Skip to main content
Erschienen in: Nutrition Journal 1/2024

Open Access 01.12.2024 | Research

Effect of nutrition education integrating the health belief model and theory of planned behavior on dietary diversity of pregnant women in Southeast Ethiopia: a cluster randomized controlled trial

verfasst von: Girma Beressa, Susan J Whiting, Tefera Belachew

Erschienen in: Nutrition Journal | Ausgabe 1/2024

Abstract

Background

Maternal anemia, miscarriage, low birth weight (LBW), preterm birth (PTB), intrauterine growth restriction (IUGR), prenatal and infant mortality, morbidity, and the risk of chronic disease later in life are all increased by a lack of dietary diversity during pregnancy. However, evidence for the effect of nutrition education on the dietary diversity score (DDS) among pregnant women was sparse in Ethiopia, particularly in the study areas. This study aimed to assess the effect of nutrition education on dietary diversity among pregnant women in urban settings in Southeast Ethiopia.

Methods

A community-based two-arm parallel cluster randomized controlled trial was conducted among 447 randomly selected pregnant women attending antenatal care (224 intervention group and 223 control group) at health facilities from February to December 2021. A multistage cluster sampling technique, followed by systematic sampling, was used to select the pregnant women. Pregnant women who participated in the interventions were given nutrition education starting at 16 weeks of gestation and continuing for 6 months. We used a pre-tested, interviewer-administered, structured questionnaire to collect the data. A 24-hour qualitative dietary recall was used to calculate the dietary diversity score (DDS). A multivariable generalized estimating equation (GEE) model was conducted to evaluate the intervention effect.

Results

After the intervention, the proportion of adequate dietary diversity was 14.15% higher in the intervention arm compared to the control group (45.09% versus 30.94%, P = 0.002). The overall difference in adequate dietary diversity between the two groups was 8.5%. After adjusting for background characteristics, the multivariable GEE binary logistic model revealed that having received intervention [(AOR = 1.89, 95% CI: 1.27, 2.79)], being literate [(AOR = 3.41, 95% CI: 1.13, 10.23)], and having high wealth [(AOR = 1.60, 95% CI: 1.09, 2.35)] significantly improved adequate dietary diversity.

Conclusion

The findings indicated that having received the intervention, being literate, and having a high level of wealth significantly improved maternal dietary diversity. Efforts should be made to increase nutrition education using the health belief model (HBM) and the theory of planned behavior (TPB). Moreover, there is a need to improve literacy and economic empowerment through income-generating activities to enhance adequate dietary diversification during pregnancy.

Trial registration

Clinicaltrials.gov (PACTR202201731802989, Retrospectively registered on 24 January 2022).

Introduction

Dietary diversity is needed in pregnant women to reduce maternal mortality and morbidity while also laying the framework for fetal growth and perinatal outcome issues [1]. Inadequate dietary diversity during pregnancy, on the other hand, raises the risk of maternal anemia, miscarriage, low birth weight (LBW), preterm birth (PTB), intrauterine growth restriction (IUGR), prenatal and infant mortality, morbidity, and an elevated risk of chronic disease later in life [2, 3]. The incidence of nutritional inadequacy among pregnant women remains a significant problem in sub-Saharan Africa (SSA) [4].
The percentage of pregnant women who eat a diversified diet ranges from 12.8 to 74.5% [5, 6] in Ethiopia. Socio-demographic and economic parameters, food insecurity, a lack of nutrition counseling, and environmental factors were all prevalent predictors of inadequate dietary diversity in low- and middle-income countries (LMICs) [7, 8].
Fruit and vegetable (FV) consumption is recommended as part of a nutrient-dense diet; nevertheless, intakes are frequently lower than recommended levels, including during pregnancy globally [9]. Furthermore, the most common public health issues in Ethiopia are macronutrient and micronutrient deficiencies in pregnant women, and FV is a food group that is often low. Over 80% of Ethiopian women of childbearing age are inadequate in vitamin A, the source of which is primarily FV. The consumption of vitamin-A-rich FV in the overall diet among women in the Oromia region and Addis Ababa was only 3.9% and 2.8%, respectively. Whereas, the consumption of other FV among women in the Oromia region and Addis Ababa was 8.4% and 10.4%, respectively [10].
The key factor in inadequate nutritional intake is pregnant women’s lack of awareness about food needs during pregnancy [11]. The Ethiopian government recommends nutrition counseling throughout pregnancy [12], since improving maternal diet is the most appealing and long-lasting method of improving maternal and child health [13]. Nutrition education is provided to pregnant women by health professionals and health extension workers during antenatal care (ANC) visits and in the community. Despite this, the health-care system’s existing nutrition education is ineffective in changing behavior [14].
Health promotion programs that include behavior change tactics, home visits, and participatory campaigns have been shown to assist women in maintaining their health throughout their reproductive years [15]. Health promotions based on behavioral models and theories have had a positive impact on pregnant women’s dietary behaviors [16]. In this study, the health belief model (HBM) and the theory of planned behavior (TPB) were used to counsel pregnant women [17].
For pregnant women in Ethiopia, intervention using nutrition education models and theories is advocated [14, 1821], such as education on the consumption of nutrient-rich, locally available foods and food and nutrient supplementation (for example, iron-folic acid [IFA], calcium, and multiple micronutrients), as well as on weight during pregnancy to ensure a healthy weight gain [22]. Therefore, we aimed to assess the effect of a nutrition education intervention on dietary diversity scores among pregnant women in urban settings in Southeast Ethiopia.

Methods

Study design, setting, and subjects

A community-based, two-arm, parallel cluster randomized controlled trial study was used among pregnant women attending antenatal care at health facilities in Robe and Goba Towns, Bale Zone, Southeast Ethiopia, from February to December 2021. Robe and Goba Towns were located 430 and 444 km away from Addis Ababa, Ethiopia, respectively. There are 4 hospitals, namely Goba Referral Hospital, Robe, Delomena, and Ginnir; 87 health centers, and more than 300 health posts in the Bale Zone. There were 1,832 and 2,048 pregnant women in the towns of Goba and Robe, respectively. Cluster randomization was used over individual-level randomization to reduce contamination and for pragmatic reasons, as urban health extension workers (UHEWs) operate in clusters [23].
All pregnant women receiving ANC in the towns of Robe and Goba in the Bale Zone were source populations. All first- and early-second-trimester pregnant women who visited ANC clinics in the Robe and Goba Towns, in the Bale Zone, were the study population. First-trimester pregnant women who resided permanently in the study areas were included in the study. Pregnant women who had been diagnosed with HTN, or diabetes mellitus, were excluded from the study.

Sample size determination and sampling techniques

The sample size was determined using the G-Power software version 3.1, assuming an effect size of 0.25, a 95% confidence level, a precision of 0.05, and a power (1- β) of 80% [24]. The computed sample size was 206. Taking the largest sample size and considering the design effect (DE) of 2 and the 10% attrition rate, the final sample size was 454 (intervention group = 227 and control group = 227).
Two towns, namely, Robe and Goba, were selected. Robe town has three kebeles (the smallest administrative unit) (Baha Biftu, Donsa, and Oda Robe), whereas Goba Town has an Eastern and Western kebeles. The number of pregnant women in each cluster was determined using birth data prepared by UHEWs. Clusters were randomized to the intervention and control groups randomly. Pregnant women in Robe Town received nutrition education, while those in the Goba town control group did not. The sample size was allocated to each cluster by probability proportional to size (PPS). A multistage cluster sampling technique was used to select the pregnant women. The sample size was allocated to each cluster by probability proportional to size (PPS). Pregnant women were selected using a systematic sampling technique. If a woman was absent from her house during the interview, eligible pregnant women in the next house in the serial number were interviewed. The house of the absent pregnant woman was revisited the next day. By asking about the first date of the last menstrual period and confirming pregnancy with a pregnancy test, gestational age was computed.

