Skip to main content
Erschienen in: HNO 2/2024

Open Access 05.12.2023 | Originalien

Entwicklung und Evaluation einer Ultraschallnavigation für Freihandbiopsien kleiner Raumforderungen im Kopf-Hals-Bereich

verfasst von: PD Dr. Claudia Scherl, Marie Otto, Ibrahim Ghanem, Javier Moviglia, Fabian Sadi, Tirza Gnilka, Nicole Rotter, Prof. Dr. med., Lena Zaubitzer, Dr. med., Jan Stallkamp, Prof. Dr.-Ing.

Erschienen in: HNO | Ausgabe 2/2024

Zusammenfassung

Hintergrund

Der Ultraschall als wichtiges Bildgebungsverfahren im Kopf-Hals-Bereich ist leicht verfügbar, dynamisch, kostengünstig und ohne Strahlenbelastung. Eingriffe in der komplexen Kopf-Hals-Anatomie erfordern eine gute Orientierung, die durch Navigationssysteme unterstützt wird.

Ziel der Arbeit

Entwicklung eines neuen ultraschallkontrollierten Navigationssystems zur Punktion kleiner Zielstrukturen im Kopf-Hals-Bereich.

Methodik

Es wurde ein Halsphantom mit sonographierbaren Raumforderungen (RF; Größe: 8–10 mm) konstruiert. Diese wurden automatisch mittels eines ResNet-50-basierten tiefen neuronalen Netzes segmentiert. Der Ultraschallkopf (UK) wurde mit einem individuell hergestellten Trackingtool versehen.

Ergebnisse

Die Positionen von Ultraschallgerät, RF und Punktionsnadel wurden im Weltkoordinatensystem erfasst. In 8 von 10 Fällen wurde eine 8 mm große RF getroffen. Die durchschnittliche Abweichung wurde mit 2,5 mm in einem speziellen Evaluationsphantom berechnet. Die getrackte Biopsienadel wird durch auditives Feedback ausgerichtet und zur RF navigiert.

Schlussfolgerung

Herausragende Vorteile im Vergleich zu herkömmlichen Navigationssystemen sind: Verzicht auf präoperative Schnittbildgebung, automatische dreidimensionale Echtzeitregistrierung, welche die intraoperative Gewebeverschiebungen berücksichtigt, Beibehaltung der optischen Achse des Operateurs auf den Situs, ohne dass auf einen Navigationsmonitor geschaut werden muss, und beidhändiges Arbeiten ohne Halten des UK während der Punktion. Insgesamt lässt sich das beschriebene Funktionsmuster außer für Nadelbiopsien auch in der offenen Kopf-Hals-Chirurgie anwenden.
Hinweise

Zusatzmaterial online

Zusätzliche Informationen sind in der Online-Version dieses Artikels (https://​doi.​org/​10.​1007/​s00106-023-01385-9) enthalten.
QR-Code scannen & Beitrag online lesen
Die Originalversion des Beitrags wurde korrigiert: Der Name von dem Autor Javier Moviglia fälschlicherweise als Javier Oviglia angegeben.
Zu diesem Beitrag ist ein Erratum online unter https://​doi.​org/​10.​1007/​s00106-024-01455-6 zu finden.

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.
Grob- und Feinnadelbiopsien sind gängige diagnostische Verfahren in der Kopf-Hals-Onkologie. Wegen der Nähe zu lebenswichtigen Strukturen ist eine Punktion von tiefergelegenen Raumforderungen (RF) im weichen Gewebe von Hals oder Parotis schwierig. Hier können Navigationssysteme helfen. Bisher existieren im klinischen Einsatz nur statische Verfahren mit Ungenauigkeiten im Weichgewebe. In diesem Beitrag wird ein ultraschallbasiertes Prinzip vorgestellt und evaluiert. Es zeigt Vorteile im Weichgewebe und gleichzeitig Annehmlichkeiten in der Handhabung.
Eine malignomverdächtige RF sollte histologisch abgeklärt werden. Biopsieentnahmen sind wegen der komplexen Kopf-Hals-Anatomie z. T. gefährlich und bedürfen einer Navigation. Herkömmliche Navigationssysteme sind statische Verfahren, da sie präoperative CT- oder MRT-Daten verwenden [18]. Gewebeverschiebungen während des Eingriffs können nicht dargestellt werden. Darüber hinaus sind sie nur in Beziehung zu starren Landmarken (Knochen) ausführbar. Im Weichgewebe, weit entfernt von knöchernen Strukturen, wird die Navigation aufgrund des „tissue shifts“ ungenau [13]. Deshalb ist der Einsatz dieser Systeme in der Weichteilchirurgie zum Erreichen von kleinen Zielstrukturen ungeeignet. Ziel dieser Arbeit war es, Abhilfe über die Entwicklung eines sonographisch gestützten Verfahrens zu entwickeln, das Gewebeverschiebungen in Echtzeit registriert. Vorteile der Sonographie sind die sofortige Visualisierung von Gewebeveränderungen [5], einfache Handhabung, fehlende Strahlenbelastung, gute Tiefenpenetration und geringe Kosten [19]. Bisherigen ultraschallnavigierten Punktionssystemen lag ein einhändiges Arbeiten zugrunde, da der UK in der anderen Hand gehalten werden musste. Darüber hinaus kommt es zur Störung der optischen Achse des Operateurs, da die Navigationsinformationen auf einem separaten Monitor dargestellt werden [1, 6]. Durch eine automatische Registrierung mittels tiefer neuronaler Netze und durch den Einsatz eines akustischen Feedbacks sollen diese Probleme gelöst werden. Tiefe neuronale Netze als modernes Verfahren maschinellen Lernens haben in den letzten Jahren in der medizinischen Bildanalyse Anwendung gefunden [10, 21].

