Skip to main content
Erschienen in: Acta Neurochirurgica 1/2024

Open Access 01.12.2024 | Mini-review (by Invitation)

Beyond fluorescence-guided resection: 5-ALA-based glioblastoma therapies

verfasst von: Walter Stummer, Michael Müther, Dorothee Spille

Erschienen in: Acta Neurochirurgica | Ausgabe 1/2024

Abstract

Glioblastoma is the most common primary malignant brain tumor. Despite advances in multimodal concepts over the last decades, prognosis remains poor. Treatment of patients with glioblastoma remains a considerable challenge due to the infiltrative nature of the tumor, rapid growth rates, and tumor heterogeneity. Standard therapy consists of maximally safe microsurgical resection followed by adjuvant radio- and chemotherapy with temozolomide. In recent years, local therapies have been extensively investigated in experimental as well as translational levels. External stimuli-responsive therapies such as Photodynamic Therapy (PDT), Sonodynamic Therapy (SDT) and Radiodynamic Therapy (RDT) can induce cell death mechanisms via generation of reactive oxygen species (ROS) after administration of five-aminolevulinic acid (5-ALA), which induces the formation of sensitizing porphyrins within tumor tissue. Preliminary data from clinical trials are available. The aim of this review is to summarize the status of such therapeutic approaches as an adjunct to current standard therapy in glioblastoma.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALA
Aminolevulinic
DHE
Dihematoporphyrin ether
EMA
European Medicines Agency
EORTC
European Organisation for Research and Treatment of Cancer
FDA
Food and Drug Administration
HpD
Hematoporphyrin derivatives
NCT
National Center for Tumor Diseases
PDT
Photodynamic therapy
PPIX
Protoporphyrin IX
RDT
Radiodynamic therapy
ROS
Reactive oxygen species
SDT
Sonodynamic therapy

Introduction

Glioblastoma is the most common malignant brain tumor [25]. Current standard treatment compromises maximally safe tumor resection with adjuvant concomitant stereotactic fractionated radiotherapy and chemotherapy with temozolomide followed by six cycles of adjuvant temozolomide maintenance [46]. Even though median survival times of up to 30 months can be reached [28], recurrence rates are high [25, 47]. Supramarginal resection as a significant predictor for increased OS and PFS is not always feasible due functional limits of the resection [2, 36]. Radiation therapy carries the risk of neurocognitive decline and development of radiation necrosis [5]. Key challenges in systemic therapies for patients with glioblastoma include intratumoral heterogeneity, immunosuppressive tumor microenvironment, and the blood–brain barrier [42]. To overcome the abovementioned hurdles, it is desirable to apply local tumor therapies that address the neoplastic lesion directly at an overall low level of toxicity.
Five-aminolevulinic acid (5-ALA) is a prodrug that is administered orally and converted into protoporphyrin IX (PPIX) in mitochondria. In malignant glioma, PPIX accumulates and can be visualized during surgery with appropriate hardware [35]. Fluorescence-guided resection using 5-ALA is considered guideline-based standard in surgical treatment of malignant glioma [46].
5-ALA not only serves as an agent for inducing tissue fluorescence. 5-ALA derived tumor porphyrins, foremost PPIX appear to have a potential as sensitizers to render the tumor more susceptible to certain external stimuli. After treatment with light, sound, radiation, or magnetism, reactive oxygen species (ROS) can be locally generated that further induce cell death mechanisms (depicted in Fig. 1). These so-called external stimuli-responsive therapies have steadily raised interest in the treatment of glioblastoma in recent years and show promising antitumor effects [44]. In particular, photodynamic therapy (PDT) is already used in clinical practice in the treatment of patients with glioblastoma using 5-ALA, a drug already approved by FDA and EMA for fluorescence-guided resections [8] [29, 43].
5-ALA-induced porphyrins are possibly very attractive targets as they cannot only be found in tumor cells but also in myeloid cells, microglia, and T cells in the tumor mass, these cells supporting a pro-tumor, antiangiogenic microenvironment [14, 19, 23].
The aim of this review is to provide an overview of the possibilities and current clinical trial landscape of 5-ALA-PPIX-based therapies in the treatment of glioblastoma.

Search criteria

A comprehensive search was performed in PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials in October 2023. The following medial subject headings were applied: “photodynamic therapy” OR “sonodynamic therapy” OR “radiodynamic therapy”” AND (“5-ALA” OR “ALA” OR “PpIX”) AND “glioma” OR “glioblastoma” OR “astrocytoma.” The trial registry ClinicalTrials.gov was searched to identify ongoing clinical trials.