Randomization, intervention allocation, and blinding

Pregnant women were assessed for eligibility and allocated randomly to the intervention and control groups using a 1:1 ratio. The allocation sequence was generated using coin tossing. A simple randomization approach, coin-tossing, was used to generate the allocation sequence. The local languages, Afan Oromo and Amharic, were used for communication during nutrition education. The intervention group received nutrition education, counseling cards, and a structured work schedule. The key messages for the lessons were created using the health belief model (HBM) and theory of planned behavior (TPB) theoretical principles [17, 25]. The HBM is an interpersonal health model that is used to foster positive behavior [26]. It explains why some people adopt health-promoting steps while others do not [17, 26]. Prediction of intention and behavior was also conducted using the TPB constructs [17, 25]. TPB was utilised to identify the psychological processes (behavior mediators) that lead to intervention results, both for assessment and to explain dietary behavior changes. The purpose of the study was not to test the theoretical model but to offer direction on the sorts of factors and processes that may be essential in influencing maternal health behaviors and should be addressed in the intervention. The intervention was intended to increase personal and normative nutrition actions [27] towards diverse diet sustenance as a consequence of good nutrition attitudes and behavior control. It was adapted on the recommendation of the Ministry of Health (MOH), Ethiopia [28]. Baseline and end-line assessments were made for two groups. After baseline data collection, pregnant women in the intervention received nutrition education every trimester consistently for six months (six sessions) after they were recruited at their homes in each cluster. Recruitment was done when animal-source foods (ASF) were allowed. Nutrition education was delivered for 30 to 45 min per session. The nutrition education and supervision processes took place with six nurses holding Bachelor of Science (BSc) degrees and two Master of Public Health (MPH) specialists, respectively.
The core content of the session was: increasing knowledge about essential nutrition actions (ENA), iron-rich food sources to improve Hgb, iron-folate acid supplementations (IFAS), iodized salt, meal frequency, and portion size with increasing gestational age; dietary diversifications: food groups; iron absorption enhancers and inhibitors; reducing heavy workloads, taking days off, exercising, increasing utilization of health services, and interrupting the intergenerational life cycle of malnutrition; increase pregnant women’s perceptions of under nutrition and factors leading to it, poor eating practices causing inadequate dietary intake and disease; gestational weight gain, birth weight, food security, a food-based approach; dietary modification; increasing knowledge about FV consumption through diversification, enrichment, and standardization; identifying barriers and ways to overcome them; decreasing the perceived barriers to preparing a FV; encouraging participants to identify ways to overcome the barriers; specific food taboos (meat and eggs); increasing knowledge and attitudes about pregnant women’s ability to modify feeding practices; improving participants’ perceptions of control and intention; and improving participants’ skills in washing hands.
Presentation, discussion, demonstration, and picture-based activities were used to deliver counselling. Compliance was examined using observation, self-report, and attendance. Second-degree public health specialists led the counselling session. Trainers monitored compliance with regards to observation and attendance. They identified critical counseling skills, key messages, feasible activities, and the GALIDRAA (greet, ask, listen, identify, discuss, recommend, agree, set follow-up appointment) processes. Intervention and control groups received nutrition education routinely from nurses. However, due to the unique characteristics of the cluster RCT and the nature of the intervention under research, no concealment was used in the study. This study was not blinded, as the two towns were far apart from each other (more than 10 km). Counseling was not administered by the same nurses to avoid information contamination between intervention and control.
Pregnant women were aware of the intervention; however, pregnant women in both arms were blinded to the research hypotheses. Once the women were enrolled, reasonable efforts were made to promote their retention and complete follow-up by offering soaps to them to minimize missing data. Interest in the study was also maintained through periodic discussions concerning compliance with the intervention during regular meetings as well as home visits by trainers. Furthermore, home visits were scheduled to reduce the pregnant women’s burden associated with follow-up visits. Monitoring and evaluation of the activities were done by the lead author and supervisors.
The control groups were not given a specific schedule. Nevertheless, they received standard healthcare. The control group received a brief intervention at the end of the study to ensure justice and obtain a high degree of post-recruitment satisfaction. In Ethiopia, the MOH’s routine health extension programme packages have 16 components consisting of: family health (family planning, maternal and child health, nutrition, and vaccination services), disease prevention and control (HIV/AIDS and STIs, tuberculosis, malaria, and first aid cares), hygiene and sanitation (promotion of sanitary latrines, waste disposal management, water supply, food hygiene and safety, control of insects and rodents, personal hygiene, and healthy home environment services), and health education [29].

Data collection

An interviewer-administered, structured questionnaire was used to collect the data. The data collection tools were adapted from the Ethiopian Demographic and Health Survey (EDHS) and existing literature [3, 18, 30]. Data on socio-demographic and economic factors, substance abuse (tea or coffee, alcohol, smoking), and reproductive history were collected before the intervention. Nutritional, intimate partner violence (IPV), physical exercise, health care delivery systems, knowledge and practice of HBM, and TPB tools were collected before and after intervention. End-line data were collected at the end of 36 weeks of gestation.
The principal component analysis (PCA) was used to generate a wealth index. Twenty-one variables entered into the PCA included the availability of a water source, a latrine, a bank account, different types of living houses, livestock, agricultural ownership, and household asset items [31, 32]. The responses of all non-dummy variables were dichotomized as “improved” (= 1) and “unimproved” (= 0) based on the WHO/UNICEF definition. Household income was classified into tertiles: “high,” “medium,” and “poor” [33]. Finally, the highest tertile was designated as having a high income, while the two lowest tertiles were designated as having a low income.
Assumptions of PCA include the correlation matrix for the variables containing two or more correlations  0.30; variables with measures of sampling adequacy less than 0.50 that must be removed (looking anti-image); the overall measures of sampling adequacy, Kaiser-Meyer-Olkin (KMO)  0.5 [34], the Bartlett test of sphericity (p-value < 0.05); communality > 0.5; and not having the complex structure of correlation  0.40. Components that collectively explain more than 60% of the variance in the set of variables and have eigenvalues  1 [35, 36] were used to identify variables to be included in further analyses. Then, the economic status of study subjects was categorized into tertiles as rich, medium, and poor. The highest tertile was used to designate a more wealth lifestyle, while the two lowest tertiles were used to represent a less wealthy lifestyle.
The status of household food security was evaluated using 27 previously validated questions. Food secure, mildly, moderately, and severely food insecure families were defined as having fewer than the first two, two to ten, eleven to seventeen, and more than seventeen food insecurity indicators, respectively [37].
Each HBM was assessed using the sums of a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree) to form a composite question: perceived susceptibility (3 items), perceived severity, and perceived benefits (4 items each), perceived barriers (5 items), cues to action, and self-efficacy (4 items each) [25]. TPB constructs: attitude and subjective norms (3 items each), perceived behavioral control (2 items), and behavioral intention (2 items) (7 items) [38]. The factor scores were summed and categorized into tertiles, and the highest tertile was labelled as having a “yes” for perceived susceptibility, severity, benefit, barriers, cues to action, self-efficacy, positive attitude, perceived behavioral control, and behavioral intention; otherwise, the two lower tertiles were labelled as “no.” A ten-item knowledge questions was also used to measure the significance of fruits and vegetables [39]. If a respondent answered correctly, they received a 1; otherwise, they received a 0. After that, the scores were computed and ranked in tercile order. Finally, the highest tertile was labeled with a high level of nutrition knowledge, while the two lower tertiles were labeled with a poor level of nutrition knowledge.

Data quality control

To ensure the quality of the data, the questionnaire was initially developed in English and then translated into the local languages (Afan Oromo and Amharic) and back-translated into English by independent language experts to ensure its consistency. The questionnaire was also pretested on 5% of the total estimated sample size, which had similar characteristics to the study subjects in a different adjacent setting.
An epidemiologist and a biostatistician reviewed the completed questionnaire to ensure its validity. Finally, we modified the questionnaire based on the findings of the pre-test and specialty reviews (setting and wording questions, sequencing, formatting, and scaling responses). The training was given to eight nurses with BSc degrees as data collectors and four MPH specialists as supervisors on the objectives of the study, data collection instruments, and ethical issues to minimize interviewers’ bias. Six counselors were trained by the lead author. A lead author met with counselors every two weeks to discuss ways of improving the counseling session process.
Supervisors closely followed the data collectors daily for the successful completion of the questionnaire and took timely action in case of any deviations. The study participants were interviewed at their homes to improve the response rate. The internal consistency of the cognitive, affective, and psychomotor domains of the tools were assessed using Cronbach’s alpha (Table S1).

