Skip to main content
Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2022

Open Access 01.12.2022 | Review

The relationship between myasthenia gravis and COVID-19: a systematic review

verfasst von: Dodik Tugasworo, Aditya Kurnianto, Retnaningsih, Yovita Andhitara, Rahmi Ardhini, Jethro Budiman

Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery | Ausgabe 1/2022

Abstract

Introduction

Viral infection such as coronavirus disease 2019 (COVID-19) can exacerbate and aggravate neurological disorders due to autoimmune etiology like myasthenia gravis (MG). Experimental therapies used in COVID-19 are also factors that can cause the worsening of MG symptoms. This review aimed to assess and conclude the research-based study systematically to analyze the relationship of MG and COVID-19.

Method

This study was conducted in accordance to Cochrane handbook for systematic reviews and the guideline of preferred reporting items for systematic review and meta-analysis (PRISMA) and synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. Inclusion criteria in this review were primary studies of every design, articles published in English around January 2000–October 2021, and the study used human as subject. A systematic literature finding was applied in 15 electronic scientific resources. The authors evaluated the study quality and risk of bias of each retrieved article.

Results

The authors found the study through electronic scientific resources that met inclusion and exclusion criteria. The authors evaluated 362 articles identified in literature searching, 22 articles met the criteria for this review and then underwent the evaluation of study quality and risk of bias.

Conclusion

COVID-19 infection can increase the risk of new-onset MG, myasthenic crisis, respiratory failure, and mortality rate due to cytokine storm in MG patients. The management of COVID-19 patients with MG is tailored to each person and based on national guidelines and local expert recommendations.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
95% CI
95% Confidence interval
AChR Ab
Acetylcoline receptor antibody
AZA
Azathioprine
AZM
Azithromycin
BiPAP
Biphasic positive airway pressure ventilation
CDC
US Centers for Disease Control and Prevention
COVID-19
Coronavirus disease 2019
CTX
Ceftriaxone
d
Day
F
Female
HCQ
Hydroxychloroquine
ICU
Intensive care unit
iv
Intravenous
IU
International unit
IVIG
Intravenous immunoglobulin
LMWH
Low molecular weight heparin
M
Male
mg
Milligram
MG
Myasthenia gravis
MGFA
Myasthenia Gravis Foundation of America
MuSK Ab
Muscle-specific tyrosine kinase antibody
MP
Methylprednisolone
MV
Mechanical ventilation
NAC
N-Acetylcysteine
nAChR
Nicotinic acetylcholine receptor
OR
Odds ratio
p
Probability
PE
Plasma exchange
TOZ
Tocilizumab
QoL
Quality of life
QoS
Quality of sleep
vit
Vitamin
w
Week
WHO
World Health Organization
y/o
Year old

Introduction

Coronavirus disease 2019 (COVID-19) is a novel infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which can spread through droplet, aerosol, and contaminated objects [14]. The spreading of COVID-19 was increasingly widespread worldwide until the World Health Organization (WHO) on 9 March 2020 established COVID-19 as a global pandemic with a severity rate over 5% [58]. Until 2021 midyear, the prevalence of this disease was more than 170 million cases with a mortality rate about 2% [6]. These numbers will very likely increase for an unpredictable time with the progressing of the global pandemic dynamic.
Viral infections like COVID-19 can exacerbate and worsen neurological disorders caused by autoimmune etiology [916]. Myasthenia gravis (MG) is a neurological autoimmune disease due to autoantibody against the nicotinic acetylcholine receptor (nAChR). This blockade and downregulation of nAChR reduce nerve impulses that can generate muscle action potentials [17, 18]. In the COVID-19 pandemic, MG patients are at a greater risk of suffering COVID-19 and experiencing a poor outcome (when infected with COVID-19 compared to populations without this autoimmune condition). This occurs because of the immunocompromised status of MG patients due to immunosuppressant therapy, dysregulation of immune system, respiratory muscle weakness, and respiratory failure (because of pneumonia and pulmonary thromboembolism). On the other hand, COVID-19 infection has a great chance to trigger acute exacerbations in patients with MG because of the impairment of self-tolerance and activation of immune system, followed by increased T-cell signaling (and T-cell dysregulation induce autoantibody and autoimmunity) and the secretion of pro-inflammatory cytokines and molecules; inducing cytokine storm, acute respiratory distress syndrome (ARDS), and multi-organ failure; and also the theory about epitope spreading, bystander activation, immortalization of infected B cells, molecular mimicry (cross-reaction) [914, 16, 19]. Experimental therapies used in COVID-19 such as hydroxychloroquine and azithromycin are also factors that can cause worsening of MG symptoms due to the direct action on the neuromuscular junction [10, 12, 16, 20, 21]. ARDS due to COVID-19 in combination with respiratory muscle failure caused by MG may result in a dangerous condition; challenging for the clinician because of the increase of mortality rate in this combination. [11, 18]
Solé and colleagues (2021) reported that 0.96% of MG patients who registered in French database had COVID-19 infection [15]. Camelo-Filho and colleagues (2020) reported that 87% of patients with MG and hospitalized with COVID-19 were admitted to the intensive care unit, 73% used mechanical ventilation, and 30% (from all MG patients with COVID-19 in Camelo-Filho’s study) were deceased [10]. Patients with MG and COVID-19 have been presented in different studies, but a systematic review discussing this topic (with the publication type including observational studies) was not available. The guidelines for the management of MG patients in COVID-19 pandemic have been published but the recommendations are based on theory, not clinical data [22, 23]. The current systematic review aimed to assess and conclude the research-based study systematically to analyze the relationship of MG and COVID-19.