Photodynamic therapy (PDT)

Photodynamic therapy is a procedure based on the increased production of ROS in tumorous tissue. An increased release of ROS causes oxidative stress and corresponding cell damage. ROS-generating photosensitizers in general are externally stimulated with light (photodynamic therapy, PDT), ultrasound (sonodynamic therapy, SDT), ionizing radiation (radiodynamic therapy, RDT), microwaves (microwave dynamic therapy, MDT), or alternating current (electrodynamic therapy, EDT) [48, 50].
Photodynamic therapy is a noninvasive procedure that has found its way into the treatment of oncological (breast, bladder, and esophageal cancer as well as glioblastoma) and non-oncological diseases in recent years [49]. PDT involves the topical or intravenous application of a photosensitizer, which accumulates specifically in tumor tissue. Light of specific wavelength (between 600 and 850 nm) is then applied. This in turn leads to excitation of the photosensitizer with consecutive conversion of the light energy into the generation of ROS and oxygen radicals. This process is promoted by addition of molecular oxygen and results in cell damage [8].
In the field of glioma surgery, the procedure is being studied in the intraoperative treatment of malignant gliomas and brain metastases [1, 21, 22, 29, 34, 37, 51]. On the one hand, the method of stereotactic, interstitial PDT was described. Instead of an open surgical procedure, cylindrical light diffusers are inserted into the tumor and light is emitted [3, 17, 27].
In the brain, light penetration poses a major challenge to the volume of tumor that can be treated [3]. Typically, with 5-ALA-induced porphyrins, and choosing the longest possible wavelength for activating porphyrins of 635 nm, clinically useful penetration depths within an acceptable period of illumination of 1 h, without critically increasing tissue temperatures, are only 4–5 mm [3]. Thus, in many tumors multiple, stereotactically implanted light diffusors become necessary.
On the other hand, an open form of photodynamic therapy has been described, in which resection is followed by light irradiation of resection cavities. This offers the possibility of treating tumor mass or infiltrating cells that have to be left behind for functional reasons [10, 11, 21, 29]. The treatment is intended for unifocal lesions with a limited tumor volume, as tissues need to be penetrated by light. Also, treating larger tumor masses carries the risk of developing expansive cytotoxic edema [18].
In general, PDT is believed to have a synergistic effect to other forms of therapy, due to the fact that the blood–brain barrier becomes more permeable [32]. In addition, local inflammatory processes with increased recruitment of antigen-presenting cells have been demonstrated in in vitro studies [6, 20]. In glioma treatment, first-generation photosensitizers were tested in clinical trials already in the 1980s. These include hematoporphyrin derivatives (HpD), a porfimer sodium, and dihematoporphyrin ether (DHE), which have been used to treat other oncologic diseases. Small, heterogeneous cohorts with case numbers ranging from 2 to 80 patients were included. Overall, an improvement in progression-free survival and overall survival was reported compared with standard treatment of patients with malignant gliomas. Nevertheless, first-generation photosensitizers do not selectively accumulate in glioblastoma tissue, resulting in a higher rate of side effects, e.g., in the development of extensive perifocal edema. Therefore, the so-called second-generation photosensitizers with increased ROS production and improved selectivity for tumor tissue were used. These include porphyrin or chlorin-based molecules or precursors, such as 5-aminolevulinic acid (5-ALA), talaporfin sodium, boronated porphyrins, temoporfin, and benzoporphyrin derivatives. Since the approval of 5-ALA for intraoperative visualization of malignant gliomas by the European Medicine’s Agency (EMA) in 2007 and the US Food and Drug Administration (FDA) in 2017, preference has been given to this agent as a photosensitizer in glioma surgery and therapy. 5-ALA is a natural precursor of heme and is converted to protoporphyrin IX in mitochondria by several enzymatic steps. In the tumor tissue, there is an accumulation of PPIX and a release of ROS and radicals after exposure to light with a wavelength of 630–635 nm. Due to the selectivity of ALA for tumor tissue and rapid elimination, the spectrum of side effects is limited. Since 2000, research has been conducted on third-generation photosensitizers under in vitro conditions. These are photosensitizer-loaded nanocarriers that exhibit high local selectivity and can transport the photosensitizer directly to tumor tissue while simultaneously transporting exogenous oxygen or chemotherapeutic agents [9, 15].
Currently, there are several clinical trials investigating the efficacy of PDT using 5-ALA. These are three phase II trials: stereotactic photodynamic therapy with 5-aminolevulinic acid (Gliolan) in recurrent glioblastoma (NCT04469699), PD L 506 for stereotactic interstitial photodynamic therapy of newly diagnosed supratentorial IDH wild-type glioblastoma (NCT03897491), and dose finding for intraoperative photodynamic therapy of glioblastoma (NCT04391062).
Cramer et al. [9] conducted a meta-analysis including data on almost more than 1000 patients with first diagnosis or recurrence of glioblastoma treated with photodynamic therapy. The median overall survival for patients with initial diagnosis was 16.1 months and for patients with recurrence 10.3 months. Clinical trials showed prolonged progression-free survival and overall survival compared to control groups with standard therapy. The included patients comprise approximately 600 patients with a first diagnosis, while about 270 patients had a recurrent glioblastoma. Overall, different photosensitizers (talaporfin sodium, 5-ALA, porfimer sodium, hematoporphyrin derivative, temoporfin, boronated porphyrin) as well as wavelengths (628 to 664 nm) and energy density (range, 8 to 400 J/cm2) were used. Due to the heterogeneity of the data, estimation of efficacy of PDT is limited. Four clinical trials investigated the use of 5-ALA as a photosensitizer in PDT (Table 1).
Table 1
Clinical trials using 5-ALA PDT
Author (date)
Number of patients
Outcome measure (months)
Beck et al. (2007)
10 (recurrent GBM)
Median OS 15
Johansson et al. (2013)
5 (4 recurrent GBM)
PFS 3, 9, 29, 30, 36
Schwartz et al. (2015)
15
Median PFS, 16; 3-year survival, 56%
Eljamel et al. (2008)
13
Median OS 13.2
Beck et al. [3] conducted a phase 1 pilot study with interstitial 5-ALA-PDT in ten patients with recurrent glioblastoma and demonstrated a median prolonged survival of 15 months in patients after PDT compared to patients with standard treatment. Similarly, in five patients with non-resectable glioblastoma, Johansson et al. [17] were able to demonstrate progression-free survival of 29 to 36 months in three patients after PDT with 5-ALA. A significant prolongation of progression-free survival (median PFS, 16 vs 10.2 months, p < 0.001; 3-year survival, 56% vs 21%) in non-resectable glioblastomas with a patient group of 112 patients who received complete tumor resection and adjuvant therapy according to the EORTC protocol was confirmed by Schwartz and colleagues [31]. Eljamel et al. [11] used Photofrin as a photosensitizer for PDT next to 5-ALA and observed an overall survival of 13.2 months for the 13 patients in the study group compared to an overall survival of 6.2 months in the control group consisting of 14 patients with standard therapy for glioblastoma.