Studiendesign und Untersuchungsmethoden

Das beschriebene Navigationssystems umfasst zwei Hauptabläufe: (1) Zielpunktmarkierung und (2) Navigation (Abb. 1). (1): Nach sonographischer 2‑D-Einstellung der zu punktierenden RF erfolgt die Registrierung im 3‑D-Raum (2): Einstichstelle, Einstichwinkel und Einstichtiefe werden angezeigt, sodass die Biopsienadel optimal ausgerichtet werden kann. Die Punktion kann beidhändig ohne zusätzliches Halten des UK durchgeführt werden. Der Blick des Operateurs bleibt auf dem Patienten, da die Navigation akustische Rückmeldungen gibt.

Halsphantom

Für die Reproduzierbarkeit der Experimente erfolgte die Entwicklung an einem ultraschallfähigem Halsphantom (Abb. 2) angepasst an unsere Segmentierungsanforderungen [7]. Das Modell wurde aus 10 %igem Polyvinyl-Alkohol(PVA)-Gel mit destilliertem Wasser unter Zusatz von Flohsamen hergestellt. Wasserperlen von 8 bis 10 mm Durchmesser wurden als RF eingebracht. Die Größe und die akustischen Eigenschaften entsprechen denen von kleinen pathologischen Halslymphknoten oder kleineren RF in der Parotis. Die Größe wurde sehr klein gewählt, um das System so zu konstruieren, dass auch kleine, schwer zugängliche RF sicher erfasst werden können.

Ultraschallgerät und Trackingsystem

Als Ultraschallgerät wurde der drahtlose Linearscanner L15 HD3 Wireless Scanner (Fa. Clarius© Mobile Health, Vancouver, Kanada) verwendet [3]. Er bietet die Möglichkeit der Tastenprogrammierung und der Weiterverarbeitung von Bilddaten über ein Application Programming Interface (API). Die Anzeige der Bilder erfolgt auf einem Tablet, welches sich über ein Transmission Control Protocol direkt mit dem Sonographiegerät verbindet.
Anhand der Position der RF im 2‑D-Ultraschallbild wird die Position der RF im globalen 3‑D-Koordinatensystem berechnet (Registrierung). Dafür werden ein Trackingsystem (Polaris Vicra, Fa. Northern Digital Incorporated, Waterloo, Kanada) und eine geeignete Kalibrierungsmethode eingesetzt. Zur Verfolgung des Ultraschallgeräts und der Biopsienadel im Messvolumen wird der UK und die Nadel mit einem Trackingtool versehen. Dafür wurde ein Adapter konstruiert, gedruckt und dem UK aufgesetzt (Form 3B+, SLA-Material Tough 1500 Resin, Fa. Formlabs GmbH, Berlin, Deutschland; Supplement-Abb. 1). Die über das Trackingsystem erfassten Informationen werden an die Navigationsanwendung übergeben. Diese führt auf Grundlage der Cast API des Ultraschallscanners die Zielpunktmarkierung mit anschließender Navigation durch. Das Trackingsystem erfasst die Positionen des Ultraschallgeräts, der RF und der Biopsienadel und sendet diese an die Navigationsanwendung. Die Navigationsanwendung erfolgte Python-basiert (Python-Version: 3.10, Fa. Python Software Foundation, DE, USA) und mit ROS2 Framework Version Humble (Robot Operating System, Fa. Open Source Robotics Foundation, CA, USA).