Outcome assessment

The dietary diversity score (DDS) was the primary outcome variable. A 24-hour qualitative dietary recall method was used to calculate the DDS. The DDS for women is a nine-food group to indicate a qualitative indicator of micronutrient sufficiency in a diet [40]. The score was calculated using nine food classes in order to indicate the diet’s micronutrient sufficiency. Participants were asked to recall everything they had eaten and drunk in the previous 24 h, both inside and outside their homes.
Participants were also asked to recall any snacks they had had in between big meals. Consumption of a food item during the reference period was assigned a score of “1,” whereas non-consumption was assigned a score of “0.” The foods were then classified into nine groups: (1) starchy staples; (2) dark green leafy vegetables; (3) vitamin-A-rich fruits and vegetables; (4) other fruits and vegetables; (5) beans, nuts, and seeds; (6) meat and fish; (7) fats and oils; (8) milk and milk products; and (9) eggs. The DDS was calculated by adding the food groups consumed during the reference period and ranking them into tertiles, with the highest tertile indicating a high DDS (= 1) and the two lower tertiles combined representing a low DDS (= 0) [41].

Data processing and analysis

The data were checked for completeness, consistency, and accuracy and entered into, cleaned, and analyzed using SPSS for Windows version 20 and Stata version 14. Descriptive statistics, including frequencies, percentages, means, and standard deviations, were generated for the selected predictors. The baseline characteristics of the intervention and control groups were assessed using the chi-square test. The McNemar test was used to compare DDS within the intervention and control groups. The difference in difference (DID) analyses were used to estimate DDS between the two study arms [42].
Variables with a p-value less than 0.25 in a bivariable generalized estimating equations (GEE) binary logistic model were entered into a multivariable GEE binary logistic model to account for within-cluster correlation of measurements. GEE can manage missing data values without the need for explicit imputation by considering all study subjects with at least one follow-up visit and automatically removing the missing values via the GEE analysis model [43].
Although the GEE method is thought to be robust against incorrect working correlation structure (WCS) selection, the best WCS of the DDS was chosen as an unstructured matrix by assessing the working correlation matrix of the observed correlations between subsequent measurements to maintain the goodness of the model fitness and thus obtain a more precise estimation of the intervention effect. Accordingly, the quasi-likelihood under the independence model criterion (QIC) was used to maintain the goodness of model fitness. In our data analysis, there were similar results for all working correlation matrixes. The intervention’s effectiveness was determined using time and treatment interactions. The adjusted odds ratio (AOR), along with a 95% confidence interval (CI), was used to estimate the strength of the association between predictors and the endpoint variable. Initially, randomly assigned pregnant women were examined in the groups to which they were assigned (intention-to-treat analysis principle). The statistical significance of the association was declared at a p-value of less than 0.05, and all tests were two-sided.

Results

Socio-demographic and economic characteristics

A total of 224 (98.67%) and 223 (98.24%) pregnant women were successfully surveyed in the intervention and control groups, respectively (Fig. 1). The mean (± SD) age of the pregnant women was 25.93 (± 5.52) years for the intervention group and 24.24 (± 4.24) years for the control group. There was no statistically significant difference in baseline characteristics between the intervention and control groups (P-value > 0.05) except in ethnicity (Table 1).
Table 1
Baseline socio-demographic and economic characteristics of pregnant women in Southeast Ethiopia, using the chi square test, 2020/21
Variables
Control group (n = 223)
Frequency (%)
Intervention group (n = 224)
Frequency (%)
P-value
Age (years)
   
< 20
27 (55.1)
196 (49.25)
0.44
 20
22 (44.90)
202 (50.75)
Marital status
   
Married
222 (99.55)
223 (99.55)
0.99
Unmarried
1 (0.45)
1 (0.45)
Religion
   
Orthodox
112 (50.22)
101 (45.09)
0.58
Muslim
88 (39.46)
102 (45.54)
Protestant
21 (9.42)
20 (8.93)
Others #
2 (0.90)
1 (0.45)
Ethnicity
   
Oromo
187 (83.86)
193 (86.16)
0.03
Amhara
33 (14.80)
21 (9.38)
Others ◱
3 (1.35)
10 (4.46)
Occupation status
   
Housewife
139 (62.33)
124 (55.36)
0.14
Government employee
46 (20.63)
52 (23.21)
NGO employee
3 (1.35)
13 (5.80)
Petty trade
22 (9.87)
22 (9.82)
Student
9 (4.04)
11 (4.91)
Daily laborer
4 (1.79)
2 (0.89)
Maternal education
   
Literate
209 (93.72)
212 (94.64)
0.68
Illiterate
14 (6.28)
12 (5.36)
Spouse education
   
No formal education
31 (13.90)
24 (10.71)
0.20
Primary education
52 (23.32)
39 (17.41)
Secondary education
66 (29.60)
82 (36.61)
Tertiary education
74 (33.18)
79 (35.27)
Wealth index
   
More wealthy
66 (29.60)
76 (33.93)
0.33
Less wealthy
157 (70.40)
148 (66.07)
Family size
   
< 5
197 (88.34)
188 (83.93)
0.18
 5
26 (11.66)
36 (16.07)
Food security
   
Food insecure
89 (39.91)
82 (36.61)
0.47
Food secured
134 (60.09)
142 (63.39)
 
# Others: ◱Wakafeta; Others: Gurage, Hadiya; NGO: Non-governmental organization

Health belief model and the theory of planned behavior scores

There was significant improvement in the score of HBM and TPB constructs except for perceived benefit and cues to actions among the intervention group before and after the intervention (P-value < 0.0001). Furthermore, with the exception of perceived severity and cues to action, there was a significant difference in the dimensions of HBM and TPB in the end-line data (Table 2). The HBM and TPB constructs showed that perceived susceptibility, perceived benefits, perceived barriers, self-efficacy, and TPB were all correlated with interventions. However, there was no correlation between dietary diversification and HBM and TPB constructs (Table S2).
Table 2
Comparison of the health belief model and the theory of planned behavior constructs between and within the intervention and control groups using an independent t test and a paired t test during pregnancy in Southeast Ethiopia, 2021
HBM and TPB constructs
Study period
HBM and TPB constructs score
P
Control group,
Mean ± SD
Intervention group,
Mean ± SD
Perceived susceptibility
Baseline
Endline
P
5.27 ± 2.2
5.46 ± 1.95
0.04
5.33 ± 2.48
7.43 ± 1.74
< 0.0001
0.80
< 0.0001
Perceived severity
Baseline
Endline
P
8.05 ± 2.70)
8.57 ± 2.49)
< 0.0001
7.34 ± 2.72
8.30 ± 2.36
< 0.0001
0.006
0.25
Perceived Benefit
Baseline
Endline
P
11.04 ± 1.66
10.86 ± 1.79
0.10
11.46 ± 1.42
11.57 ± 1.22
0.07
0.004
< 0.0001
Perceived barriers
Baseline
Endline
P
8.55 ± 2.71
9.25 ± 2.88
< 0.0001
8.20 ± 2.43
7.88 ± 2.54
0.02
0.39
< 0.0001
Cues to action
Baseline
Endline
P
11.0 ± 2.61
11.61 ± 1.44
< 0.0001
11.65 ± 1.15
11.55 ± 1.19
0.25
< 0.0001
0.57
Self-efficacy
Baseline
Endline
P
9.22 ± 2.07
9.55 ± 11.81
< 0.0001
9.93 ± 2.28
10.58 ± 1.69
< 0.0001
0.001
< 0.0001
Attitude
Baseline
Endline
P
13.32 ± 1.66
13.61 ± 1.69
0.002
12.32 ± 3.84
14.23 ± 1.49
< 0.0001
< 0.0001
< 0.0001
Subjective norm
Baseline
Endline
P
13.46 ± 1.55
13.80 ± 1.39
< 0.0001
12.89 ± 3.71
14.29 ± 1.51
< 0.0001
0.04
< 0.0001
Perceived behavioral control
Baseline
Endline
P
7.48 ± 2.25
8.17 ± 1.92
< 0.0001
7.92 ± 2.44
9.37 ± 1.40
< 0.0001
0.04
< 0.0001
Behavioral intention
Baseline
Endline
P
31.62 ± 3.52
32.91 ± 2.39
< 0.0001
30.30 ± 8.07
33.64 ± 2.71
< 0.0001
0.02
0.003
HBM: Health belief model; TPB: Theory of planned behavior; P: P-value; SD: Standard deviation

Food taboos during pregnancy

The proportion of pregnant women who had religious food restrictions was 12.9% (95% CI: 8.3, 16.4%) and 13.9% (95% CI: 8.8, 18.90%) in the intervention and control groups, respectively. Butter, 14 (6.3%), bananas, 6 (2.7%), and milk, 5 (2.2%), were considered dietary taboos, followed by beef, 3 (1.3%), and eggs, 1 (0.4%), in the intervention group, whereas milk, 10 (4.5%), butter, 7 (3.1%), banana, 5 (2.2%), eggs, 5 (2.2%), and beef, 4 (1.8%), in the control group. The two groups were comparable in terms of maternal education and food taboos at baseline.
The proportion of pregnant women who had religious food restrictions decreased to 6.7% (95% CI: 3.3, 9.7%) in the intervention group but remained high at 12.6% (95% CI: 8.0, 17.10%) in the control groups at end-line (P = 0.03). Butter, 7 (3.1%), milk, 4 (1.8%), and bananas, 3 (1.3%), were considered dietary taboos, followed by eggs, 1 (0.4%), in the intervention group, whereas milk, 9 (4.0%), butter, 6 (2.7%), eggs, 5 (2.2%), banana, 4 (1.8%), and beef, 4 (1.8%), in the control group.