Sonodynamic therapy (SDT)

Similar to PDT, sonosensitizers are stimulated with low or high intensity ultrasound causing an effect called sonoluminescence, which leads to the release of ROS and the induction of tumor cell death through oxidative stress, DNA damage, and apoptosis. Furthermore, the cytotoxic effect presumed to be additionally based on the generation of hyperthermia and the cavitation effect. In this process, microbubbles in the resection cavity are caused to oscillate by the ultrasound-induced pressure, resulting in mechanical lesions of the surrounding tissue and the release of hydroxyl radicals and ROS [16]. Similarly, an immunomodulatory effect as well as an antiangiogenic effect by inhibiting proliferation and migration of endothelial cells has been described in in vitro studies [13, 45]. Intensities of sonication of 0.2 to 25 W/cm2 were applied, and frequencies of 0.5 to 3 MHz were used. The duration of the intervention was 10 ms to 20 min. According to the known photosensitizers used for PDT, the following sonosensitizers have been analyzed: 5-ALA, fluorescein (FL), sinoporphyrin sodium (DVDMS), hematoporphyrin monomethyl ether (HMME), temozolomide (TMZ), and Photofrin [4]. Among these, 5-ALA is the most extensively studied sonosensitizer whose biocompatibility and biosafety have been widely demonstrated in clinical studies [7]. An advantage over PDT is the greater depth of penetration of the focused ultrasound into the tissue, so that deep-seated and diffuse tumors can be reached and treated more efficiently. In several in vitro studies, efficacy of SDT was demonstrated via apoptotic effects and generation of ROS. Similar results have been shown by in vivo studies in animal models [4, 24, 33, 38, 39].
There are four ongoing phase 0 and phase 1 clinical trials: sonodynamic therapy with exablate system in glioblastoma patients (NCT04845919), study of sonodynamic therapy using sonala-001 and exablate 4000 type 2 in recurrent GB (NCT05370508), study to evaluate 5-ALA combined with CV01 delivery of ultrasound in recurrent high-grade glioma (NCT05362409), and study of sonodynamic therapy in participants with recurrent high-grade glioma (NCT04559685). Whereas the exablate system delivers high energy focused ultrasound to small volumes, CV01 delivers ultrasound below the upper threshold defined by FDA for diagnostic ultrasound and is less focused. Ultimately, if both proven to be of efficacy, combination of focused and more diffuse ultrasound may be prove to be synergistic. Sonodynamic therapy is furthermore an interesting mode to explore, since in theory, this therapy can be repeated as often as necessary, since repeat applications of 5-ALA have not been observed to result in additive toxicity [30] and it is unlikely that repeated ultrasound will cause cumulative damage to non-tumor tissue. The latter assumption, however, requires more clinical tests.