Methods

This systematic review’s protocol was recorded on International prospective register of systematic reviews (PROSPERO) (CRD42021256169). This study was conducted in accordance to Cochrane handbook for systematic reviews and the guideline of preferred reporting items for systematic review and meta-analysis (PRISMA) [24, 25]. The data collection and analysis (synthesis) was also conducted based on synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline [26].

Inclusion and exclusion criteria

Inclusion criteria in this review were full-text manuscripts reported the relationship of MG and COVID-19 and primary studies of every design (experimental study: clinical trial, observational study [descriptive study: case report and case series, and analytical studies: cross-sectional, case–control, and cohort]); articles published in English, articles published in January 2000—October 2021; the study used human as subject; and objective, methodology, and outcome of study must discuss the relationship of MG and COVID-19. Exclusion criteria were publication type was review and the study with variables that were associated in the relationship of MG and COVID-19.
A systematic literature finding was applied in these electronic scientific resources: Cambridge Core, Clinical Key, Cochrane, Ebsco, Embase, Emerald Insight, Google Scholar, JSTOR, Medline, Nature, Proquest, Pubmed, Science Direct, Scopus, and Springer Link. The search was performed using the following keywords for the title and abstract: (myasthenic OR myasthenia OR myasthenia gravis) AND (COVID-19 OR coronavirus OR SARS-CoV-2). The references from included studies were assessed as literature finding strategy.

Data collection and analysis

Articles were chosen for assessment after two authors (DT and AK) had checked titles and abstracts from the electronic scientific resources. The results of the two authors were compared by a third author (R), and any differences of results were discussed. Selected full-paper were independently evaluated by the other authors (YA and RA). Selected articles for this systematic review were checked by two authors independently to confirm the results (AK and JB). The data from included articles were provided in a summary table featuring key points of each study. The key points of each study were: first author and country; study design; sample characteristic; management/outcome measure; and outcome/result.

Quality assessment

The first author evaluated the study quality and risk of bias of each retrieved article and discussed them with other authors. Newcastle–Ottawa scale for cohort study was applied to evaluate the quality and risk of bias of cohort study; interpretation of total score was: ≥ 7 points were considered in good study, 5–6 points were considered in fair study, < 5 points were considered in poor study. Newcastle–Ottawa scale adapted for cross-sectional study was applied to evaluate the quality and risk of bias of the cross-sectional study. Interpretation of total score was: 9–10 points were included in very good study, 7–8 points were included in good study, 5–6 points were included in satisfactory study, and 0–4 points were included in unsatisfactory study [2731]. The Joanna Briggs Institute (JBI) critical appraisal checklist was applied to evaluate the quality and risk of bias of descriptive study [3234].

Results

Selection of articles for review

Figure 1 provides PRISMA flow diagram. Initially, 352 peer-reviewed studies were found from electronic scientific resources and an additional 10 studies were identified through other sources (search engine). After duplicates were removed, 200 studies (titles and abstracts) were screened. Articles that did not meet the inclusion and exclusion criteria were not evaluated. Twenty-eight articles (27 articles from databases and registers, and 1 article from other methods) were screened for eligibility of which 22 articles were included in this review.