Dietary diversity score

Before the intervention, the proportion of adequate dietary diversity (DD) in the two arms was (intervention, 37.50% versus control, 31.84%). At baseline, there was no statistically significant difference in DDS between the two groups (P = 0.21). After the intervention, the proportion of adequate DD was 14.15% higher in the intervention arm compared to the control group (45.09% versus 30.94%, P = 0.002) (Table 3). The overall difference in adequate DD between the groups was 8.5%. The difference in differences (DID) indicated that there was a statistically significant difference between the intervention and control groups (Table 4).
Table 3
Comparison of the food groups between the intervention and control groups during pregnancy using the chi square test in Southeast Ethiopia, 2021
Food groups
Study period
Category
Control group,
Frequency (%)
Intervention group,
Frequency (%)
P-value
Cereals
Baseline
End line
Yes
223 (100)
224 (100)
-
Yes
223 (100)
224 (100)
Vitamin A rich FV
Baseline
End line
Yes
139 (62.33)
129 (57.59)
0.30
No
84 (37.67)
95 (42.41)
Yes
146 (65.47)
165 (73.66)
0.06
No
77 (34.53)
59 (26.34)
Other fruit
Baseline
End line
Yes
113 (50.67)
91 (40.63)
0.03
No
110 (49.33)
133 (59.38)
Yes
128 (57.40)
132 (58.93)
0.74
No
95 (42.60)
92 (41.07)
 
Other vegetable
Baseline
End line
Yes
94 (42.15)
107 (47.77)
0.23
No
129 (57.85)
117 (52.23)
Yes
98 (43.95)
128 (57.14)
0.005
No
125 (56.05)
96 (42.86)
Legumes and Nut
Baseline
End line
Yes
110 (49.33)
224 (53.57)
0.37
No
113 (50.67)
104 (46.43)
Yes
116 (52.02)
134 (59.82)
0.09
No
107 (47.98)
90 (40.18)
Meat, poultry, & fish
Baseline
End line
Yes
71 (31.84)
77 (34.38)
0.57
No
152 (68.16)
147 (65.63)
Yes
86 (38.57)
110 (49.11)
0.03
No
137 (61.43)
114 (50.89)
Fats and oils
Baseline
End line
Yes
207 (92.83)
216 (96.43)
0.09
No
16 (7.17)
8 (3.57)
Yes
213 (95.52)
223 (99.55)
0.006
No
10 (4.48)
1 (0.43)
Dairy products
Baseline
End line
Yes
83 (37.22)
98 (43.75)
0.16
No
140 (62.78)
126 (56.25)
Yes
85 (38.12)
109 (48.66)
0.03
No
138 (61.88)
115 (51.34)
Eggs
Baseline
End line
Yes
57 (25.56)
53 (23.66)
0.64
No
166 (74.44)
171 (76.34)
Yes
64 (28.70)
77 (34.38)
0.20
No
159 (71.30)
147 (65.63)
DDS
Baseline
End line
High
71 (31.84)
84 (37.50)
0.21
Low
152 (68.16)
140 (62.50)
High
69 (30.94)
101 (45.09)
0.002
Low
154 (69.06)
123 (54.91)
DDS: Dietary diversity score; FV: Fruit and vegetable
Table 4
Differences between baseline and end-line measurements of DDS and difference of the differences between the intervention and control groups using a McNemar test
Group
Baseline
End line
Difference (EL-BL)
Difference of difference
P-value
Intervention
0.375
0.451
0.076
0.085 ± 0.05
< 0.0001
Control
0.318
0.309
-0.009
BL: Baseline; EL: End line

Prediction of adequate dietary diversity among pregnant women

The multivariable generalized estimating equations (GEE) logistic regression model revealed that having received intervention [(AOR = 1.89, 95% CI: (1.27, 2.79)], being literate [(AOR = 3.41, 95% CI: (1.13, 10.23)], and having a high wealth quintile [(AOR = 1.60, 95% CI: (1.09, 2.35)] significantly improved adequate dietary diversity (Table 5).
Table 5
Multivariable generalized estimating equations logistic regression model predicting adequate dietary diversity among pregnant women
 
P
AOR
95% CI
Lower
Upper
Intercept
< 0.0001
0.042
0.010
0.188
Maternal age
    
≥ 20
0.910
1.040
0.490
2.220
< 20
 
Ref
  
Maternal education
    
Literate
0.030
3.410
1.130
10.230
Illiterate
 
Ref
  
Wealth index
    
More wealthy
0.020
1.600
1.090
2.350
Less wealthy
 
Ref
  
Nutrition counsel
    
Yes
0.310
1.240
0.820
1.860
No
 
Ref
  
Have adequate money to buy food
Yes
0.997
1.001
0.620
1.620
No
 
Ref
  
End line knowledge on FV
    
high knowledge
0.810
1.050
0.710
1.530
low knowledge
 
Ref
  
End line food security
    
Food secure
0.595
1.100
0.760
1.610
Food insecure
 
Ref
  
End-line organ meat
    
Yes
0.400
0.850
0.580
1.230
No
 
Ref
  
Group type
    
Intervention
0.890
0.970
0.620
1.500
Control
 
Ref
  
Time [End line]
0.010
1.410
1.080
1.850
Time [baseline]
 
Ref
  
Time [end line] * Intervention
0.001
1.890
1.270
2.790
Model was adjusted for maternal age, maternal education, wealth index, baseline nutrition counsel, adequate money to buy food, End line knowledge on FV, end line food security status, end line organ meat, time, group type, time * group type,
P: P-value; AOR: Adjusted odds ratio; CI: Confidence interval; SE: standard error; Ref: Reference category, FV: Fruit and vegetable; Time: Follow-up rounds; Maximum SE = 0.55