Radiodynamic therapy (RDT)

Radiodynamic therapy is based on an ionizing radiation-induced excitation of certain photosensitizers or radioluminophores coupled with photosensitizers. Like the mechanism of action of PDT, the formation of ROS is induced, which causes antitumor effect. However, in this type of therapy, the effect can be extended to deeper tissue layers, due to the penetrating power of photon beams [41]. The radiosensitizer is applied before every single irradiation fraction according to its half-life. With repetitive administration, there is a risk of accumulation of the substance with an increased risk of developing side effects, leading to a debate in terms of biosafety [40]. Some in vitro and in vivo studies including clinical trials have investigated the efficacy of different radiosensitizing agents in the treatment of malignant gliomas: nitroimidazoles, nicotinamide and carbogen, tipifarnib, efaproxiral, tirapazamine, halogenated bromodeoxyuridine and iododeoxyuridine, poly (ADP-ribose) polymerase proteins, motexafin gadolinium, difluoromethylornithine, interferon-alpha-2a, lovastatin, and 5-ALA [26].
The following ongoing clinical trials address the efficacy of radiosensitizing agents: Phase I/II Dose Escalation Trial of Radiodynamic Therapy (RDT) With 5-Aminolevulinic Acid in Patients With First Recurrence of Glioblastoma (NCT05590689), Phase I/II Trial to Assess the Radiosensitizing Effect of ZARNESTRA in Patients With Glioblastoma Multiforme (NCT00209989), Phase 0/I Clinical Trial of the ATM-Inhibitor WSD0628 in Combination With Radiation Therapy for Recurrent Brain Tumors (NCT05917145).

Conclusions and future perspectives

In recent years, the use of external stimuli-responsive therapies has moved into the focus of local cancer therapy and has thus become relevant for glioblastoma treatment. Clinical studies have already demonstrated the effectiveness of these types of therapy at low levels of toxicity. The use of PPIX-based therapies is in particular extensively investigated in preclinical and clinical studies. Prospective controlled clinical trials are currently recruiting. With the prospect of targeted and individualized oncological therapy, external stimuli-responsive therapies will gain in relevance and importance in the future. While research is currently focused on gliomas, other tumors which accumulate PPIX might also become targets, even if they are not considered surgical entities, such as CNS lymphomas, which strongly convert 5-ALA to PPIX [12].

Declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

WS received research support from Photonamic, Novocure, Zeiss Meditec, and Alpheus. Furthermore, WS has consulting activities for Stryker, Olympus, and SBI ALA Pharma. MM and DS certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99PubMedCrossRef Akimoto J, Haraoka J, Aizawa K (2012) Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas. Photodiagnosis Photodyn Ther 9(2):91–99PubMedCrossRef
2.
Zurück zum Zitat Aziz PA, Memon SF, Hussain M, Memon AR, Abbas K, Qazi SU, Memon RAR, Qambrani KA, Taj O, Ghazanfar S, Ellahi A, Ahmed M (2023) Supratotal resection: an emerging concept of glioblastoma multiforme surgery-systematic review and meta-analysis. World Neurosurg Aziz PA, Memon SF, Hussain M, Memon AR, Abbas K, Qazi SU, Memon RAR, Qambrani KA, Taj O, Ghazanfar S, Ellahi A, Ahmed M (2023) Supratotal resection: an emerging concept of glioblastoma multiforme surgery-systematic review and meta-analysis. World Neurosurg
3.
Zurück zum Zitat Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39(5):386–393PubMedCrossRef Beck TJ, Kreth FW, Beyer W, Mehrkens JH, Obermeier A, Stepp H, Stummer W, Baumgartner R (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39(5):386–393PubMedCrossRef
4.
Zurück zum Zitat Bonosi L, Marino S, Benigno UE, Musso S, Buscemi F, Giardina K, Gerardi R, Brunasso L, Costanzo R, Iacopino DG, Maugeri R (2023) Sonodynamic therapy and magnetic resonance-guided focused ultrasound: new therapeutic strategy in glioblastoma. J Neurooncol 163(1):219–238PubMedPubMedCentralCrossRef Bonosi L, Marino S, Benigno UE, Musso S, Buscemi F, Giardina K, Gerardi R, Brunasso L, Costanzo R, Iacopino DG, Maugeri R (2023) Sonodynamic therapy and magnetic resonance-guided focused ultrasound: new therapeutic strategy in glioblastoma. J Neurooncol 163(1):219–238PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461PubMedCrossRef Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461PubMedCrossRef
7.
Zurück zum Zitat Chung IWH, Eljamel S (2013) Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection. Photodiagnosis Photodyn Ther 10(4):362–367PubMedCrossRef Chung IWH, Eljamel S (2013) Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection. Photodiagnosis Photodyn Ther 10(4):362–367PubMedCrossRef
8.
Zurück zum Zitat Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z (2021) Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 13(9) Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z (2021) Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 13(9)
9.
Zurück zum Zitat Cramer SW, Chen CC (2019) Photodynamic therapy for the treatment of glioblastoma. Front Surg 6:81PubMedCrossRef Cramer SW, Chen CC (2019) Photodynamic therapy for the treatment of glioblastoma. Front Surg 6:81PubMedCrossRef
10.
Zurück zum Zitat Dupont C, Vermandel M, Leroy H-A, Quidet M, Lecomte F, Delhem N, Mordon S, Reyns N (2019) INtraoperative photoDYnamic Therapy for GliOblastomas (INDYGO): study protocol for a phase i clinical trial. Neurosurgery 84(6):E414–E419PubMedCrossRef Dupont C, Vermandel M, Leroy H-A, Quidet M, Lecomte F, Delhem N, Mordon S, Reyns N (2019) INtraoperative photoDYnamic Therapy for GliOblastomas (INDYGO): study protocol for a phase i clinical trial. Neurosurgery 84(6):E414–E419PubMedCrossRef
11.
Zurück zum Zitat Eljamel MS, Goodman C, Moseley H (2008) ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci 23(4):361–367PubMedCrossRef Eljamel MS, Goodman C, Moseley H (2008) ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial. Lasers Med Sci 23(4):361–367PubMedCrossRef
12.
Zurück zum Zitat Evers G, Kamp M, Warneke N, Berdel W, Sabel M, Stummer W, Ewelt C (2017) 5-Aminolaevulinic acid-induced fluorescence in primary central nervous system lymphoma. World Neurosurg 98:375–380PubMedCrossRef Evers G, Kamp M, Warneke N, Berdel W, Sabel M, Stummer W, Ewelt C (2017) 5-Aminolaevulinic acid-induced fluorescence in primary central nervous system lymphoma. World Neurosurg 98:375–380PubMedCrossRef
13.
Zurück zum Zitat Gao Z, Zheng J, Yang B, Wang Z, Fan H, Lv Y, Li H, Jia L, Cao W (2013) Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett 335(1):93–99PubMedCrossRef Gao Z, Zheng J, Yang B, Wang Z, Fan H, Lv Y, Li H, Jia L, Cao W (2013) Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett 335(1):93–99PubMedCrossRef
14.
Zurück zum Zitat Holgersen EM, Gandhi S, Zhou Y, Kim J, Vaz B, Bogojeski J, Bugno M, Shalev Z, Cheung-Ong K, Gonçalves J, O’Hara M, Kron K, Verby M, Sun M, Kakaradov B, Delong A, Merico D, Deshwar AG (2021) Transcriptome-wide off-target effects of steric-blocking oligonucleotides. Nucleic Acid Ther 31(6):392–403PubMedPubMedCentralCrossRef Holgersen EM, Gandhi S, Zhou Y, Kim J, Vaz B, Bogojeski J, Bugno M, Shalev Z, Cheung-Ong K, Gonçalves J, O’Hara M, Kron K, Verby M, Sun M, Kakaradov B, Delong A, Merico D, Deshwar AG (2021) Transcriptome-wide off-target effects of steric-blocking oligonucleotides. Nucleic Acid Ther 31(6):392–403PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L (2023) Systematic review of photodynamic therapy in gliomas. Cancers (Basel) 15(15) Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L (2023) Systematic review of photodynamic therapy in gliomas. Cancers (Basel) 15(15)
16.