Segmentierungsalgorithmus des tiefen neuronalen Netzes

Die Lokalisation der RF im Halsphantom erfordert die Anwendung eines trainierten tiefen neuronalen Netzes. Für die Untersuchungen wurde ein Netz, das auf Brusttumoren mit 697 Scans vortrainiert wurde, verwendet [12]. Die Netzwerkarchitektur beruht auf der Grundlage von ResNet-50.

Ergebnisse

Navigation

Die Abb. 3 zeigt den entwickelten Navigationsablauf als Funktionsmuster. Sobald die RF mit dem Sonographiegerät eingestellt ist, betätigt der Operateur eine Taste am UK. Diese wurde zur Weiterverarbeitung der Daten so programmiert, dass damit die Bilddaten an das Trackingsystem gesendet werden. Der UK kann nun ablegt werden, und der Operateur kann beidhändig weiterarbeiten. Im 2‑D-Ultraschallbild wird die RF mittels tiefer neuronaler Netze segmentiert und die Koordinaten des Mittelpunkts der RF berechnet. Anschließend wird eine Transformation der 2‑D-Position im Koordinatensystem des Ultraschallbilds in das 3‑D-Weltkoordinatensystem berechnet. Das Trackingsystem erfasst die Positionen des UK und der Biopsienadel und sendet diese an die Navigationsanwendung. Durch Weiterverarbeitung des Ultraschallbilds und der erfassten Instrumente im Raum wird der Operateur durch die Navigationsanwendung zur RF navigiert. Die Biopsienadel kann an eine beliebige Stelle in der Nähe der RF am Hals angesetzt werden. Um eine optimale Ausrichtung der Nadel zur RF zu erreichen, ist der korrekte Einstichwinkel notwendig, für dessen Berechnung Gl. 1 ermittelt wurde. Die berechnete 3‑D-Position der RF legt den Mittelpunkt (m) einer Kugel und die Raumkoordinatoren (\(x{,}y{,}z\)) zugrunde. Wenn die Gerade der Biopsienadel den Mittelpunkt der Kugel schneidet, ist der Winkel korrekt und wird durch ein akustisches Signal bekannt gegeben.
$$\left(x-m_{x}\right)^{2}+\left(y-m_{y}\right)^{2}+\left(y-m_{y}\right)^{2}=r^{2}$$
(1)
Für die Berechnung der Position der RF (Position RFWelt) wurde anhand der Koordinaten der RF im Raum die Gl. 2 entwickelt. Dafür wurde eine Kalibrierung des Ultraschallbilds zum Weltkoordinatensystem erarbeitet. Das Ergebnis der Kalibrierung ist die Transformationsmatrix SonoTBild, das heißt die Transformation T zwischen dem Koordinatensystem des „Bilds“ und dem lokalen Koordinatensystem des am UK befindlichen Trackingtools („Sono“). Aus dem Trackingsystem wurde die Transformationsmatrix WeltTSono zwischen dem Koordinatensystem des Trackingtools am Ultraschallgerät („Sono“) und dem Weltkoordinatensystem („Welt“) berechnet. Durch Berechnung der Transformationsmatrix WeltTBild konnte eine 2‑D-Pixelkoordinate (x, y) der RF des Ultraschallbilds ins Weltkoordinatensystem transformiert werden. Diese gibt multipliziert mit der Position der RF im Bild (Position RFBild) die Lage der RF im Raum (x, y, z) an.
$$\text{Position}\,\textit{RF}^{\text{Welt}}=^{\text{Welt}}{T}_{\text{Bild}}\times\text{Position}\,\textit{RF}^{\text{Bild}}$$
(2)
$$^{\text{Welt}}{T}_{\text{Bild}}=^{\text{Welt}}{T}_{\text{Sono}}\times^{\text{Sono}}{T}_{\text{Bild}}$$
(3)
Zur Realisierung der korrekten Ausrichtung der Biopsienadel wurde eine Berechnung erarbeitet, die es ermöglicht die Position der Biopsienadelspitze zu ermitteln. Dafür wurde durch Kalibrierung der Spitze eine Transformationsmatrix NadelTSpitze zwischen Nadel und Spitze bestimmt. Aus dem Trackingsystem wurde die Transformation zwischen der Nadel und dem Weltkoordinatensystem WeltTNadel errechnet. Damit ergibt sich die Position der Nadelspitze wie folgt:
$$^{\text{Welt}}{T}_{\text{Spitze}}=^{\text{Welt}}{T}_{\text{Nadel}}\times^{\text{Nadel}}{T}_{\text{Spitze}}$$
(4)