Assessment of study validity (quality assessment and risk of bias)

All included studies were related to MG and COVID-19. Table 1 presents quality scores for cohort study and the studies had 6 points (fair studies). Table 2 presents quality scores for cross-sectional study and all of the studies included in very good, good and satisfactory studies. Tables 3 and 4 show JBI critical appraisal checklist for case report and case series, all of the studies got overall appraisal in “included studies” for systematic review.
Table 1
Newcastle–Ottawa scale (cohort study)
No.
First author, country
Selection
Comparability
Outcome
Total
1
2
3
4
1
2
3
1
Jakubíková M, Czech [35]
*
 
*
*
 
*
*
*
6
2
Kalita J, India
*
 
*
*
 
*
*
*
6
3
Sole G, French [15]
*
 
*
*
 
*
*
*
6
Maximum point for comparability was 2
Selection: (1) representativeness, (2) selection of non-exposed, (3) ascertainment of exposure, (4) demonstration that outcome was not present at the beginning
Outcome: (1) assessment of the outcome, (2) follow-up long enough, (3) adequacy of follow-up
Table 2
Newcastle–Ottawa scale adapted for cross-sectional study
No.
First author, country
Selection
Comparability
Outcome
Total
1
2
3
4
1
2
1
Businaro P, Italy [36]
*
*
*
**
**
*
*
9
2
Camelo-Filho AE, Brazil [10]
*
*
*
**
 
*
 
6
3
Stojanov A, Serbia [37]
*
*
*
**
 
*
*
7
Maximum points for selection number 4, comparability, and outcome number 1 were 2
Selection: (1) representativeness of the sample, (2) sample size, (3) non-respondents, (4) risk factor measurement tool
Outcome: (1) assessment of the outcome, (2) statistical test
Table 3
JBI critical appraisal checklist for case report
No.
Major components
1
2
3
4
5
6
7
8
9
10
1
Were patient’s demographic characteristics clearly described?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2
Was the patient’s history clearly described and presented as a timeline?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
3
Was the current clinical condition of the patient on presentation clearly described?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
4
Were diagnostic tests or assessment methods and the results clearly described?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
5
Was the intervention(s) or treatment procedure(s) clearly described?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
6
Was the post-intervention clinical condition clearly described?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
7
Were adverse events (harms) or unanticipated events identified and described?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
8
Does the case report provide takeaway lessons?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
 
Overall appraisal
I
I
I
I
I
I
I
I
I
I
1: Adhikari R, USA [38]; 2: Aksoy E, Turkey [39]; 3: Assini A, Italy [9]; 4: Essajee F, South Africa [40]; 5: Huber M, Germany [41]; 6: Moschella P, USA [42]; 7: Ramaswamy SB, USA [43]; 8: Reddy YM, India [19]; 9:Singh S, USA [44]; 10: Sriwastava S, USA [45]
I Include, Y Yes
Table 4
JBI critical appraisal checklist for case series
No.
Major components
1
2
3
4
5
6
1
Were there clear criteria for inclusion in the case series?
Y
Y
Y
Y
Y
Y
2
Was the condition measured in a standard, reliable way for all participants included in the case series?
Y
Y
Y
Y
Y
Y
3
Were valid methods used for identification of the condition for all participants included in the case series?
Y
Y
Y
Y
Y
Y
4
Did the case series have consecutive inclusion of participants?
Y
Y
Y
Y
Y
Y
5
Did the case series have complete inclusion of participants?
Y
Y
Y
Y
Y
Y
6
Was there clear reporting of the demographics of the participants in the study?
Y
Y
Y
Y
Y
Y
7
Was there clear reporting of clinical information of the participants?
Y
Y
Y
Y
Y
Y
8
Were the outcomes or follow-up results of cases clearly reported?
Y
Y
Y
Y
Y
Y
9
Was there clear reporting of the presenting site(s)/clinic(s) demographic information?
Y
Y
Y
Y
Y
Y
10
Was statistical analysis appropriate?
NA
NA
NA
NA
NA
NA
 
Overall appraisal
I
I
I
I
I
I
1: Anand P, USA [46]; 2: Karimi N, Iran [47]; 3: Octaviana F, Indonesia [13]; 4: Peters BJ, USA [48]; 5: Saied Z, Tunisia [14]; 6: Zupanic S, Belgian [49]
I include, NA not applicable, Y yes

