Skip to main content
Erschienen in: Herz 3/2012

01.05.2012 | Schwerpunkt

Kardiovaskuläre Effekte inkretinbasierter Therapien

verfasst von: Dr. M. Lehrke, N. Marx

Erschienen in: Herz | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Zusammenfassung

Eine pharmakologische Aktivierung des GLP-1-Systems hat sich als ein neuer Ansatz in der Therapie des Diabetes mellitus etabliert. Neben einer glukosesenkenden Wirkung werden GLP-1 vielfältige kardioprotektive Eigenschaften zugesprochen. So reduziert GLP-1 die Infarktgröße im Rahmen eines akuten Myokardinfarkts, was über eine Aktivierung antiapoptotischer Signalwege wie PI3-Kinase, Akt, und ERK1/2 vermittelt wird. Experimentelle und frühe klinische Daten postulieren zudem, dass GLP-1 über eine verbesserte Endothelfunktion und antiinflammatorische Eigenschaften atheroprotektiv wirkt und die linksventrikulären Pumpfunktion bei chronischer Herzinsuffizienz über eine insulinunabhängige zelluläre Glukoseaufnahme verbessert. Entsprechend ist auf eine Reduktion kardiovaskulärer Ereignisse unter GLP-1-basierender Therapie zu hoffen, was derzeit in Endpunktstudien untersucht wird.
Literatur
1.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853CrossRef UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853CrossRef
2.
Zurück zum Zitat Gerstein HC, Miller ME, Byington RP et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559PubMedCrossRef Gerstein HC, Miller ME, Byington RP et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559PubMedCrossRef
3.
Zurück zum Zitat Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24):2560–2572PubMedCrossRef Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24):2560–2572PubMedCrossRef
4.
Zurück zum Zitat Duckworth W, Abraira C, Moritz T et al (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360(2):129–139PubMedCrossRef Duckworth W, Abraira C, Moritz T et al (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360(2):129–139PubMedCrossRef
5.
Zurück zum Zitat Turnbull FM, Abraira C, Anderson RJ et al (2009) Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52(11):2288–2298PubMedCrossRef Turnbull FM, Abraira C, Anderson RJ et al (2009) Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52(11):2288–2298PubMedCrossRef
6.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352(9131):854–865CrossRef UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352(9131):854–865CrossRef
7.
Zurück zum Zitat Schramm TK, Gislason GH, Vaag A et al (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32(15):1900–1908PubMedCrossRef Schramm TK, Gislason GH, Vaag A et al (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32(15):1900–1908PubMedCrossRef
8.
Zurück zum Zitat Simpson SH, Majumdar SR, Tsuyuki RT et al (2006) Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ 174(2):169–174PubMedCrossRef Simpson SH, Majumdar SR, Tsuyuki RT et al (2006) Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ 174(2):169–174PubMedCrossRef
9.
Zurück zum Zitat Tzoulaki I, Molokhia M, Curcin V et al (2009) Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ 339:b4731PubMedCrossRef Tzoulaki I, Molokhia M, Curcin V et al (2009) Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ 339:b4731PubMedCrossRef
10.
Zurück zum Zitat Ginsberg H, Plutzky J, Sobel BE (1999) A review of metabolic and cardiovascular effects of oral antidiabetic agents: beyond glucose-level lowering. J Cardiovasc Risk 6(5):337–346PubMed Ginsberg H, Plutzky J, Sobel BE (1999) A review of metabolic and cardiovascular effects of oral antidiabetic agents: beyond glucose-level lowering. J Cardiovasc Risk 6(5):337–346PubMed
11.
Zurück zum Zitat Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157PubMedCrossRef Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157PubMedCrossRef
12.
Zurück zum Zitat Meier JJ, Nauck MA (2005) Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev 21(2):91–117PubMedCrossRef Meier JJ, Nauck MA (2005) Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev 21(2):91–117PubMedCrossRef
13.
Zurück zum Zitat Mojsov S, Heinrich G, Wilson IB et al (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261(25):11880–11889PubMed Mojsov S, Heinrich G, Wilson IB et al (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261(25):11880–11889PubMed
14.
Zurück zum Zitat Orskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 42(5):658–661PubMedCrossRef Orskov C, Wettergren A, Holst JJ (1993) Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 42(5):658–661PubMedCrossRef
15.