Akustisches Feedback und Tiefeninformation

Um ein beidhändiges freies Arbeiten des Operateurs zu ermöglichen, wird, sobald der korrekte Einstichwinkel und die Ausrichtung der Nadel zum Treffen der RF erreicht ist, dies akustisch angezeigt. Nur die entsprechende Eindringtiefe wird zu Beginn als Zahl am Tablet mitgeteilt. Die Positionsberechnung ist von jeglichem Punkt an der Oberfläche des Halses aus möglich. Dafür wird die Biopsienadel aufgesetzt und rotiert. Zu jedem Zeitpunkt einer neu erfassten Position der Biopsienadel werden verschiedene Rückgabewerte gemeldet. Wenn die verlängerte Gerade der Biopsienadel die RF nicht schneiden würde (Rückgabewert von 0), wurde die Ausgabe eines tiefen Tons mit einer Frequenz von 200 Hz erarbeitet. Sobald sich der Operateur durch Rotation des Pointers dem richtigen Winkel nähert (Rückgabewert von 1), wird ein Hinweis durch einen 350-Hz-Ton abgegeben. Wird die Gerade aus Biopsienadel und Nadelspitze die RF treffen (Rückgabewert 2 – optimaler Einstichwinkel), erhält der Operateur die akustische Rückmeldung durch einen hohen 440-Hz-Ton. Die Angaben wurden aus dem quadratischen Abstand zwischen der aktuellen Position der Nadelspitze und der RF berechnet. Da der Operateur die Biopsienadel stetig bewegen können muss, wurde eine Aktualisierungsfunktion der Tiefenberechnung mit einer Aktualisierungsrate von 20 Hz integriert.

Chirurgische Genauigkeitsmessung mittels euklidischer Distanz im Evaluationsphantom

Um die Systemgenauigkeit zu evaluieren, wurde ein Evaluationsphantom entwickelt (Abb. 4), das aus einer wassergefüllten Kugel (Innendurchmesser 16 mm) im Wasserbad mit zwei gegenüberliegenden Einkerbungen (Marker A/B) und einer 8 mm großen RF in der Kugel besteht. Mithilfe des Trackingsystems wurde der Mittelpunkt der Kugel ermittelt. Die Positionen der Einkerbungen und deren Mittelpunkt wurden mit der Biopsienadel getrackt und definieren den „wahren“ Bezugswert. Um die Genauigkeit des Ultraschallnavigationssystems zu bestimmen, wird die Kugel geschallt und die oben beschriebene Zielpunktmarkierung angewandt. Die Auswertung der Positionen ergibt für Marker A die Koordinaten 55.39, 99.97, −1008.40, für B 55.28, 80.19, −1008.90, für den Mittelpunkt der Kugel 55.34, 90.08, −1008.65. Der Wert des Mittelpunkts der RF im Weltkoordinatensystem wird anhand der segmentierten Position im Ultraschallbild über das tiefe neuronale Netz bestimmt. Die Abweichung zwischen dem Messwert und dem wahren Bezugswert ergibt die maximale Abweichung. Der Eigenfehler der Trackingsoftware beträgt herstellungsbedingt 0,25 mm. Die Tab. 1 zeigt die Abweichungen, bestimmt durch die euklidische Distanz. Der mittlere Erwartungswert liegt bei E = 54,8, 91,1, −1006,4. Die maximale chirurgische Abweichung basierend auf der Segmentierung der RF im Ultraschallbild durch das tiefe neuronale Netz und des mit dem Navigationssystem berechneten Mittelpunkts ist 2,5287 mm.
Tab. 1
Genauigkeitsbestimmung mittels euklidischer Distanz
Test-Nr.
Position RFWelt (mm)
Abweichung (mm)
Xa
Ya
Za
1
53,81
87,90
−1007,23
30,182
2
54,94
92,89
−1006,66
34,664
3
55,97
91,51
−1007,51
19,343
4
54,22
90,32
−1007,28
17,857
5
53,84
89,81
−1006,06
30,052
6
53,72
91,41
−1005,85
34,976
7
55,04
91,03
−1005,63
31,801
8
56,71
90,03
−1007,64
17,028
9
54,41
92,65
−1005,47
41,931
10
55,70
93,18
−1004,92
48,634
RF Raumforderung, Welt Weltkoordinatensystem
aRaumkoordinaten
Um die erfassten Messwerte des Experiments in Bezug zum wahren Wert zu setzen, wird ein Globusmodell entwickelt (Abb. 5). Dabei liegen acht von zehn Messwerten innerhalb der RF des Evaluationsphantoms.