Discussion

We found that the nutrition education intervention achieved a significant improvement in the consumption of foods as shown by an increase in dietary diversity score in the intervention arm compared to controls. The results showed that having received the intervention, being literate, and having a high wealth quintile significantly improved adequacy of dietary diversity.
After controlling the potential confounders, the pregnant women in the intervention group were 1.89 times more likely to have adequate dietary diversity compared to their counterparts. As health professionals frequently contacted pregnant women in their homes in this current research, this might explain why there was an enhanced intake of dietary diversity. The findings of this study adds to a growing body of evidence in Ethiopia [14, 21, 39, 44, 45], as well as in other medium-and low-income countries such as Burkina Faso and Malawi [4648], Iran, and Pakistan [49, 50]. The possible explanation could be that women in these countries have low levels of awareness of the importance of dietary diversity and that education that includes the HBM and TPB dimensions will improve this knowledge. This is consistent with the finding of a study conducted in West Gojjam, Ethiopia, which found that the HBM and TPB dimensions had a significant positive association with the DDS during pregnancy [21]. This builds the case that applying health behavior models and theories to behavior change communication improves dietary behaviors.
Increased behavioral changes towards DDS may indicate the intervention’s effectiveness in creating favorable beliefs and expectations about optimal nutrition during pregnancy. Moreover, education and counseling can assist women in realizing the value of a varied diet throughout pregnancy and encourage continuous efforts to maintain a broad diet [51]. In addition, health promotion-based educational interventions can be beneficial in raising awareness, improving understanding of risks, removing obstacles to healthy behavior, and, ultimately, improving women’s health and nutritional performance throughout pregnancy [52].
Literate pregnant women were 3.41 times more likely to eat a diet with adequate dietary diversity compared to those who had no formal education. This study’s findings agreed with the reports of studies conducted in other parts of Ethiopia [53], Kenya [54], and Bangladesh [55]. This could be due to the way food taboos influence consumption. On the other hand, educated women might have more employment opportunities and wealth, which may increase their consumption of a variety of meals. Pregnant women who were in the high-wealth quintile were 1.60 times more likely to consume a diet with adequate diversity. These findings are in accordance with evidence from other studies conducted in Ethiopia [18, 56] and Kenya [54]. One possible explanation is that pregnant women from the wealthier quintile had access to healthier foods and more diversity in their diets.
The proportion of pregnant women who had religious food restrictions was 12.9% and 13.9% in the intervention and control groups, respectively. Butter, bananas, and milk were considered food taboos, followed by beef and eggs, in the intervention group, whereas milk, butter, bananas, eggs, and beef were considered food taboos in the control group at baseline. This study’s finding was lower than other studies conducted in Ethiopia [5763], in which many pregnant women reported having food taboos. This finding agreed with studies conducted in Kenya, Kwazulu-Natal, South Africa, and India [6466].
The proportion of women who had food taboos was 6.7% in the intervention group. Butter, milk, and bananas were considered food taboos, followed by eggs, in the intervention group, whereas milk, butter, eggs, bananas, and beef were considered food taboos in the control group at the end line. This decrease in food taboos may be due to the positive effect of education.
The strength of this study is its community-based, cluster-randomised, controlled trial design, in which promoting fruit and vegetable consumption and other health messages were integrated with HBM and TPB, which are applicable to relevant and standard ANC. For generalizability, cluster randomized controlled trials should have both internal and external validity [67]. Both the sample size determination and the data analysis took the cluster nature of the study into account. Adoption, or the degree to which the setting is typical of the larger population, and program implementation evaluation could also be used to assess external validity [67].
However, the findings of this study could have been influenced by recall bias and social desirability bias. Nonetheless, efforts were made to probe pregnant women on multiple passes for 24 h in order to improve recall. Self-reporting, on the other hand, is often employed in nutrition assessments and has been demonstrated to have greater behavior prediction power than objective assessments [68]. Pregnant women in the control group had not had the same number of visits as those in the intervention group. While the intervention was trimester-based, promoting dietary diversity consumption during pregnancy should be initiated during the preconception period to prevent adverse pregnancy outcomes (APO). Furthermore, this study’s findings could not be generalized to pregnant women living in rural settings in Southeast Ethiopia, as it was conducted among pregnant women residing in urban areas in Southeast Ethiopia.

Conclusion

The findings showed that having received intervention, being literate, and being in the high wealth quintile significantly improved adequate dietary diversity. Efforts should be made to increase nutrition education using the health belief model (HBM) and the theory of planned behavior (TPB). As well, other theories such as stages of change (the trans-theoretical model), might also be of value.
Moreover, there is a need to improve literacy and economic empowerment through income-generating activities to enhance adequate dietary diversification during pregnancy. Further studies are needed to assess the impact of nutrition education interventions delivered during pregnancy.

Acknowledgements

We would like to express our gratitude to Jimma University and local administrative officials for their support. Our thanks also go to the supervisors, data collectors, and pregnant women for their participation.

Declarations

Ethical statement

The current study was ethically approved by the Institutional Review Board of Jimma University before it started. A permission letter was obtained from the health offices. All methods were performed in accordance with the relevant tenets of the Helsinki Declaration and good clinical practice [69]. Informed written consent was obtained from each respondent. The privacy of the respondents was respected. Confidentiality was maintained throughout the entire process of data collection and management. The trial for this study was registered at clinicaltrials.gov. The study was reported following the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement [70] (Table S1 CONSORT checklist). The trial was at Clinicaltrials.gov (PACTR202201731802989, Retrospectively registered on 24 January 2022).