Zurück zum Zitat Nikolaidis LA, Elahi D, Shen YT, Shannon RP (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289(6):H2401–2408PubMedCrossRef Nikolaidis LA, Elahi D, Shen YT, Shannon RP (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289(6):H2401–2408PubMedCrossRef
16.
Zurück zum Zitat Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80(3):952–957PubMedCrossRef Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80(3):952–957PubMedCrossRef
17.
Zurück zum Zitat Knudsen LB, Pridal L (1996) Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318(2–3):429–435 Knudsen LB, Pridal L (1996) Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318(2–3):429–435
18.
Zurück zum Zitat Vahl TP, Paty BW, Fuller BD et al (2003) Effects of GLP-1-(7–36)NH2, GLP-1-(7–37), and GLP-1-(9–36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 88(4):1772–1779PubMedCrossRef Vahl TP, Paty BW, Fuller BD et al (2003) Effects of GLP-1-(7–36)NH2, GLP-1-(7–37), and GLP-1-(9–36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 88(4):1772–1779PubMedCrossRef
19.
Zurück zum Zitat Deacon CF, Plamboeck A, Moller S, Holst JJ (2002) GLP-1-(9–36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab 282(4):E873–E879PubMed Deacon CF, Plamboeck A, Moller S, Holst JJ (2002) GLP-1-(9–36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab 282(4):E873–E879PubMed
20.
Zurück zum Zitat Abu-Hamdah R, Rabiee A, Meneilly GS et al (2009) Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 94(6):1843–1852PubMedCrossRef Abu-Hamdah R, Rabiee A, Meneilly GS et al (2009) Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 94(6):1843–1852PubMedCrossRef
21.
Zurück zum Zitat Nauck MA (2011) Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 124(Suppl 1):3–18CrossRef Nauck MA (2011) Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 124(Suppl 1):3–18CrossRef
22.
Zurück zum Zitat Deacon CF, Carr RD, Holst JJ (2008) DPP-4 inhibitor therapy: new directions in the treatment of type 2 diabetes. Front Biosci 13:1780–1794PubMedCrossRef Deacon CF, Carr RD, Holst JJ (2008) DPP-4 inhibitor therapy: new directions in the treatment of type 2 diabetes. Front Biosci 13:1780–1794PubMedCrossRef
23.
Zurück zum Zitat Ahren B (2009) Clinical results of treating type 2 diabetic patients with sitagliptin, vildagliptin or saxagliptin – diabetes control and potential adverse events. Best Pract Res Clin Endocrinol Metab 23(4):487–498PubMedCrossRef Ahren B (2009) Clinical results of treating type 2 diabetic patients with sitagliptin, vildagliptin or saxagliptin – diabetes control and potential adverse events. Best Pract Res Clin Endocrinol Metab 23(4):487–498PubMedCrossRef
24.
Zurück zum Zitat Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204(2):334–341PubMedCrossRef Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204(2):334–341PubMedCrossRef
25.
Zurück zum Zitat Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61(3):448–460PubMedCrossRef Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61(3):448–460PubMedCrossRef
26.
Zurück zum Zitat Bose AK, Mocanu MM, Carr RD et al (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54(1):146–151PubMedCrossRef Bose AK, Mocanu MM, Carr RD et al (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54(1):146–151PubMedCrossRef
27.
Zurück zum Zitat Matsubara M, Kanemoto S, Leshnower BG et al (2011) Single dose GLP-1-Tf ameliorates myocardial ischemia/reperfusion injury. J Surg Res 165(1):38–45PubMedCrossRef Matsubara M, Kanemoto S, Leshnower BG et al (2011) Single dose GLP-1-Tf ameliorates myocardial ischemia/reperfusion injury. J Surg Res 165(1):38–45PubMedCrossRef
28.
Zurück zum Zitat Nikolaidis LA, Doverspike A, Hentosz T et al (2005) Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther 312(1):303–308PubMedCrossRef Nikolaidis LA, Doverspike A, Hentosz T et al (2005) Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther 312(1):303–308PubMedCrossRef
29.
Zurück zum Zitat Noyan-Ashraf MH, Momen MA, Ban K et al (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58(4):975–983PubMedCrossRef Noyan-Ashraf MH, Momen MA, Ban K et al (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58(4):975–983PubMedCrossRef
30.