Diskussion

Wir haben einen einfach bedienbaren Prototyp einer Ultraschallnavigation für den Kopf-Hals-Bereich entwickelt. Die Vorteile sind: Echtzeitvisualisierung, Beibehaltung des Blicks des Operateurs auf den Patienten und die Möglichkeit zum freien beidhändigen Punktieren. So können auch RF in der Nähe von sensiblen Strukturen sicherer erreicht werden. Ein Novum ist das akustische Feedback zur Ausrichtung der Biopsienadel. Von jeglichem Punkt der Hautoberfläche können RF navigiert werden. Auf jede Verschiebung des Ziels kann sofort reagiert werden. Gerade der Kopf-Hals-Bereich ist von Weichgewebsverschiebungen („tissue shift“) betroffen, da hier ein knöchernes Bezugsystem fehlt. Herkömmliche Navigationssysteme verwenden präoperative Daten, die intraoperativ entstandene Verschiebungen nicht betrachten. Deshalb können sie für Weichteiloperationen nicht routinemäßig eingesetzt werden. Intraoperative CT- oder MRT-Aufnahmen liefern Momentaufnahmen, sind aber mit hohem Aufwand, Kosten oder Strahlenbelastung verbunden. Da die Sonographie ein echtzeitfähiges Bildgebungsverfahren ist, kann eine Gewebeverschiebung besser berücksichtigt werden. Die Sicherheit der Operation mit sonographischer Navigation kann zusätzlich gesteigert werden. Es wurden auch Hybridsysteme beschrieben, die auf präoperativen Bilddaten basieren und sich mit intraoperativen Ultraschalldaten überlagern, aber den Datensatz nicht stabil aktualisieren können [1]. Helbig et al. entwickelten ein ultraschallgestütztes Navigationssystem, was die Position des chirurgischen Instruments in Echtzeit im Ultraschallmonitor anzeigt [6]. Nachteilig an diesem System ist sowohl der Wechsel der optischen Achse zwischen Monitor und Patient als auch das einhändige Arbeiten, da der UK in der anderen Hand gehalten werden muss. Ein Wechsel der chirurgischen Blickachse reduziert die intuitive Durchführung des Eingriffs, woraus Fehler und längere Op.-Zeiten folgen [20]. Das in der vorliegenden Arbeit entwickelte Funktionsmuster schafft Abhilfe, indem die wesentlichen Navigationsinformationen für eine Biopsie (Einstichwinkel und Ausrichtung der Biopsienadel) akustisch angegeben werden. Durch die Segmentierung über tiefe neuronale Netze kann der UK nach Einstellen der Zielstruktur abgelegt werden. Der Operateur ist während des Ausrichtens der Biopsienadel frei und kann beidhändig weiterarbeiten.
Neuere Entwicklungen verwenden Augmented-Reality-Systeme, um Ultraschallbilder virtuell in ein auf dem Kopf getragenes System (Head-Mounted-Display) zu projizieren. Maas et al. beschreiben eine virtuelle Darstellung einer Nadel im Ultraschallbild, über die eine Biopsie erleichtert wird, da der Anwender den Blick auf den Operationsbereich fokussieren kann [15]. Augmented-Reality-Systeme können auch bei der Navigation in der offenen Kopf-Hals-Chirurgie helfen, die optische Achse auf den Op.-Situs beizubehalten [16, 17].
Neben dem Einsatz von Augmented Reality kommt auch die Nutzung von neuronalen Netzen in der chirurgischen Navigation zur Anwendung, da hiermit sehr genau automatisch segmentiert werden kann [2, 22]. Als modernes Verfahren maschinellen Lernens modellieren sie abstrakte Daten durch lineare und nichtlineare Verarbeitungseinheiten, die in einer tiefen Architektur angeordnet sind [4]. Nachteilig ist die große Datenmenge zum Training des Netzes, die in der Medizin nur begrenzt verfügbar ist. Alternativ können deshalb semiautomatische Algorithmen zur Segmentierung einer Zielstruktur eingesetzt werden. Beispiele für diese Verfahren sind kontur- und formbasierte [9] oder regionenbasierte Methoden [14]. Diese Verfahren sind zeitaufwendig und weisen einen hohen untersucherabhängigen Fehler auf. Deshalb, und auch um die Trainingsdaten für neuronale Netze zu reduzieren, wurde in dieser Stude die Lokalisierung der RF im Ultraschallbild über ein vortrainiertes tiefes neuronales Netz realisiert („transfer learning“). Dieses erreicht auch hohe Segmentierungsgenauigkeiten [11].
Eine Besonderheit der vorliegenden Studie ist die Genauigkeitsmessung. Dafür wurden ideale Randbedingungen geschaffen, indem ein eigenes Evaluationsphantom mit definierter Geometrie entwickelt wurde. Durch Einbringen des Modells in Wasser wurde eine Eigendeformation verhindert. Die Messergebnisse zeigen, dass das Navigationssystem eine chirurgische Genauigkeit von 2,5 mm liefert. Die Messwerte in der x‑ und z‑Dimension streuen um den Mittelwert ca. 1 mm, in y‑Richtung um 1,6 mm. Um die echte Genauigkeit zu bewerten, müssen alle Unsicherheiten betrachtet werden. Die mit der Biopsienadelspitze erfasste Geometrie der RF zeigt eine Abweichung von 0,79 mm. Der Eigenfehler des Trackingsystems fließt mit 0,25 mm ein. Es kann abgeleitet werden, dass trotz einer Abweichung des jeweiligen Messwerts zum wahren Wert alle Messwerte innerhalb der RF im Evaluationsphantom liegen. Repräsentiert die RF eine Zielstruktur im Halsphantom von nur 8 mm, bedeutet dies, dass sie von der Biopsienadel in acht von zehn Fällen getroffen wird. Mittelfristig sollte eine Verbesserung der Systemgenauigkeit erzielt werden. Dies kann durch Optimierung der Kalibrierung erreicht werden. Ein direkter Vergleich mit anderen Navigationssystemen ist nicht möglich, da verschiedene Randbedingungen vorliegen. Grundlegender Unterschied ist, dass traditionelle Navigationssysteme auf präoperativen Daten basieren, die intraoperativ registriert werden. Dem hier angewendeten Funktionsmuster liegt der Einsatz von intraoperativen Ultraschalldaten zugrunde, die in Echtzeit während des Eingriffs kalibriert werden. In der Literatur sind verschiedene Methoden zur Kalibrierung eines Ultraschallgeräts zu finden. Die Großzahl basiert auf der Verwendung von ultraschallfähigen Phantomen mit bekannter Geometrie und eines Trackingtools am Ultraschallgerät [8], was auch hier verwendet wurde.