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Engidaye G, Melku M, Yalew A, Getaneh Z, Asrie F, Enawgaw B. Under nutrition, maternal anemia and household food insecurity are risk factors of anemia among preschool aged children in Menz Gera Midir district, Eastern Amhara, Ethiopia: a community based cross-sectional study. BMC Public Health. 2019;19:968.PubMedPubMedCentralCrossRef Engidaye G, Melku M, Yalew A, Getaneh Z, Asrie F, Enawgaw B. Under nutrition, maternal anemia and household food insecurity are risk factors of anemia among preschool aged children in Menz Gera Midir district, Eastern Amhara, Ethiopia: a community based cross-sectional study. BMC Public Health. 2019;19:968.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Ely DM, Driscoll AK. Infant mortality in the United States, 2017: data from the period linked birth/infant death file. Natl Vital Stat Rep. 2019;68:1–20.PubMed Ely DM, Driscoll AK. Infant mortality in the United States, 2017: data from the period linked birth/infant death file. Natl Vital Stat Rep. 2019;68:1–20.PubMed
3.
Zurück zum Zitat Zerfu TA, Umeta M, Baye K. Dietary diversity during pregnancy is associated with reduced risk of maternal anemia, preterm delivery, and low birth weight in a prospective cohort study in rural Ethiopia. Am J Clin Nutr. 2016;103:1482–8.PubMedCrossRef Zerfu TA, Umeta M, Baye K. Dietary diversity during pregnancy is associated with reduced risk of maternal anemia, preterm delivery, and low birth weight in a prospective cohort study in rural Ethiopia. Am J Clin Nutr. 2016;103:1482–8.PubMedCrossRef
4.
Zurück zum Zitat Smith ER, Shankar AH, Wu LS, Aboud S, Adu-Afarwuah S, Ali H, Agustina R, Arifeen S, Ashorn P, Bhutta ZA, et al. Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: a meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. Lancet Glob Health. 2017;5:e1090–100.PubMedCrossRef Smith ER, Shankar AH, Wu LS, Aboud S, Adu-Afarwuah S, Ali H, Agustina R, Arifeen S, Ashorn P, Bhutta ZA, et al. Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: a meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. Lancet Glob Health. 2017;5:e1090–100.PubMedCrossRef
5.
Zurück zum Zitat Diddana TZ. Factors associated with dietary practice and nutritional status of pregnant women in Dessie town, northeastern Ethiopia: a community-based cross-sectional study. BMC Pregnancy Childbirth. 2019;19:517.PubMedPubMedCentralCrossRef Diddana TZ. Factors associated with dietary practice and nutritional status of pregnant women in Dessie town, northeastern Ethiopia: a community-based cross-sectional study. BMC Pregnancy Childbirth. 2019;19:517.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Workicho A, Belachew T, Ghosh S, Kershaw M, Lachat C, Kolsteren P. Burden and determinants of undernutrition among young pregnant women in Ethiopia. Matern Child Nutr. 2019;15:e12751.PubMedCrossRef Workicho A, Belachew T, Ghosh S, Kershaw M, Lachat C, Kolsteren P. Burden and determinants of undernutrition among young pregnant women in Ethiopia. Matern Child Nutr. 2019;15:e12751.PubMedCrossRef
7.
Zurück zum Zitat Hidru HD, Berwo Mengesha M, Hailesilassie Y, Tekulu Welay F. Burden and determinant of inadequate dietary diversity among pregnant women in Ethiopia: a systematic review and meta-analysis. J Nutr Metab. 2020;2020:1272393. Hidru HD, Berwo Mengesha M, Hailesilassie Y, Tekulu Welay F. Burden and determinant of inadequate dietary diversity among pregnant women in Ethiopia: a systematic review and meta-analysis. J Nutr Metab. 2020;2020:1272393.
8.
Zurück zum Zitat Workicho A, Belachew T, Feyissa GT, Wondafrash B, Lachat C, Verstraeten R, Kolsteren P. Household dietary diversity and animal source food consumption in Ethiopia: evidence from the 2011 welfare monitoring survey. BMC Public Health. 2016;16:1192.PubMedPubMedCentralCrossRef Workicho A, Belachew T, Feyissa GT, Wondafrash B, Lachat C, Verstraeten R, Kolsteren P. Household dietary diversity and animal source food consumption in Ethiopia: evidence from the 2011 welfare monitoring survey. BMC Public Health. 2016;16:1192.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Fowler JK, Evers SE, Campbell MK. Inadequate dietary intakes among pregnant women. Can J Diet Pract Res. 2012;73:72–7.PubMedCrossRef Fowler JK, Evers SE, Campbell MK. Inadequate dietary intakes among pregnant women. Can J Diet Pract Res. 2012;73:72–7.PubMedCrossRef
10.
Zurück zum Zitat EPHI. : Ethiopian Public Health Institute Addis Ababa, Ethiopia, Ethiopia National Food Consumption Survey 2013. EPHI. : Ethiopian Public Health Institute Addis Ababa, Ethiopia, Ethiopia National Food Consumption Survey 2013.
11.
12.
Zurück zum Zitat Federal Ministry of Health. National guideline on adolescent, maternal infant and young child nutrition. 2016. Federal Ministry of Health. National guideline on adolescent, maternal infant and young child nutrition. 2016.
14.
Zurück zum Zitat Diddana TZ, Kelkay GN, Dola AN, Sadore AA. Effect of nutrition education based on health belief model on nutritional knowledge and dietary practice of pregnant women in Dessie town, Northeast Ethiopia: a cluster randomized control trial. J Nutr Metab. 2018;2018:6731815.PubMedPubMedCentralCrossRef Diddana TZ, Kelkay GN, Dola AN, Sadore AA. Effect of nutrition education based on health belief model on nutritional knowledge and dietary practice of pregnant women in Dessie town, Northeast Ethiopia: a cluster randomized control trial. J Nutr Metab. 2018;2018:6731815.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Barry D, Frew AH, Mohammed H, Desta BF, Tadesse L, Aklilu Y, Biadgo A, Buffington ST, Sibley LM. The effect of community maternal and newborn health family meetings on type of birth attendant and completeness of maternal and newborn care received during birth and the early postnatal period in rural Ethiopia. J Midwifery Womens Health. 2014;59(Suppl 1):44–54. Barry D, Frew AH, Mohammed H, Desta BF, Tadesse L, Aklilu Y, Biadgo A, Buffington ST, Sibley LM. The effect of community maternal and newborn health family meetings on type of birth attendant and completeness of maternal and newborn care received during birth and the early postnatal period in rural Ethiopia. J Midwifery Womens Health. 2014;59(Suppl 1):44–54.
16.
Zurück zum Zitat Aşcı Ö, Rathfisch G. Effect of lifestyle interventions of pregnant women on their dietary habits, lifestyle behaviors, and weight gain: a randomized controlled trial. J Health Popul Nutr. 2016;35:7.PubMedPubMedCentralCrossRef Aşcı Ö, Rathfisch G. Effect of lifestyle interventions of pregnant women on their dietary habits, lifestyle behaviors, and weight gain: a randomized controlled trial. J Health Popul Nutr. 2016;35:7.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Glanz K, Rimer BK, Viswanath K. Health behavior and health education: theory, research, and practice. John Wiley & Sons; 2008. Glanz K, Rimer BK, Viswanath K. Health behavior and health education: theory, research, and practice. John Wiley & Sons; 2008.
18.
Zurück zum Zitat Yeneabat T, Adugna H, Asmamaw T, Wubetu M, Admas M, Hailu G, Bedaso A, Amare T. Maternal dietary diversity and micronutrient adequacy during pregnancy and related factors in East Gojjam zone, Northwest Ethiopia, 2016. BMC Pregnancy Childbirth. 2019;19:173.PubMedPubMedCentralCrossRef Yeneabat T, Adugna H, Asmamaw T, Wubetu M, Admas M, Hailu G, Bedaso A, Amare T. Maternal dietary diversity and micronutrient adequacy during pregnancy and related factors in East Gojjam zone, Northwest Ethiopia, 2016. BMC Pregnancy Childbirth. 2019;19:173.PubMedPubMedCentralCrossRef
19.
20.
Zurück zum Zitat Azene AG, Aragaw AM, Wubetie HT, Wassie GT, Tsegaye GW, Derebe MA, Mitiku HD. Dietary diversity among pregnant women and associated factors in Ethiopia: systematic review and meta-analysis. PLoS ONE. 2021;16:e0251906.PubMedPubMedCentralCrossRef Azene AG, Aragaw AM, Wubetie HT, Wassie GT, Tsegaye GW, Derebe MA, Mitiku HD. Dietary diversity among pregnant women and associated factors in Ethiopia: systematic review and meta-analysis. PLoS ONE. 2021;16:e0251906.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Demilew YM, Alene GD, Belachew T. Effect of guided counseling on dietary practices of pregnant women in West Gojjam zone, Ethiopia. PLoS ONE. 2020;15:e0233429.PubMedPubMedCentralCrossRef Demilew YM, Alene GD, Belachew T. Effect of guided counseling on dietary practices of pregnant women in West Gojjam zone, Ethiopia. PLoS ONE. 2020;15:e0233429.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience. World Health Organization; 2016. World Health Organization. WHO recommendations on antenatal care for a positive pregnancy experience. World Health Organization; 2016.
23.
Zurück zum Zitat Kimani-Murage EW, Griffiths PL, Wekesah FM, Wanjohi M, Muhia N, Muriuki P, Egondi T, Kyobutungi C, Ezeh AC, McGarvey ST, et al. Effectiveness of home-based nutritional counselling and support on exclusive breastfeeding in urban poor settings in Nairobi: a cluster randomized controlled trial. Global Health. 2017;13:90.PubMedPubMedCentralCrossRef Kimani-Murage EW, Griffiths PL, Wekesah FM, Wanjohi M, Muhia N, Muriuki P, Egondi T, Kyobutungi C, Ezeh AC, McGarvey ST, et al. Effectiveness of home-based nutritional counselling and support on exclusive breastfeeding in urban poor settings in Nairobi: a cluster randomized controlled trial. Global Health. 2017;13:90.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.PubMedCrossRef Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.PubMedCrossRef
25.