Zurück zum Zitat Ossum A, Deurs U van, Engstrom T et al (2009) The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1(9–36)a in an isolated rat heart. Pharmacol Res 60(5):411–417PubMedCrossRef Ossum A, Deurs U van, Engstrom T et al (2009) The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1(9–36)a in an isolated rat heart. Pharmacol Res 60(5):411–417PubMedCrossRef
31.
Zurück zum Zitat Read PA, Khan FZ, Heck PM et al (2010) DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging 3(2):195–201PubMedCrossRef Read PA, Khan FZ, Heck PM et al (2010) DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging 3(2):195–201PubMedCrossRef
32.
Zurück zum Zitat Sokos GG, Bolukoglu H, German J et al (2007) Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol 100(5):824–829PubMedCrossRef Sokos GG, Bolukoglu H, German J et al (2007) Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol 100(5):824–829PubMedCrossRef
33.
Zurück zum Zitat Sonne DP, Engstrom T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146(1–3):243–249 Sonne DP, Engstrom T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146(1–3):243–249
34.
Zurück zum Zitat Timmers L, Henriques JP, Kleijn DP de et al (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6):501–510PubMedCrossRef Timmers L, Henriques JP, Kleijn DP de et al (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6):501–510PubMedCrossRef
35.
Zurück zum Zitat Ban K, Noyan-Ashraf MH, Hoefer J et al (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117(18):2340–2350PubMedCrossRef Ban K, Noyan-Ashraf MH, Hoefer J et al (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117(18):2340–2350PubMedCrossRef
36.
Zurück zum Zitat Bose AK, Mocanu MM, Carr RD, Yellon DM (2007) Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6 K pathway. Cardiovasc Drugs Ther 21(4):253–256PubMedCrossRef Bose AK, Mocanu MM, Carr RD, Yellon DM (2007) Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6 K pathway. Cardiovasc Drugs Ther 21(4):253–256PubMedCrossRef
37.
Zurück zum Zitat Ban K, Kim KH, Cho CK et al (2010) Glucagon-like peptide (GLP)-1(9–36)amide-mediated cytoprotection is blocked by exendin(9–39) yet does not require the known GLP-1 receptor. Endocrinology 151(4):1520–1531PubMedCrossRef Ban K, Kim KH, Cho CK et al (2010) Glucagon-like peptide (GLP)-1(9–36)amide-mediated cytoprotection is blocked by exendin(9–39) yet does not require the known GLP-1 receptor. Endocrinology 151(4):1520–1531PubMedCrossRef
38.
Zurück zum Zitat Read PA, Khan FZ, Dutka DP (2012) Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 98(5):408–413PubMedCrossRef Read PA, Khan FZ, Dutka DP (2012) Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 98(5):408–413PubMedCrossRef
39.
Zurück zum Zitat Nikolaidis LA, Mankad S, Sokos GG et al (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109(8):962–965PubMedCrossRef Nikolaidis LA, Mankad S, Sokos GG et al (2004) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109(8):962–965PubMedCrossRef
40.
Zurück zum Zitat Kavianipour M, Ehlers MR, Malmberg K et al (2003) Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides 24(4):569–578PubMedCrossRef Kavianipour M, Ehlers MR, Malmberg K et al (2003) Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides 24(4):569–578PubMedCrossRef
41.
Zurück zum Zitat Kristensen J, Mortensen UM, Schmidt M et al (2009) Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovasc Disord 9:31PubMedCrossRef Kristensen J, Mortensen UM, Schmidt M et al (2009) Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovasc Disord 9:31PubMedCrossRef
42.
Zurück zum Zitat Sauve M, Ban K, Momen MA et al (2010) Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59(4):1063–1073PubMedCrossRef Sauve M, Ban K, Momen MA et al (2010) Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59(4):1063–1073PubMedCrossRef
43.
Zurück zum Zitat Huisamen B, Genis A, Marais E, Lochner A (2011) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 25(1):13–20PubMedCrossRef Huisamen B, Genis A, Marais E, Lochner A (2011) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 25(1):13–20PubMedCrossRef
44.