Limitationen

Um den Prototyp klinisch einsetzen zu können, wären folgende Änderungen hinsichtlich des Studiendesigns notwendig:
  • Vergrößerung der Anzahl an Probebiopsien
  • Anwendung des Systems im Kadavermodell und in vivo
  • Optimierung des Kalibrierungsverfahrens mit Erhöhung der Gesamtgenauigkeit auf < 2 mm
  • Anpassung der Trainingsdaten des tiefen neuronalen Netzes an Daten von Kopf-Hals-Tumoren

Ausblick

Das bestehende Funktionsmuster soll in einer klinischen Erprobung weiterentwickelt werden. Die bisherigen Ergebnisse zeigen, dass ein ergonomischer Ultraschallnavigationsprozess technisch realisierbar ist. Das neuronale Netz wird im nächsten Schritt noch spezifischer auf die Kopf-Hals-Anatomie trainiert. Versuche eines 3‑D-Projektionsscanners, der Navigationsinformationen direkt auf den Situs projiziert, sind in unserer Arbeitsgruppe im Entwicklungsprozess. Darüber hinaus werden aktuell zwei weitere Trackingverfahren untersucht, die eine höhere Genauigkeit aufweisen.

Fazit für die Praxis

  • Die Arbeit zeigt den Prototyp eines Ultraschallnavigationssystems, mit dem kleine RF zielsicher punktiert werden können.
  • Durch die Verwendung von tiefen neuronalen Netzen und die Entwicklung eines akustischen Feedbacks ergeben sich folgende Vorteile:
    Verzicht auf eine präoperative Bildgebung,
    automatische Echtzeitregistrierung, die intraoperative Gewebeverschiebungen berücksichtigt,
    Beibehaltung der optischen Achse des Operateurs auf den Situs, ohne Blickwechsel auf einen Navigationsmonitor,
    beidhändiges Arbeiten ohne Halten des UK während der Punktion.
  • Möglichkeiten und Grenzen des Systems wurden aufgezeigt und Optimierungsvorschläge erarbeitet.

