Skip to main content
Erschienen in: BioDrugs 2/2007

01.03.2007 | Original Research Article

Classification and Predictive Modeling of Liver X Receptor Response Elements

verfasst von: Dr Gabor Varga, Chen Su

Erschienen in: BioDrugs | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Background

The liver X receptor (LXR), a transcription factor that forms a heterodimer with the retinoid X receptor, plays a key role in the transcriptional regulation of many important genes implicated in prevalent metabolic diseases. In spite of numerous studies, a complete list of LXR direct target genes remains elusive. To complement experimental approaches, computational prediction can be used to help build such a list because all LXR target genes are expected to carry the response elements (LXREs) in their promoter or enhancer regions. In practice, however, such a prediction has been hampered by the inaccuracies of currently available predictive models of LXREs. We report on a novel computational application for the highly accurate prediction of LXREs in DNA sequences.

Methods

We first conducted a comprehensive review of experimentally determined LXR target genes and collected all known LXREs. Subsequently, all such sites were classified using various computational methods based on sequence similarity to identify multiple subtypes. A library of Hidden Markov Models (LXRE.HMM) was developed to represent all subtypes and to enable the promoter scanning of LXR target genes.

Results and conclusion

Our model outperformed the widely used LXRE model in MatInspector in identifying the LXREs for all known LXR direct target genes at the experimentally verified positions. As a result, this new approach will make the genomewide prediction of LXR target genes feasible.
Literatur
1.
Zurück zum Zitat Cao G, Liang Y, Jiang XC, et al. Liver X receptors as potential therapeutic targets for multiple diseases. Drug News Perspect 2004; 17(1): 35–41PubMedCrossRef Cao G, Liang Y, Jiang XC, et al. Liver X receptors as potential therapeutic targets for multiple diseases. Drug News Perspect 2004; 17(1): 35–41PubMedCrossRef
2.
Zurück zum Zitat Ulven SM, Dalen KT, Gustafsson JA, et al. LXR is crucial in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 2005; 73(1): 59–63PubMedCrossRef Ulven SM, Dalen KT, Gustafsson JA, et al. LXR is crucial in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 2005; 73(1): 59–63PubMedCrossRef
3.
Zurück zum Zitat Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004; 45(12): 2161–73PubMedCrossRef Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004; 45(12): 2161–73PubMedCrossRef
4.
Zurück zum Zitat Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem 2001; 276(41): 37735–8PubMed Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem 2001; 276(41): 37735–8PubMed
5.
Zurück zum Zitat Michael LF, Schkeryantz JM, Burris TP. The pharmacology of LXR. Mini Rev Med Chem 2005; 5(8): 729–40PubMedCrossRef Michael LF, Schkeryantz JM, Burris TP. The pharmacology of LXR. Mini Rev Med Chem 2005; 5(8): 729–40PubMedCrossRef
6.
Zurück zum Zitat Valledor AF. The innate immune response under the control of the LXR pathway. Immunobiology 2005; 210(2–4): 127–32PubMedCrossRef Valledor AF. The innate immune response under the control of the LXR pathway. Immunobiology 2005; 210(2–4): 127–32PubMedCrossRef
7.
Zurück zum Zitat Lala DS. The liver X receptors. Curr Opin Investig Drugs 2005; 6(9): 934–43PubMed Lala DS. The liver X receptors. Curr Opin Investig Drugs 2005; 6(9): 934–43PubMed
8.
Zurück zum Zitat Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9(9): 1033–45PubMedCrossRef Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 1995; 9(9): 1033–45PubMedCrossRef
9.
Zurück zum Zitat Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–9PubMedCrossRef Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–9PubMedCrossRef
10.
Zurück zum Zitat Mak PA, Kast-Woelbern HR, Anisfeld AM, et al. Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J Lipid Res 2002; 43(12): 2037–41PubMedCrossRef Mak PA, Kast-Woelbern HR, Anisfeld AM, et al. Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J Lipid Res 2002; 43(12): 2037–41PubMedCrossRef
11.
Zurück zum Zitat Cartharius K, Frech K, Grote K, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005; 21(13): 2933–42PubMedCrossRef Cartharius K, Frech K, Grote K, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 2005; 21(13): 2933–42PubMedCrossRef
12.