Zurück zum Zitat Marías Y, Glasauer P. Guidelines for assessing nutrition-related knowledge, attitudes and practices. Food and Agriculture Organization of the United Nations (FAO). 2014. Marías Y, Glasauer P. Guidelines for assessing nutrition-related knowledge, attitudes and practices. Food and Agriculture Organization of the United Nations (FAO). 2014.
26.
Zurück zum Zitat Jones CL, Jensen JD, Scherr CL, Brown NR, Christy K, Weaver J. The health belief model as an explanatory framework in communication research: exploring parallel, serial, and moderated mediation. Health Commun. 2015;30:566–76.PubMedCrossRef Jones CL, Jensen JD, Scherr CL, Brown NR, Christy K, Weaver J. The health belief model as an explanatory framework in communication research: exploring parallel, serial, and moderated mediation. Health Commun. 2015;30:566–76.PubMedCrossRef
27.
Zurück zum Zitat Armitage CJ, Conner M. Efficacy of the theory of planned behaviour: a meta-analytic review. Br J Soc Psychol. 2001;40:471–99.PubMedCrossRef Armitage CJ, Conner M. Efficacy of the theory of planned behaviour: a meta-analytic review. Br J Soc Psychol. 2001;40:471–99.PubMedCrossRef
28.
Zurück zum Zitat Federal Ministry of Health. Federal Democratic Republic of Ethiopia, training of trainers manual for counseling on maternal, infant and young child nutrition. 2011. Federal Ministry of Health. Federal Democratic Republic of Ethiopia, training of trainers manual for counseling on maternal, infant and young child nutrition. 2011.
29.
Zurück zum Zitat Assefa Y, Gelaw YA, Hill PS, Taye BW, Van Damme W. Community health extension program of Ethiopia, 2003–2018: successes and challenges toward universal coverage for primary healthcare services. Global Health. 2019;15:24.PubMedPubMedCentralCrossRef Assefa Y, Gelaw YA, Hill PS, Taye BW, Van Damme W. Community health extension program of Ethiopia, 2003–2018: successes and challenges toward universal coverage for primary healthcare services. Global Health. 2019;15:24.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Central Statistical Agency I. Federal Democratic Republic of Ethiopia, Central Statistical Agency, Ethiopia Demographic and Health Survey, Addis Ababa, Ethiopia. The DHS Program ICF Rockville, Maryland, USA, 2017 2016. Central Statistical Agency I. Federal Democratic Republic of Ethiopia, Central Statistical Agency, Ethiopia Demographic and Health Survey, Addis Ababa, Ethiopia. The DHS Program ICF Rockville, Maryland, USA, 2017 2016.
31.
Zurück zum Zitat CSA I: Central Statistical Agency (CSA)[Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF. 2016. 2017. CSA I: Central Statistical Agency (CSA)[Ethiopia] and ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF. 2016. 2017.
32.
Zurück zum Zitat Rutstein SO. Steps to constructing the new DHS wealth index. Rockville, MD: ICF International; 2015. Rutstein SO. Steps to constructing the new DHS wealth index. Rockville, MD: ICF International; 2015.
33.
Zurück zum Zitat Belachew T, Lindstrom D, Hadley C, Gebremariam A, Kasahun W, Kolsteren P. Food insecurity and linear growth of adolescents in Jimma zone, Southwest Ethiopia. Nutr J. 2013;12:55.PubMedPubMedCentralCrossRef Belachew T, Lindstrom D, Hadley C, Gebremariam A, Kasahun W, Kolsteren P. Food insecurity and linear growth of adolescents in Jimma zone, Southwest Ethiopia. Nutr J. 2013;12:55.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Katchova A. Principal component analysis-econometrics academy. 2017. Katchova A. Principal component analysis-econometrics academy. 2017.
35.
Zurück zum Zitat Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best practices for developing and validating scales for health, social, and behavioral research: a primer. Front Public Health. 2018;6:149.PubMedPubMedCentralCrossRef Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best practices for developing and validating scales for health, social, and behavioral research: a primer. Front Public Health. 2018;6:149.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat DeVellis RF. Scale development: theory and applications. Volume 26. Sage publications Los Angeles; 2016. DeVellis RF. Scale development: theory and applications. Volume 26. Sage publications Los Angeles; 2016.
37.
Zurück zum Zitat Coates J, Swindale A, Bilinsky P. Household food insecurity access scale (HFIAS) for measurement of food access: indicator guide: version 3. 2007. Coates J, Swindale A, Bilinsky P. Household food insecurity access scale (HFIAS) for measurement of food access: indicator guide: version 3. 2007.
38.
Zurück zum Zitat Chitsaz A, Javadi M, Lin C-Y, Pakpour A. The predictors of healthy eating behavior among pregnant women: an application of the theory of planned behavior. Int J Pediatr. 2017;5:5897–905. Chitsaz A, Javadi M, Lin C-Y, Pakpour A. The predictors of healthy eating behavior among pregnant women: an application of the theory of planned behavior. Int J Pediatr. 2017;5:5897–905.
39.
Zurück zum Zitat Zelalem T, Mikyas A, Erdaw T. Nutritional knowledge, attitude and practices among pregnant women who attend antenatal care at public hospitals of Addis Ababa, Ethiopia. Int J Nurs Midwifery. 2018;10:81–9.CrossRef Zelalem T, Mikyas A, Erdaw T. Nutritional knowledge, attitude and practices among pregnant women who attend antenatal care at public hospitals of Addis Ababa, Ethiopia. Int J Nurs Midwifery. 2018;10:81–9.CrossRef
40.
Zurück zum Zitat Kennedy G, Ballard T, Dop MC. Guidelines for measuring household and individual dietary diversity. Food and Agriculture Organization of the United Nations. 2011. Kennedy G, Ballard T, Dop MC. Guidelines for measuring household and individual dietary diversity. Food and Agriculture Organization of the United Nations. 2011.
41.
Zurück zum Zitat Belachew T, Lindstrom D, Gebremariam A, Hogan D, Lachat C, Huybregts L, Kolsteren P. Food insecurity, food based coping strategies and suboptimal dietary practices of adolescents in Jimma zone Southwest Ethiopia. PLoS ONE. 2013;8:e57643.PubMedPubMedCentralCrossRef Belachew T, Lindstrom D, Gebremariam A, Hogan D, Lachat C, Huybregts L, Kolsteren P. Food insecurity, food based coping strategies and suboptimal dietary practices of adolescents in Jimma zone Southwest Ethiopia. PLoS ONE. 2013;8:e57643.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Wing C, Simon K, Bello-Gomez RA. Designing difference in difference studies: best practices for public health policy research. Annu Rev Public Health. 2018;39:453–69.PubMedCrossRef Wing C, Simon K, Bello-Gomez RA. Designing difference in difference studies: best practices for public health policy research. Annu Rev Public Health. 2018;39:453–69.PubMedCrossRef
43.
Zurück zum Zitat Twisk JW. Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge University Press. 2013. Twisk JW. Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge University Press. 2013.
44.
Zurück zum Zitat Selvakumar DL. Relationships between a prenatal nutrition education intervention and maternal nutrition in Ethiopia. Walden University2015. Selvakumar DL. Relationships between a prenatal nutrition education intervention and maternal nutrition in Ethiopia. Walden University2015.
45.
Zurück zum Zitat Tsegaye D, Tamiru D, Belachew T. Theory-based nutrition education intervention through male involvement improves the dietary diversity practice and nutritional status of pregnant women in rural Illu Aba Bor zone, Southwest Ethiopia: a quasi-experimental study. Matern Child Nutr. 2022;18:e13350.PubMedPubMedCentralCrossRef Tsegaye D, Tamiru D, Belachew T. Theory-based nutrition education intervention through male involvement improves the dietary diversity practice and nutritional status of pregnant women in rural Illu Aba Bor zone, Southwest Ethiopia: a quasi-experimental study. Matern Child Nutr. 2022;18:e13350.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Nikièma L, Huybregts L, Martin-Prevel Y, Donnen P, Lanou H, Grosemans J, Offoh P, Dramaix-Wilmet M, Sondo B, Roberfroid D, Kolsteren P. Effectiveness of facility-based personalized maternal nutrition counseling in improving child growth and morbidity up to 18 months: a cluster-randomized controlled trial in rural Burkina Faso. PLoS ONE. 2017;12:e0177839.PubMedPubMedCentralCrossRef Nikièma L, Huybregts L, Martin-Prevel Y, Donnen P, Lanou H, Grosemans J, Offoh P, Dramaix-Wilmet M, Sondo B, Roberfroid D, Kolsteren P. Effectiveness of facility-based personalized maternal nutrition counseling in improving child growth and morbidity up to 18 months: a cluster-randomized controlled trial in rural Burkina Faso. PLoS ONE. 2017;12:e0177839.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Ziyenda Katenga-Kaunda L, Iversen PO, Holmboe-Ottesen G, Fjeld H, Mdala I, Kamudoni PR. Dietary intake and processes of behaviour change in a nutrition education intervention for pregnant women in rural Malawi: a cluster-randomised controlled trial. Public Health Nutr. 2020;23:2345–54.PubMedCrossRef Ziyenda Katenga-Kaunda L, Iversen PO, Holmboe-Ottesen G, Fjeld H, Mdala I, Kamudoni PR. Dietary intake and processes of behaviour change in a nutrition education intervention for pregnant women in rural Malawi: a cluster-randomised controlled trial. Public Health Nutr. 2020;23:2345–54.PubMedCrossRef
48.