Zurück zum Zitat Hwang E, Yun M, Jung HS (2023) Mitochondria-targeted organic sonodynamic therapy agents: concept, benefits, and future directions. Front Chem 11:1212193PubMedPubMedCentralCrossRef Hwang E, Yun M, Jung HS (2023) Mitochondria-targeted organic sonodynamic therapy agents: concept, benefits, and future directions. Front Chem 11:1212193PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Johansson A, Faber F, Kniebühler G, Stepp H, Sroka R, Egensperger R, Beyer W, Kreth F-W (2013) Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers Surg Med 45(4):225–234PubMedCrossRef Johansson A, Faber F, Kniebühler G, Stepp H, Sroka R, Egensperger R, Beyer W, Kreth F-W (2013) Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers Surg Med 45(4):225–234PubMedCrossRef
18.
Zurück zum Zitat Leroy H-A, Guérin L, Lecomte F, Baert G, Vignion A-S, Mordon S, Reyns N (2021) Is interstitial photodynamic therapy for brain tumors ready for clinical practice? A systematic review. Photodiagnosis Photodyn Ther 36:102492PubMedCrossRef Leroy H-A, Guérin L, Lecomte F, Baert G, Vignion A-S, Mordon S, Reyns N (2021) Is interstitial photodynamic therapy for brain tumors ready for clinical practice? A systematic review. Photodiagnosis Photodyn Ther 36:102492PubMedCrossRef
19.
Zurück zum Zitat Liu Z, Mela A, Furnari J, Argenziano MG, Kotidis C, Sperring CP, Humala N, Bruce JN, Canoll P, Sims PA (2022) Single-cell analysis of 5-ALA intraoperative labeling specificity for glioblastoma Liu Z, Mela A, Furnari J, Argenziano MG, Kotidis C, Sperring CP, Humala N, Bruce JN, Canoll P, Sims PA (2022) Single-cell analysis of 5-ALA intraoperative labeling specificity for glioblastoma
20.
Zurück zum Zitat Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H (2013) Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg Med 45(8):524–532PubMedPubMedCentralCrossRef Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H (2013) Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg Med 45(8):524–532PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Muller PJ, Wilson BC (1996) Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 14(5):263–270PubMedCrossRef Muller PJ, Wilson BC (1996) Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 14(5):263–270PubMedCrossRef
22.
Zurück zum Zitat Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, Maebayashi K, Saito T, Okada Y, Kaneko S, Matsumura A, Kuroiwa T, Karasawa K, Nakazato Y, Kayama T (2013) Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg 119(4):845–852PubMedCrossRef Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, Maebayashi K, Saito T, Okada Y, Kaneko S, Matsumura A, Kuroiwa T, Karasawa K, Nakazato Y, Kayama T (2013) Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg 119(4):845–852PubMedCrossRef
23.
Zurück zum Zitat Nasir-Moin M, Wadiura L, Juros D, Movahed-Ezazi M, Lee M, Weiss H, Müther M, Alber D, Ratna S, Fang C, Suero-Molina E, Hellwig S, Stummer W, Rössler K, Hainfellner J, Widhalm G, Kiesel B, Reichert D, Mischkulnig M, Jain R, Smith A, Straehle J, Neidert N, Schnell O, Beck J, Trautman J, Pastore S, Pacione D, Placantonakis D, Oermann E, Golfinos J, Hollon T, Snuderl M, Freudiger C, Heiland DH, Orringer D (2022) Localization of protoporphyrin IX in glioma patients with paired stimulated Raman histology and two-photon excitation fluorescence microscopy Nasir-Moin M, Wadiura L, Juros D, Movahed-Ezazi M, Lee M, Weiss H, Müther M, Alber D, Ratna S, Fang C, Suero-Molina E, Hellwig S, Stummer W, Rössler K, Hainfellner J, Widhalm G, Kiesel B, Reichert D, Mischkulnig M, Jain R, Smith A, Straehle J, Neidert N, Schnell O, Beck J, Trautman J, Pastore S, Pacione D, Placantonakis D, Oermann E, Golfinos J, Hollon T, Snuderl M, Freudiger C, Heiland DH, Orringer D (2022) Localization of protoporphyrin IX in glioma patients with paired stimulated Raman histology and two-photon excitation fluorescence microscopy
24.
Zurück zum Zitat Nonaka M, Yamamoto M, Yoshino S, Umemura S-I, Sasaki K, Fukushima T (2009) Sonodynamic therapy consisting of focused ultrasound and a photosensitizer causes a selective antitumor effect in a rat intracranial glioma model. Anticancer Res 29(3):943–950PubMed Nonaka M, Yamamoto M, Yoshino S, Umemura S-I, Sasaki K, Fukushima T (2009) Sonodynamic therapy consisting of focused ultrasound and a photosensitizer causes a selective antitumor effect in a rat intracranial glioma model. Anticancer Res 29(3):943–950PubMed
25.
Zurück zum Zitat Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol 25(Supplement_4):iv1–iv99PubMedCrossRef Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol 25(Supplement_4):iv1–iv99PubMedCrossRef
26.
Zurück zum Zitat Pepper NB, Stummer W, Eich HT (2022) The use of radiosensitizing agents in the therapy of glioblastoma multiforme-a comprehensive review. Strahlenther Onkol 198(6):507–526PubMedPubMedCentralCrossRef Pepper NB, Stummer W, Eich HT (2022) The use of radiosensitizing agents in the therapy of glioblastoma multiforme-a comprehensive review. Strahlenther Onkol 198(6):507–526PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Quach S, Schwartz C, Aumiller M, Foglar M, Schmutzer M, Katzendobler S, El Fahim M, Forbrig R, Bochmann K, Egensperger R, Sroka R, Stepp H, Rühm A, Thon N (2023) Interstitial photodynamic therapy for newly diagnosed glioblastoma. J Neurooncol 162(1):217–223PubMedPubMedCentralCrossRef Quach S, Schwartz C, Aumiller M, Foglar M, Schmutzer M, Katzendobler S, El Fahim M, Forbrig