Zurück zum Zitat Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 2004; 32 (Web Server issue): W249–52PubMedCrossRef Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 2004; 32 (Web Server issue): W249–52PubMedCrossRef
13.
Zurück zum Zitat Sandelin A, Wasserman WW. Prediction of nuclear hormone receptor response elements. Mol Endocrinol 2005; 19(3): 595–606PubMedCrossRef Sandelin A, Wasserman WW. Prediction of nuclear hormone receptor response elements. Mol Endocrinol 2005; 19(3): 595–606PubMedCrossRef
14.
Zurück zum Zitat Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003; 31(1): 374–8PubMedCrossRef Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003; 31(1): 374–8PubMedCrossRef
15.
Zurück zum Zitat Hodges PE, Carrico PM, Hogan JD, et al. Annotating the human proteome: the Human Proteome Survey Database (HumanPSD) and an in-depth target database for G protein-coupled receptors (GPCR-PD) from Incyte Genomics. Nucleic Acids Res 2002; 30(1): 137–41PubMedCrossRef Hodges PE, Carrico PM, Hogan JD, et al. Annotating the human proteome: the Human Proteome Survey Database (HumanPSD) and an in-depth target database for G protein-coupled receptors (GPCR-PD) from Incyte Genomics. Nucleic Acids Res 2002; 30(1): 137–41PubMedCrossRef
16.
Zurück zum Zitat Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5: 113PubMedCrossRef Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5: 113PubMedCrossRef
17.
Zurück zum Zitat Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22(22): 4673–80PubMedCrossRef Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22(22): 4673–80PubMedCrossRef
19.
Zurück zum Zitat Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004; 5(2): 150–63PubMedCrossRef Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004; 5(2): 150–63PubMedCrossRef
21.
Zurück zum Zitat Efron B. Bootstrap methods: another look at the jackknife. Ann Statist 1979; 7: 1–26CrossRef Efron B. Bootstrap methods: another look at the jackknife. Ann Statist 1979; 7: 1–26CrossRef
22.
Zurück zum Zitat Schmid CD, Perier R, Praz V, et al. EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res 2006; 34 (Database issue): D82–5PubMedCrossRef Schmid CD, Perier R, Praz V, et al. EPD in its twentieth year: towards complete promoter coverage of selected model organisms. Nucleic Acids Res 2006; 34 (Database issue): D82–5PubMedCrossRef
23.
Zurück zum Zitat Quandt K, Frech K, Karas H, et al. MatInd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23(23): 4878–84PubMedCrossRef Quandt K, Frech K, Karas H, et al. MatInd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23(23): 4878–84PubMedCrossRef
24.
Zurück zum Zitat Costet P, Luo Y, Wang N, et al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275(36): 28240–5PubMed Costet P, Luo Y, Wang N, et al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275(36): 28240–5PubMed
25.
Zurück zum Zitat Whitney KD, Watson MA, Goodwin B, et al. Liver X receptor (LXR) regulation of the LXRalpha gene in human macrophages. J Biol Chem 2001; 276(47): 43509–15PubMedCrossRef Whitney KD, Watson MA, Goodwin B, et al. Liver X receptor (LXR) regulation of the LXRalpha gene in human macrophages. J Biol Chem 2001; 276(47): 43509–15PubMedCrossRef
26.
Zurück zum Zitat Yuh CH, Davidson EH. Modular cis-regulatory organization of Endol6, a gutspecific gene of the sea urchin embryo. Development 1996; 122(4): 1069–82PubMed Yuh CH, Davidson EH. Modular cis-regulatory organization of Endol6, a gutspecific gene of the sea urchin embryo. Development 1996; 122(4): 1069–82PubMed
27.
Zurück zum Zitat Krivan W, Wasserman WW. A predictive model for regulatory sequences directing liver-specific transcription. Genome Res 2001; 11(9): 1559–66PubMedCrossRef Krivan W, Wasserman WW. A predictive model for regulatory sequences directing liver-specific transcription. Genome Res 2001; 11(9): 1559–66PubMedCrossRef
28.
Zurück zum Zitat Wasserman WW, Fickett JW. Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol 1998; 278(1): 167–81PubMedCrossRef Wasserman WW, Fickett JW. Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol 1998; 278(1): 167–81PubMedCrossRef
Metadaten
Titel
Classification and Predictive Modeling of Liver X Receptor Response Elements
verfasst von
Dr Gabor Varga
Chen Su
Publikationsdatum
01.03.2007
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 2/2007
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200721020-00006

Weitere Artikel der Ausgabe 2/2007

BioDrugs 2/2007 Zur Ausgabe