Zurück zum Zitat Katenga-Kaunda LZ, Kamudoni PR, Holmboe-Ottesen G, Fjeld HE, Mdala I, Shi Z, Iversen PO. Enhancing nutrition knowledge and dietary diversity among rural pregnant women in Malawi: a randomized controlled trial. BMC Pregnancy Childbirth. 2021;21:644.PubMedPubMedCentralCrossRef Katenga-Kaunda LZ, Kamudoni PR, Holmboe-Ottesen G, Fjeld HE, Mdala I, Shi Z, Iversen PO. Enhancing nutrition knowledge and dietary diversity among rural pregnant women in Malawi: a randomized controlled trial. BMC Pregnancy Childbirth. 2021;21:644.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Khoramabadi M, Dolatian M, Hajian S, Zamanian M, Taheripanah R, Sheikhan Z, Mahmoodi Z, Seyedi-Moghadam A. Effects of education based on health belief model on dietary behaviors of Iranian pregnant women. Glob J Health Sci. 2015;8:230–9.PubMedPubMedCentralCrossRef Khoramabadi M, Dolatian M, Hajian S, Zamanian M, Taheripanah R, Sheikhan Z, Mahmoodi Z, Seyedi-Moghadam A. Effects of education based on health belief model on dietary behaviors of Iranian pregnant women. Glob J Health Sci. 2015;8:230–9.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Kaleem R, Adnan M, Nasir M, Rahat T. Effects of antenatal nutrition counselling on dietary practices and nutritional status of pregnant women: a quasi-experimental hospital based study. Pak J Med Sci. 2020;36:632–6.PubMedPubMedCentralCrossRef Kaleem R, Adnan M, Nasir M, Rahat T. Effects of antenatal nutrition counselling on dietary practices and nutritional status of pregnant women: a quasi-experimental hospital based study. Pak J Med Sci. 2020;36:632–6.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Cane J, O’Connor D, Michie S. Validation of the theoretical domains framework for use in behaviour change and implementation research. Implement Sci. 2012;7:37.PubMedPubMedCentralCrossRef Cane J, O’Connor D, Michie S. Validation of the theoretical domains framework for use in behaviour change and implementation research. Implement Sci. 2012;7:37.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Lee SE, Talegawkar SA, Merialdi M, Caulfield LE. Dietary intakes of women during pregnancy in low- and middle-income countries. Public Health Nutr. 2013;16:1340–53.PubMedCrossRef Lee SE, Talegawkar SA, Merialdi M, Caulfield LE. Dietary intakes of women during pregnancy in low- and middle-income countries. Public Health Nutr. 2013;16:1340–53.PubMedCrossRef
53.
Zurück zum Zitat Kuma MN, Tamiru D, Belachew T. Level and predictors of dietary diversity among pregnant women in rural South-West Ethiopia: a community-based cross-sectional study. BMJ Open. 2021;11:e055125.PubMedPubMedCentralCrossRef Kuma MN, Tamiru D, Belachew T. Level and predictors of dietary diversity among pregnant women in rural South-West Ethiopia: a community-based cross-sectional study. BMJ Open. 2021;11:e055125.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Kiboi W, Kimiywe J, Chege P. Determinants of dietary diversity among pregnant women in Laikipia County, Kenya: a cross-sectional study. BMC Nutr. 2017;3:1–8.CrossRef Kiboi W, Kimiywe J, Chege P. Determinants of dietary diversity among pregnant women in Laikipia County, Kenya: a cross-sectional study. BMC Nutr. 2017;3:1–8.CrossRef
55.
Zurück zum Zitat Shamim AA, Mashreky SR, Ferdous T, Tegenfeldt K, Roy S, Rahman AK, Rashid I, Haque R, Rahman Z, Hossen K, et al. Pregnant women diet quality and its sociodemographic determinants in Southwestern Bangladesh. Food Nutr Bull. 2016;37:14–26.PubMedCrossRef Shamim AA, Mashreky SR, Ferdous T, Tegenfeldt K, Roy S, Rahman AK, Rashid I, Haque R, Rahman Z, Hossen K, et al. Pregnant women diet quality and its sociodemographic determinants in Southwestern Bangladesh. Food Nutr Bull. 2016;37:14–26.PubMedCrossRef
56.
Zurück zum Zitat Aliwo S, Fentie M, Awoke T, Gizaw Z. Dietary diversity practice and associated factors among pregnant women in North East Ethiopia. BMC Res Notes. 2019;12:123.PubMedPubMedCentralCrossRef Aliwo S, Fentie M, Awoke T, Gizaw Z. Dietary diversity practice and associated factors among pregnant women in North East Ethiopia. BMC Res Notes. 2019;12:123.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Zepro NB. Food taboos and misconceptions among pregnant women of Shashemene District, Ethiopia, 2012. Sci J Public Health. 2015;3:410–6.CrossRef Zepro NB. Food taboos and misconceptions among pregnant women of Shashemene District, Ethiopia, 2012. Sci J Public Health. 2015;3:410–6.CrossRef
58.
Zurück zum Zitat Getnet W, Aycheh W, Tessema T. Determinants of food taboos in the pregnant women of the Awabel District, East Gojjam Zone, Amhara Regional State in Ethiopia. Advances in Public Health, 2018. Getnet W, Aycheh W, Tessema T. Determinants of food taboos in the pregnant women of the Awabel District, East Gojjam Zone, Amhara Regional State in Ethiopia. Advances in Public Health, 2018.
59.
Zurück zum Zitat Amare W, Tura AK, Semahegn A, Teji Roba K. Food taboos among pregnant women and associated factors in eastern Ethiopia: a community-based cross-sectional study. SAGE Open Med. 2022;10:20503121221133935.PubMedPubMedCentralCrossRef Amare W, Tura AK, Semahegn A, Teji Roba K. Food taboos among pregnant women and associated factors in eastern Ethiopia: a community-based cross-sectional study. SAGE Open Med. 2022;10:20503121221133935.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Mengie T, Dessie Y, Egata G, Muche T, Habtegiorgis SD, Getacher L. Food taboos and associated factors among agro-pastoralist pregnant women: a community-based cross-sectional study in Eastern Ethiopia. Heliyon. 2022;8:e10923.PubMedPubMedCentralCrossRef Mengie T, Dessie Y, Egata G, Muche T, Habtegiorgis SD, Getacher L. Food taboos and associated factors among agro-pastoralist pregnant women: a community-based cross-sectional study in Eastern Ethiopia. Heliyon. 2022;8:e10923.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Debela BG, Sisay D, Hareru HE, Ewune HA, Tesfa A, Shewaye DA, Ewunie TM. Food taboo practices and associated factors among pregnant women in Ethiopia: a systematic review and meta-analysis. Sci Rep. 2023;13:4376.PubMedPubMedCentralCrossRef Debela BG, Sisay D, Hareru HE, Ewune HA, Tesfa A, Shewaye DA, Ewunie TM. Food taboo practices and associated factors among pregnant women in Ethiopia: a systematic review and meta-analysis. Sci Rep. 2023;13:4376.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Tela FG, Gebremariam LW, Beyene SA. Food taboos and related misperceptions during pregnancy in Mekelle city, Tigray, Northern Ethiopia. PLoS ONE. 2020;15:e0239451.PubMedPubMedCentralCrossRef Tela FG, Gebremariam LW, Beyene SA. Food taboos and related misperceptions during pregnancy in Mekelle city, Tigray, Northern Ethiopia. PLoS ONE. 2020;15:e0239451.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Abere M, Azene AG. Food Taboo and associated factors among pregnant women attending antenatal clinics at Bahir Dar city, North West Ethiopia, 2021: cross-sectional study. Sci Rep. 2023;13:7790.PubMedPubMedCentralCrossRef Abere M, Azene AG. Food Taboo and associated factors among pregnant women attending antenatal clinics at Bahir Dar city, North West Ethiopia, 2021: cross-sectional study. Sci Rep. 2023;13:7790.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Ramulondi M, de Wet H, Ntuli NR. Traditional food taboos and practices during pregnancy, postpartum recovery, and infant care of Zulu women in northern KwaZulu-Natal. J Ethnobiol Ethnomed. 2021;17:15.PubMedPubMedCentralCrossRef Ramulondi M, de Wet H, Ntuli NR. Traditional food taboos and practices during pregnancy, postpartum recovery, and infant care of Zulu women in northern KwaZulu-Natal. J Ethnobiol Ethnomed. 2021;17:15.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Catherin N, Rock B, Roger V, Ankita C, Ashish G, Delwin P, Deeepthi S, Goud B. Beliefs and practices regarding nutrition during pregnancy and lactation in a rural area in Karnataka, India: a qualitative study. Int J Community Med Public Health. 2015;2:116–20.CrossRef Catherin N, Rock B, Roger V, Ankita C, Ashish G, Delwin P, Deeepthi S, Goud B. Beliefs and practices regarding nutrition during pregnancy and lactation in a rural area in Karnataka, India: a qualitative study. Int J Community Med Public Health. 2015;2:116–20.CrossRef
66.
Zurück zum Zitat Riang’a RM, Broerse J, Nangulu AK. Food beliefs and practices among the Kalenjin pregnant women in rural Uasin Gishu County, Kenya. J Ethnobiol Ethnomed. 2017;13:1–16.CrossRef Riang’a RM, Broerse J, Nangulu AK. Food beliefs and practices among the Kalenjin pregnant women in rural Uasin Gishu County, Kenya. J Ethnobiol Ethnomed. 2017;13:1–16.CrossRef
67.
Zurück zum Zitat Eldridge S, Ashby D, Bennett C, Wakelin M, Feder G. Internal and external validity of cluster randomised trials: systematic review of recent trials. BMJ. 2008;336:876–80.PubMedPubMedCentralCrossRef Eldridge S, Ashby D, Bennett C, Wakelin M, Feder G. Internal and external validity of cluster randomised trials: systematic review of recent trials. BMJ. 2008;336:876–80.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat FAO F. Minimum dietary diversity for women: a guide for measurement. Rome: FAO 2016:82. FAO F. Minimum dietary diversity for women: a guide for measurement. Rome: FAO 2016:82.
69.
Zurück zum Zitat WMA: World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4.CrossRef WMA: World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4.CrossRef
70.
Metadaten
Titel
Effect of nutrition education integrating the health belief model and theory of planned behavior on dietary diversity of pregnant women in Southeast Ethiopia: a cluster randomized controlled trial
verfasst von
Girma Beressa
Susan J Whiting
Tefera Belachew
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
Nutrition Journal / Ausgabe 1/2024
Elektronische ISSN: 1475-2891
DOI
https://doi.org/10.1186/s12937-023-00907-z

Weitere Artikel der Ausgabe 1/2024

Nutrition Journal 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.