R, Bochmann K, Egensperger R, Sroka R, Stepp H, Rühm A, Thon N (2023) Interstitial photodynamic therapy for newly diagnosed glioblastoma. J Neurooncol 162(1):217–223PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Roder C, Stummer W, Coburger J, Scherer M, Haas P, von dBC, Kamp MA, Löhr M, Hamisch CA, Skardelly M, Scholz T, Schipmann S, Rathert J, Brand CM, Pala A, Ernemann U, Stockhammer F, Gerlach R, Kremer P, Goldbrunner R, Ernestus RI, Sabel M, Rohde V, Tabatabai G, Martus P, Bisdas S, Ganslandt O, Unterberg A, Wirtz CR, Tatagiba M (2023) Intraoperative MRI-guided resection is not superior to 5-aminolevulinic acid guidance in newly diagnosed glioblastoma: a prospective controlled multicenter clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 41(36) Roder C, Stummer W, Coburger J, Scherer M, Haas P, von dBC, Kamp MA, Löhr M, Hamisch CA, Skardelly M, Scholz T, Schipmann S, Rathert J, Brand CM, Pala A, Ernemann U, Stockhammer F, Gerlach R, Kremer P, Goldbrunner R, Ernestus RI, Sabel M, Rohde V, Tabatabai G, Martus P, Bisdas S, Ganslandt O, Unterberg A, Wirtz CR, Tatagiba M (2023) Intraoperative MRI-guided resection is not superior to 5-aminolevulinic acid guidance in newly diagnosed glioblastoma: a prospective controlled multicenter clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 41(36)
29.
Zurück zum Zitat Schipmann S, Müther M, Stögbauer L, Zimmer S, Brokinkel B, Holling M, Grauer O, Suero Molina E, Warneke N, Stummer W (2020) Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg 134(2):426–436PubMedCrossRef Schipmann S, Müther M, Stögbauer L, Zimmer S, Brokinkel B, Holling M, Grauer O, Suero Molina E, Warneke N, Stummer W (2020) Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg 134(2):426–436PubMedCrossRef
30.
Zurück zum Zitat Schucht P, Murek M, Jilch A, Seidel K, Hewer E, Wiest R, Raabe A, Beck J (2013) Early re-do surgery for glioblastoma is a feasible and safe strategy to achieve complete resection of enhancing tumor. PLoS One 8(11):e79846PubMedPubMedCentralCrossRef Schucht P, Murek M, Jilch A, Seidel K, Hewer E, Wiest R, Raabe A, Beck J (2013) Early re-do surgery for glioblastoma is a feasible and safe strategy to achieve complete resection of enhancing tumor. PLoS One 8(11):e79846PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Schwartz C, Rühm A, Tonn J-C, Kreth S, Kreth F-W (2015) Surg-25interstitial photodynamic therapy of de-novo glioblastoma multiforme WHO IV. Neuro Oncol 17(suppl 5):v219.5-v220CrossRef Schwartz C, Rühm A, Tonn J-C, Kreth S, Kreth F-W (2015) Surg-25interstitial photodynamic therapy of de-novo glioblastoma multiforme WHO IV. Neuro Oncol 17(suppl 5):v219.5-v220CrossRef
32.
Zurück zum Zitat Semyachkina-Glushkovskaya O, Kurths J, Borisova E, Sokolovski S, Mantareva V, Angelov I, Shirokov A, Navolokin N, Shushunova N, Khorovodov A, Ulanova M, Sagatova M, Agranivich I, Sindeeva O, Gekalyuk A, Bodrova A, Rafailov E (2017) Photodynamic opening of blood-brain barrier. Biomed Opt Express 8(11):5040–5048PubMedPubMedCentralCrossRef Semyachkina-Glushkovskaya O, Kurths J, Borisova E, Sokolovski S, Mantareva V, Angelov I, Shirokov A, Navolokin N, Shushunova N, Khorovodov A, Ulanova M, Sagatova M, Agranivich I, Sindeeva O, Gekalyuk A, Bodrova A, Rafailov E (2017) Photodynamic opening of blood-brain barrier. Biomed Opt Express 8(11):5040–5048PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Song D, Yue W, Li Z, Li J, Zhao J, Zhang N (2014) Study of the mechanism of sonodynamic therapy in a rat glioma model. Onco Targets Ther 7:1801–1810PubMedPubMedCentralCrossRef Song D, Yue W, Li Z, Li J, Zhao J, Zhang N (2014) Study of the mechanism of sonodynamic therapy in a rat glioma model. Onco Targets Ther 7:1801–1810PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Stepp H, Beck T, Pongratz T, Meinel T, Kreth F-W, Tonn JC, Stummer W (2007) ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol 26(2):157–164PubMedCrossRef Stepp H, Beck T, Pongratz T, Meinel T, Kreth F-W, Tonn JC, Stummer W (2007) ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol 26(2):157–164PubMedCrossRef
35.
Zurück zum Zitat Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401PubMedCrossRef Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401PubMedCrossRef
36.
Zurück zum Zitat Stummer W, Reulen H-J, Meinel T, Pichlmeier U, Schumacher W, Tonn J-C, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–76 (discussion 564-76)PubMedCrossRef Stummer W, Reulen H-J, Meinel T, Pichlmeier U, Schumacher W, Tonn J-C, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–76 (discussion 564-76)PubMedCrossRef
37.
Zurück zum Zitat Stylli SS, Kaye AH, MacGregor L, Howes M, Rajendra P (2005) Photodynamic therapy of high grade glioma - long term survival. J Clin Neurosci 12(4):389–398PubMedCrossRef Stylli SS, Kaye AH, MacGregor L, Howes M, Rajendra P (2005) Photodynamic therapy of high grade glioma - long term survival. J Clin Neurosci 12(4):389–398PubMedCrossRef
38.
Zurück zum Zitat Suehiro S, Ohnishi T, Yamashita D, Kohno S, Inoue A, Nishikawa M, Ohue S, Tanaka J, Kunieda T (2018) Enhancement of antitumor activity by using 5-ALA-mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. J Neurosurg 129(6):1416–1428PubMedCrossRef Suehiro S, Ohnishi T, Yamashita D, Kohno S, Inoue A, Nishikawa M, Ohue S, Tanaka J, Kunieda T (2018) Enhancement of antitumor activity by using 5-ALA-mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. J Neurosurg 129(6):1416–1428PubMedCrossRef