Danksagung

Wir danken Johann Kern und Petra Prohaska für die Bereitstellung von Nasslaborfläche zur Herstellung der Phantome.

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Stallkamp, M. Otto, I. Ghanem, J. Moviglia, F. Sadi, T. Gnilka, N. Rotter, L. Zaubitzer und C. Scherl geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de.

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Unsere Produktempfehlungen

HNO

Print-Titel

• Ausgewählte Übersichtsbeiträge zu aktuellen Themenschwerpunkten

• Mit CME-Beiträgen Wissen auffrischen und Punkte sammeln

• Prüfungsvorbereitung mit dem Repetitorium Facharztprüfung

• Kommentierte Studienreferate

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Brennecke T, Jansen N, Raczkowsky J et al (2014) An ultrasound-based navigation system for minimally invasive neck surgery. Stud Health Technol Inform 196:36–42PubMed Brennecke T, Jansen N, Raczkowsky J et al (2014) An ultrasound-based navigation system for minimally invasive neck surgery. Stud Health Technol Inform 196:36–42PubMed
2.
Zurück zum Zitat Chen H, Wang Y, Shi J et al (2021) Segmentation of lymph nodes in ultrasound images using U‑net convolutional neural networks and gabor-based anisotropic diffusion. J Med Biol Eng 41:942–952CrossRef Chen H, Wang Y, Shi J et al (2021) Segmentation of lymph nodes in ultrasound images using U‑net convolutional neural networks and gabor-based anisotropic diffusion. J Med Biol Eng 41:942–952CrossRef
4.
Zurück zum Zitat Deng L, Yu D (2014) Deep learning: methods and applications. FNT Signal Processing 7:197–387CrossRef Deng L, Yu D (2014) Deep learning: methods and applications. FNT Signal Processing 7:197–387CrossRef
5.
Zurück zum Zitat Ecke U, Gosepath J, Mann WJ (2006) Initial experience with intraoperative ultrasound in navigated soft tissue operations of the neck and below the base of the skull. Ultraschall Med 27:49–54CrossRefPubMed Ecke U, Gosepath J, Mann WJ (2006) Initial experience with intraoperative ultrasound in navigated soft tissue operations of the neck and below the base of the skull. Ultraschall Med 27:49–54CrossRefPubMed
6.
Zurück zum Zitat Helbig M, Krysztoforski K, Kucharski J et al (2009) Navigation-assisted sonography for soft tissues in the head and neck region. HNO 57:1010–1015CrossRefPubMed Helbig M, Krysztoforski K, Kucharski J et al (2009) Navigation-assisted sonography for soft tissues in the head and neck region. HNO 57:1010–1015CrossRefPubMed
7.
Zurück zum Zitat Hirschfeld J, Brennecke T, Colter L et al (2011) Flexibles Halsphantom zur Evaluation eines Ultraschall-gestützten Navigationssystems, S 129–132 Hirschfeld J, Brennecke T, Colter L et al (2011) Flexibles Halsphantom zur Evaluation eines Ultraschall-gestützten Navigationssystems, S 129–132
9.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D (1987) Active contour models. Int J Comput Vision 1:321–331CrossRef Kass M, Witkin A, Terzopoulos D (1987) Active contour models. Int J Comput Vision 1:321–331CrossRef
10.
Zurück zum Zitat Kharazmi P, Zheng J, Lui H et al (2018) A computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J Med Syst 42:33CrossRefPubMed Kharazmi P, Zheng J, Lui H et al (2018) A computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J Med Syst 42:33CrossRefPubMed
11.
Zurück zum Zitat Liu S, Wang Y, Yang X et al (2019) Deep learning in medical ultrasound analysis: a review. Engineering 5(2):261–275CrossRef Liu S, Wang Y, Yang X et al (2019) Deep learning in medical ultrasound analysis: a review. Engineering 5(2):261–275CrossRef
12.
Zurück zum Zitat Mathworks breast tumor segmentation from ultrasound using deep learning Mathworks breast tumor segmentation from ultrasound using deep learning
13.
Zurück zum Zitat Pappas IP, Ryan P, Cossmann P et al (2005) Improved targeting device and computer navigation for accurate placement of brachytherapy needles. Med Phys 32:1796–1801CrossRefPubMed Pappas IP, Ryan P, Cossmann P et al (2005) Improved targeting device and computer navigation for accurate placement of brachytherapy needles. Med Phys 32:1796–1801CrossRefPubMed