Zurück zum Zitat Ye Y, Keyes KT, Zhang C et al (2010) The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 298(5):H1454–H1465PubMedCrossRef Ye Y, Keyes KT, Zhang C et al (2010) The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 298(5):H1454–H1465PubMedCrossRef
45.
Zurück zum Zitat Lønborg J, Vejlstrup N, Kelbaek H et al (2011) Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J [Epub ahead of print] Lønborg J, Vejlstrup N, Kelbaek H et al (2011) Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J [Epub ahead of print]
46.
Zurück zum Zitat Mussig K, Oncu A, Lindauer P et al (2008) Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics after coronary artery bypass surgery in patients with type 2 diabetes. Am J Cardiol 102(5):646–647PubMedCrossRef Mussig K, Oncu A, Lindauer P et al (2008) Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics after coronary artery bypass surgery in patients with type 2 diabetes. Am J Cardiol 102(5):646–647PubMedCrossRef
47.
Zurück zum Zitat Ravassa S, Zudaire A, Carr RD, Diez J (2011) Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. Am J Physiol Heart Circ Physiol 300(4):H1361–H1372PubMedCrossRef Ravassa S, Zudaire A, Carr RD, Diez J (2011) Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. Am J Physiol Heart Circ Physiol 300(4):H1361–H1372PubMedCrossRef
48.
Zurück zum Zitat Quoyer J, Longuet C, Broca C et al (2010) GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem 285(3):1989–2002PubMedCrossRef Quoyer J, Longuet C, Broca C et al (2010) GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem 285(3):1989–2002PubMedCrossRef
49.
Zurück zum Zitat Gros R, You X, Baggio LL et al (2003) Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144(6):2242–2252PubMedCrossRef Gros R, You X, Baggio LL et al (2003) Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144(6):2242–2252PubMedCrossRef
50.
Zurück zum Zitat Nikolaidis LA, Elahi D, Hentosz T et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110(8):955–961PubMedCrossRef Nikolaidis LA, Elahi D, Hentosz T et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110(8):955–961PubMedCrossRef
51.
Zurück zum Zitat Vyas AK, Yang KC, Woo D et al (2011) Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One 6(2):e17178PubMedCrossRef Vyas AK, Yang KC, Woo D et al (2011) Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One 6(2):e17178PubMedCrossRef
52.
Zurück zum Zitat Liu Q, Anderson C, Broyde A et al (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76PubMedCrossRef Liu Q, Anderson C, Broyde A et al (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76PubMedCrossRef
53.
Zurück zum Zitat Poornima I, Brown SB, Bhashyam S et al (2008) Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail 1(3):153–160PubMedCrossRef Poornima I, Brown SB, Bhashyam S et al (2008) Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail 1(3):153–160PubMedCrossRef
54.
Zurück zum Zitat Sokos GG, Nikolaidis LA, Mankad S et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12(9):694–699PubMedCrossRef Sokos GG, Nikolaidis LA, Mankad S et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12(9):694–699PubMedCrossRef
55.
Zurück zum Zitat Halbirk M, Nørrelund H, Møller N et al (2010) Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 298(3):H1096–H1102PubMedCrossRef Halbirk M, Nørrelund H, Møller N et al (2010) Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 298(3):H1096–H1102PubMedCrossRef
56.
Zurück zum Zitat Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMedCrossRef Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMedCrossRef
57.
Zurück zum Zitat Lee L, Horowitz J, Frenneaux M (2004) Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 25(8):634–641PubMedCrossRef Lee L, Horowitz J, Frenneaux M (2004) Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 25(8):634–641PubMedCrossRef
58.
Zurück zum Zitat Nikolaidis LA, Sturzu A, Stolarski C et al (2004) The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res 61(2):297–306PubMedCrossRef Nikolaidis LA, Sturzu A, Stolarski C et al (2004) The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res 61(2):297–306PubMedCrossRef
59.
Zurück zum Zitat Bhashyam S, Fields AV, Patterson B et al (2010) Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3(4):512–521PubMedCrossRef Bhashyam S, Fields AV, Patterson B et al (2010) Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3(4):512–521PubMedCrossRef
60.
Zurück zum Zitat Nyström T, Gutniak MK, Zhang Q et al (2004) Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 287(6):E1209–E1215PubMedCrossRef Nyström T, Gutniak MK, Zhang Q et al (2004) Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 287(6):E1209–E1215PubMedCrossRef
61.
