used in XMEN. CD30 CAR T-cell therapy may be a viable option for XMEN patients with r/r HL. More prospective experimental data are needed to explore the potential of bridging HSCT with CAR T-cell therapy.

Acknowledgements

Firstly, we thank the patients and their family for their participation in this study and all the faculty and staff at our Clinical and Laboratory Unit for clinical and technical support. Secondly, the authors wish to acknowledge Dr. Huimin Zhou and Dr. Sijuan Zou for their contribution of the PET/CT images, Prof. Qilin Ao for conducting the pathology experiments, Dr. Kefeng Shen, Dr. Zhang Meilan, Dr. Zhang Wei and Dr. Zhu Zhoujie for their guidance in the WGS data analysis, Dr. Xia Mao for conducting CAR-T cell flow cytometry experiments, Dr. Liting Chen and Dr. Jia Gu for performing the droplet digital PCR experiment, Dr. Jie Xiong, Dr. Li Zhe, Dr. Ge Tong, and Dr. Deng Xinyue for their assistance in specimen collection. Thirdly, we would also like to thank the Bio-RAID Company for their support in preparing CAR T cells, PerfectMedical Diagnostics (Ezhou, Hubei Province, China), and Novogene Company for providing the DNA sequencing service.

Declarations

This study received approval from the institutional review board of Tongji Hospital, Tongji Medical College, and Huazhong University of Science and Technology. It was registered with the Chinese Clinical Trial Registry (ChiCTR) under the registration number ChiCTR-OPN16009069.
Two patients were children younger than 16, the patient consent and permission for publication were obtained from the children’s mother.

Conflict of interest

The authors have no competing interests to declare.

Trial Registration

This study received approval from the institutional review board of Tongji Hospital, Tongji Medical College, and Huazhong University of Science and Technology. It was registered with the Chinese Clinical Trial Registry (ChiCTR) under the registration number ChiCTR-OPN16009069.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Electronic Supplementary Material

Below is the link to the electronic supplementary material.
Literatur
2.
Zurück zum Zitat Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, et al. Mg2 + regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91.CrossRefPubMedPubMedCentral Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, et al. Mg2 + regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Klinken EM, Gray PE, Pillay B, Worley L, Edwards ESJ, Payne K, et al. Diversity of XMEN Disease: description of 2 novel variants and analysis of the lymphocyte phenotype. J Clin Immunol. 2020;40(2):299–309.CrossRefPubMed Klinken EM, Gray PE, Pillay B, Worley L, Edwards ESJ, Payne K, et al. Diversity of XMEN Disease: description of 2 novel variants and analysis of the lymphocyte phenotype. J Clin Immunol. 2020;40(2):299–309.CrossRefPubMed
4.
Zurück zum Zitat Wang D, Zeng C, Xu B, Xu JH, Wang J, Jiang LJ, et al. Anti-CD30 chimeric antigen receptor T cell therapy for relapsed/refractory CD30(+) lymphoma patients. Blood Cancer J. 2020;10(1):8.CrossRefPubMedPubMedCentral Wang D, Zeng C, Xu B, Xu JH, Wang J, Jiang LJ, et al. Anti-CD30 chimeric antigen receptor T cell therapy for relapsed/refractory CD30(+) lymphoma patients. Blood Cancer J. 2020;10(1):8.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Brune MM, Juskevicius D, Haslbauer J, Dirnhofer S, Tzankov A. Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel). 2021;13(4). Brune MM, Juskevicius D, Haslbauer J, Dirnhofer S, Tzankov A. Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel). 2021;13(4).
Metadaten
Titel
Monozygotic Twins with MAGT1 Deficiency and Epstein–Barr virus-positive Classic Hodgkin Lymphoma Receiving anti-CD30 CAR T-cell Immunotherapy: A case Report
verfasst von
Jiachen Wang
Mi Zhou
Jianfeng Zhou
Min Xiao
Liang Huang
Publikationsdatum
01.04.2024
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 4/2024
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-024-01690-0

Weitere Artikel der Ausgabe 4/2024

Journal of Clinical Immunology 4/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.