14.
Zurück zum Zitat Rother C, Kolmogorov V, Blake A (2004) “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309–314CrossRef Rother C, Kolmogorov V, Blake A (2004) “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309–314CrossRef
15.
Zurück zum Zitat Maas S (2020) Augmented-reality-based needle interventions with Hololens. Biomed Eng 65:280 Maas S (2020) Augmented-reality-based needle interventions with Hololens. Biomed Eng 65:280
16.
Zurück zum Zitat Scherl C, Stratemeier J, Karle C et al (2021) Augmented reality with HoloLens in parotid surgery: how to assess and to improve accuracy. Eur Arch Otorhinolaryngol 278:2473–2483CrossRefPubMed Scherl C, Stratemeier J, Karle C et al (2021) Augmented reality with HoloLens in parotid surgery: how to assess and to improve accuracy. Eur Arch Otorhinolaryngol 278:2473–2483CrossRefPubMed
17.
Zurück zum Zitat Scherl C, Stratemeier J, Rotter N et al (2021) Augmented reality with Hololens® in parotid tumor surgery: a prospective feasibility study. Orl J Otorhinolaryngol Relat Spec 83:439–448CrossRefPubMed Scherl C, Stratemeier J, Rotter N et al (2021) Augmented reality with Hololens® in parotid tumor surgery: a prospective feasibility study. Orl J Otorhinolaryngol Relat Spec 83:439–448CrossRefPubMed
18.
Zurück zum Zitat Stamm AM (2006) Transnasal endoscopy-assisted skull base surgery. Ann Otol Rhinol Laryngol Suppl 196:45–53CrossRefPubMed Stamm AM (2006) Transnasal endoscopy-assisted skull base surgery. Ann Otol Rhinol Laryngol Suppl 196:45–53CrossRefPubMed
19.
Zurück zum Zitat Stetter S, Jecker P, Mann WJ (2006) Intraoperative ultrasound in surgery of the parotid and the head-and-neck region. Ultraschall Med 27:159–163CrossRefPubMed Stetter S, Jecker P, Mann WJ (2006) Intraoperative ultrasound in surgery of the parotid and the head-and-neck region. Ultraschall Med 27:159–163CrossRefPubMed
20.
Zurück zum Zitat Sugimoto M, Yasuda H, Koda K et al (2010) Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci 17:629–636CrossRefPubMed Sugimoto M, Yasuda H, Koda K et al (2010) Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci 17:629–636CrossRefPubMed
21.
Zurück zum Zitat Wang SH, Phillips P, Sui Y et al (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and Max pooling. J Med Syst 42:85CrossRefPubMed Wang SH, Phillips P, Sui Y et al (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and Max pooling. J Med Syst 42:85CrossRefPubMed
22.
Zurück zum Zitat Wang Z (2020) Deep learning in medical ultrasound image segmentation: a review (arXiv preprint arXiv:2002.07703) Wang Z (2020) Deep learning in medical ultrasound image segmentation: a review (arXiv preprint arXiv:2002.07703)
Metadaten
Titel
Entwicklung und Evaluation einer Ultraschallnavigation für Freihandbiopsien kleiner Raumforderungen im Kopf-Hals-Bereich
verfasst von
PD Dr. Claudia Scherl
Marie Otto
Ibrahim Ghanem
Javier Moviglia
Fabian Sadi
Tirza Gnilka
Nicole Rotter, Prof. Dr. med.
Lena Zaubitzer, Dr. med.
Jan Stallkamp, Prof. Dr.-Ing.
Publikationsdatum
05.12.2023
Verlag
Springer Medizin
Erschienen in
HNO / Ausgabe 2/2024
Print ISSN: 0017-6192
Elektronische ISSN: 1433-0458
DOI
https://doi.org/10.1007/s00106-023-01385-9

Weitere Artikel der Ausgabe 2/2024

HNO 2/2024 Zur Ausgabe

Repetitorium Facharztprüfung

Vorbereitung auf die Facharztprüfung HNO

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Real-World-Daten sprechen eher für Dupilumab als für Op.

14.05.2024 Rhinosinusitis Nachrichten

Zur Behandlung schwerer Formen der chronischen Rhinosinusitis mit Nasenpolypen (CRSwNP) stehen seit Kurzem verschiedene Behandlungsmethoden zur Verfügung, darunter Biologika, wie Dupilumab, und die endoskopische Sinuschirurgie (ESS). Beim Vergleich der beiden Therapieoptionen war Dupilumab leicht im Vorteil.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.