Zurück zum Zitat Basu A, Charkoudian N, Schrage W et al (2007) Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab 293(5):E1289–E1295PubMedCrossRef Basu A, Charkoudian N, Schrage W et al (2007) Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab 293(5):E1289–E1295PubMedCrossRef
62.
Zurück zum Zitat Richter G, Feddersen O, Wagner U et al (1993) GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol 265(4 Pt 1):L374–L381PubMed Richter G, Feddersen O, Wagner U et al (1993) GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol 265(4 Pt 1):L374–L381PubMed
63.
Zurück zum Zitat Nyström T, Gonon AT, Sjöholm A, Pernow J (2005) Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept 125(1–3):173–177 Nyström T, Gonon AT, Sjöholm A, Pernow J (2005) Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept 125(1–3):173–177
64.
Zurück zum Zitat Green BD, Hand KV, Dougan JE et al (2008) GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 478(2):136–142PubMedCrossRef Green BD, Hand KV, Dougan JE et al (2008) GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 478(2):136–142PubMedCrossRef
65.
Zurück zum Zitat Garber A, Henry R, Ratner R et al (2009) Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373(9662):473–481PubMedCrossRef Garber A, Henry R, Ratner R et al (2009) Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373(9662):473–481PubMedCrossRef
66.
Zurück zum Zitat Moretto TJ, Milton DR, Ridge TD et al (2008) Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 30(8):1448–1460PubMedCrossRef Moretto TJ, Milton DR, Ridge TD et al (2008) Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 30(8):1448–1460PubMedCrossRef
67.
Zurück zum Zitat Ogawa S, Ishiki M, Nako K et al (2011) Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med 223(2):133–135PubMedCrossRef Ogawa S, Ishiki M, Nako K et al (2011) Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med 223(2):133–135PubMedCrossRef
68.
Zurück zum Zitat Yu M, Moreno C, Hoagland KM et al (2003) Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 21(6):1125–1135PubMedCrossRef Yu M, Moreno C, Hoagland KM et al (2003) Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 21(6):1125–1135PubMedCrossRef
69.
Zurück zum Zitat Yamamoto H, Lee CE, Marcus JN et al (2002) Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 110(1):43–52PubMed Yamamoto H, Lee CE, Marcus JN et al (2002) Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 110(1):43–52PubMed
70.
Zurück zum Zitat Barragan JM, Eng J, Rodriguez R, Blazquez E (1999) Neural contribution to the effect of glucagon-like peptide-1-(7-36) amide on arterial blood pressure in rats. Am J Physiol 277(5 Pt 1):E784–E791PubMed Barragan JM, Eng J, Rodriguez R, Blazquez E (1999) Neural contribution to the effect of glucagon-like peptide-1-(7-36) amide on arterial blood pressure in rats. Am J Physiol 277(5 Pt 1):E784–E791PubMed
71.
Zurück zum Zitat Bojanowska E, Stempniak B (2000) Effects of centrally or systemically injected glucagon-like peptide-1 (7–36) amide on release of neurohypophysial hormones and blood pressure in the rat. Regul Pept 91(1–3):75–81 Bojanowska E, Stempniak B (2000) Effects of centrally or systemically injected glucagon-like peptide-1 (7–36) amide on release of neurohypophysial hormones and blood pressure in the rat. Regul Pept 91(1–3):75–81
72.
Zurück zum Zitat Goto H, Nomiyama T, Mita T et al (2011) Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury. Biochem Biophys Res Commun 405(1):79–84PubMedCrossRef Goto H, Nomiyama T, Mita T et al (2011) Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury. Biochem Biophys Res Commun 405(1):79–84PubMedCrossRef
73.
Zurück zum Zitat Arakawa M, Mita T, Azuma K et al (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59(4):1030–1037PubMedCrossRef Arakawa M, Mita T, Azuma K et al (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59(4):1030–1037PubMedCrossRef
74.
Zurück zum Zitat Marx N, Burgmaier M, Heinz P et al (2010) Glucagon-like peptide-1(1–37) inhibits chemokine-induced migration of human CD4-positive lymphocytes. Cell Mol Life Sci 67(20):3549–3555PubMedCrossRef Marx N, Burgmaier M, Heinz P et al (2010) Glucagon-like peptide-1(1–37) inhibits chemokine-induced migration of human CD4-positive lymphocytes. Cell Mol Life Sci 67(20):3549–3555PubMedCrossRef
75.