39.
Zurück zum Zitat Sun Y, Wang H, Wang P, Zhang K, Geng X, Liu Q, Wang X (2019) Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas. Biomater Sci 7(3):985–994PubMedCrossRef Sun Y, Wang H, Wang P, Zhang K, Geng X, Liu Q, Wang X (2019) Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas. Biomater Sci 7(3):985–994PubMedCrossRef
40.
Zurück zum Zitat Takahashi J, Nagasawa S, Doi M, Takahashi M, Narita Y, Yamamoto J, Ikemoto MJ, Iwahashi H (2021) In vivo study of the efficacy and safety of 5-aminolevulinic radiodynamic therapy for glioblastoma fractionated radiotherapy. Int J Mol Sci 22(18) Takahashi J, Nagasawa S, Doi M, Takahashi M, Narita Y, Yamamoto J, Ikemoto MJ, Iwahashi H (2021) In vivo study of the efficacy and safety of 5-aminolevulinic radiodynamic therapy for glioblastoma fractionated radiotherapy. Int J Mol Sci 22(18)
41.
Zurück zum Zitat Ueta K, Yamamoto J, Tanaka T, Nakano Y, Kitagawa T, Nishizawa S (2017) 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. Int J Mol Med 39(2):387–398PubMedCrossRef Ueta K, Yamamoto J, Tanaka T, Nakano Y, Kitagawa T, Nishizawa S (2017) 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. Int J Mol Med 39(2):387–398PubMedCrossRef
42.
Zurück zum Zitat van Solinge TS, Nieland L, Chiocca EA, Broekman MLD (2022) Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat Rev Neurol 18(4):221–236PubMedPubMedCentralCrossRef van Solinge TS, Nieland L, Chiocca EA, Broekman MLD (2022) Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat Rev Neurol 18(4):221–236PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Vermandel M, Dupont C, Lecomte F, Leroy H-A, Tuleasca C, Mordon S, Hadjipanayis CG, Reyns N (2021) Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial. J Neurooncol 152(3):501–514PubMedCrossRef Vermandel M, Dupont C, Lecomte F, Leroy H-A, Tuleasca C, Mordon S, Hadjipanayis CG, Reyns N (2021) Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial. J Neurooncol 152(3):501–514PubMedCrossRef
44.
Zurück zum Zitat Wang C, Li Q, Xiao J, Liu Y (2023) Nanomedicine-based combination therapies for overcoming temozolomide resistance in glioblastomas. Cancer Biol Med 20(5):325–343PubMedPubMedCentral Wang C, Li Q, Xiao J, Liu Y (2023) Nanomedicine-based combination therapies for overcoming temozolomide resistance in glioblastomas. Cancer Biol Med 20(5):325–343PubMedPubMedCentral
45.
Zurück zum Zitat Wang S, Hu Z, Wang X, Gu C, Gao Z, Cao W, Zheng J (2014) 5-Aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts. Ultrasound Med Biol 40(9):2125–2133PubMedCrossRef Wang S, Hu Z, Wang X, Gu C, Gao Z, Cao W, Zheng J (2014) 5-Aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts. Ultrasound Med Biol 40(9):2125–2133PubMedCrossRef
46.
Zurück zum Zitat Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Rudà R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186PubMedCrossRef Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Rudà R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186PubMedCrossRef
47.
Zurück zum Zitat Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn J-C, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ (2020) Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 22(8):1073–1113PubMedPubMedCentralCrossRef Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn J-C, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ (2020) Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 22(8):1073–1113PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Yao J, Feng J, Chen J (2016) External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci 11(5):585–595CrossRef Yao J, Feng J, Chen J (2016) External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci 11(5):585–595CrossRef
49.
Zurück zum Zitat Zhang M, Zhao Y, Ma H, Sun Y, Cao J (2022) How to improve photodynamic therapy-induced antitumor immunity for cancer treatment? Theranostics 12(10):4629–4655PubMedPubMedCentralCrossRef Zhang M, Zhao Y, Ma H, Sun Y, Cao J (2022) How to improve photodynamic therapy-induced antitumor immunity for cancer treatment? Theranostics 12(10):4629–4655PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X (2021) ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 437:213828CrossRef Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X (2021) ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coord Chem Rev 437:213828CrossRef
51.
Zurück zum Zitat Zilidis G, Aziz F, Telara S, Eljamel MS (2008) Fluorescence image-guided surgery and repetitive photodynamic therapy in brain metastatic malignant melanoma. Photodiagnosis Photodyn Ther 5(4):264–266PubMedCrossRef Zilidis G, Aziz F, Telara S, Eljamel MS (2008) Fluorescence image-guided surgery and repetitive photodynamic therapy in brain metastatic malignant melanoma. Photodiagnosis Photodyn Ther 5(4):264–266PubMedCrossRef
Metadaten
Titel
Beyond fluorescence-guided resection: 5-ALA-based glioblastoma therapies
verfasst von
Walter Stummer
Michael Müther
Dorothee Spille
Publikationsdatum
01.12.2024
Verlag
Springer Vienna
Erschienen in
Acta Neurochirurgica / Ausgabe 1/2024
Print ISSN: 0001-6268
Elektronische ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-024-06049-3

Weitere Artikel der Ausgabe 1/2024

Acta Neurochirurgica 1/2024 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.