Zurück zum Zitat Ishibashi Y, Nishino Y, Matsui T et al (2011) Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism 60(9):1271–1277PubMedCrossRef Ishibashi Y, Nishino Y, Matsui T et al (2011) Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism 60(9):1271–1277PubMedCrossRef
76.
Zurück zum Zitat Liu H, Hu Y, Simpson RW, Dear AE (2008) Glucagon-like peptide-1 attenuates tumour necrosis factor-alpha-mediated induction of plasminogen [corrected] activator inhibitor-1 expression. J Endocrinol 196(1):57–65PubMedCrossRef Liu H, Hu Y, Simpson RW, Dear AE (2008) Glucagon-like peptide-1 attenuates tumour necrosis factor-alpha-mediated induction of plasminogen [corrected] activator inhibitor-1 expression. J Endocrinol 196(1):57–65PubMedCrossRef
77.
Zurück zum Zitat Liu H, Dear AE, Knudsen LB, Simpson RW (2009) A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol 201(1):59–66PubMedCrossRef Liu H, Dear AE, Knudsen LB, Simpson RW (2009) A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol 201(1):59–66PubMedCrossRef
78.
Zurück zum Zitat Hattori Y, Jojima T, Tomizawa A et al (2010) A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia 53(10):2256–2263PubMedCrossRef Hattori Y, Jojima T, Tomizawa A et al (2010) A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia 53(10):2256–2263PubMedCrossRef
79.
Zurück zum Zitat Ku HC, Chen WP, Su MJ (2010) GLP-1 signaling preserves cardiac function in endotoxemic Fischer 344 and DPP4-deficient rats. Naunyn Schmiedebergs Arch Pharmacol 382(5–6):463–474 Ku HC, Chen WP, Su MJ (2010) GLP-1 signaling preserves cardiac function in endotoxemic Fischer 344 and DPP4-deficient rats. Naunyn Schmiedebergs Arch Pharmacol 382(5–6):463–474
80.
Zurück zum Zitat Oeseburg H, de Boer RA, Buikema H et al (2010) Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol 30(7):1407–1414PubMedCrossRef Oeseburg H, de Boer RA, Buikema H et al (2010) Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol 30(7):1407–1414PubMedCrossRef
81.
Zurück zum Zitat Matsui T, Nishino Y, Takeuchi M, Yamagishi S (2011) Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol Res 63(5):383–388PubMedCrossRef Matsui T, Nishino Y, Takeuchi M, Yamagishi S (2011) Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol Res 63(5):383–388PubMedCrossRef
82.
Zurück zum Zitat Zinman B, Gerich J, Buse JB et al (2009) Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 32(7):1224–1230PubMedCrossRef Zinman B, Gerich J, Buse JB et al (2009) Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 32(7):1224–1230PubMedCrossRef
83.
Zurück zum Zitat Buse JB, Rosenstock J, Sesti G et al (2009) Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374(9683):39–47PubMedCrossRef Buse JB, Rosenstock J, Sesti G et al (2009) Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374(9683):39–47PubMedCrossRef
84.
Zurück zum Zitat Meier JJ, Gethmann A, Götze O et al (2006) Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 49(3):452–458PubMedCrossRef Meier JJ, Gethmann A, Götze O et al (2006) Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 49(3):452–458PubMedCrossRef
85.
Zurück zum Zitat Best JH, Hoogwerf BJ, Herman WH et al (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34(1):90–95PubMedCrossRef Best JH, Hoogwerf BJ, Herman WH et al (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 34(1):90–95PubMedCrossRef
Metadaten
Titel
Kardiovaskuläre Effekte inkretinbasierter Therapien
verfasst von
Dr. M. Lehrke
N. Marx
Publikationsdatum
01.05.2012
Verlag
Urban and Vogel
Erschienen in
Herz / Ausgabe 3/2012
Print ISSN: 0340-9937
Elektronische ISSN: 1615-6692
DOI
https://doi.org/10.1007/s00059-012-3599-8

Weitere Artikel der Ausgabe 3/2012

Herz 3/2012 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.