Study characteristics

The study characteristics for the included studies could be seen in Tables 5 and 6. Sixteen studies were descriptive studies (10 case reports and 6 case series) and six studies were observational studies (three studies were cohort and three studies were cross-sectional). Most of the studies discussed about management and outcome of patient with COVID-19 and MG.
Table 5
Study characteristic of descriptive study
No.
First author, country
Study design
Subject characteristic
Management
Outcome
1
Adhikari R, USA [38]
Case report
33 y/o, M, AChR Ab, MG diagnosed before COVID-19
MV, steroid, symptomatic treatment
Deceased
2
Aksoy E, Turkey [39]
Case report
46 y/o, F, AChR Ab, MG diagnosed before COVID-19
Pyridostigmine (4 × 60 mg), favipiravir, meropenem, oseltamivir, HCQ (2 × 400 mg x 1d, 2 × 200 mg x 4d), MV, linezolid, MP iv (1 × 40 mg), and plasma therapy
Recovery
3
Anand P, USA [46]
Case series
MG diagnosed before COVID-19
1: 57 y/o, M, AChR Ab
2: 64 y/o, M, AChR Ab
3: 90 y/o, F, AChR Ab
4: 42 y/o, F, MuSK Ab
5: 64 y/o, F, AChR Ab
1: HCQ (2 × 400 mg x 1d, 1 × 200 mg × 2d), AZM (1 × 500 mg x 1d, 1 × 250 mg x 2d), TOZ (300 mg × 1 dose), AZA (1 × 50 mg), MV
2: HCQ (2 × 400 mg x 1d, 1 × 400 mg x 4d), AZM (1 × 500 mg x 1d, 1 × 250 mg x 4d), CTX (1 × 2 g x 2d, 1 × 1 g x 3d), prednisone (1 × 10 mg x 9d, 1 × 5 mg), MV
3: HCQ (2 × 400 mg x 1d, 1 × 400 mg x 4d), AZM (1 × 500 mg x 5d), CTX (1 × 1 g x 5 d), IVIG, prednisone (1 × 25 mg x 6d, 1 × 20 mg)
4: Prednisone (1 × 20 mg), IVIG (2 g/kg/d)
5: AZA, prednisone (1 × 60 mg)
1: Discharged home on day 9
2: Continued MV
3: Discharged to skilled nursing facility on day 19
4: Discharged home on day 5
5: Discharged home on day 9
4
Assini A, Italy [9]
Case report
77 y/o, M, MuSK Ab, newly diagnosed ocular MG triggered by COVID-19
Pyridostigmine (4 × 60 mg), AZA (1.5 mg/kg/d)
Recovery
5
Essajee F, South Africa [40]
Case report
7 y/o, F, AChR Ab, newly diagnosed ocular MG triggered by COVID-19
IV MP (30 mg/kg/d x 3d) → prednisone 2 mg/kg/d gradually weaned over 4 w, IVIG (2 g/kg/d x 2d), pyridostigmine, methotrexate
Discharge on day 30
6
Huber M, Germany [41]
Case report
21 y/o, F, AChR Ab, newly diagnosed ocular MG triggered by COVID-19
IVIG (0.4 g/kg/d x 5d), pyridostigmine (3 × 60 mg, increase to 3 × 120 mg next week)
Recovery
7
Karimi N, Iran [47]
Case series
Newly diagnosed ocular MG triggered by COVID-19
1: 61 y/o, F, AChR Ab
2: 57 y/o, M, AChR Ab
3: 38 y/o, F, AChR Ab
1: PE, pyridostigmine (4 × 60 mg), prednisone (1 mg/kg/d), thymoma surgery
2: pyridostigmine (3 × 60 mg), prednisolone (25 mg/d)
3: pyridostigmine (240 mg), prednisone (25 mg/d)
1: Recovery
2: Recovery
3: Recovery
8
Moschella P, USA [42]
Case report
70 y/o, M, AChR Ab, MG diagnosed before COVID-19
MV, hydrocortisone iv (100 mg), PE (5x), pyridostigmine (4 × 60 mg), methotrexate
Recovery
9
Octaviana F, Indonesia [13]
Case series
MG diagnosed before COVID-19
1: 25 y/o, F
2: 49 y/o, M
3: 42 y/o, F
1: Vit C (500 mg/d), NAC (600 mg/d), CTX (2 g/d), pyridostigmine (240 mg/d) → 6 d, AZM (500 mg/d x 1d)
2: AZM (500 mg/d), vit C (3000 mg/d), PCT (1500 mg/d), pyridostigmine (180 mg/d), AZA (100 mg/d)→ 5d
3: HCQ (200 mg/d), NAC (600 mg/d)→ 7 days, MP (16 mg/d), pyridostigmine (240 mg/d), mycophenolate (720 mg/d)
1: Discharge on day 14
2: Discharge on day 14
3: Discharge on day 14
10
Peters BJ, USA [48]
Case series
MG diagnosed before COVID-19
1: 71 y/o, M
2: 41 y/o, F
3: 59 y/o, M
1: Remdesivir (200 mg/d x 1d, 100 mg/d x 4d), dexamethasone iv (6 mg/d x 10d), lenzilumab (3 × 600 mg), mycophenolic acid
2: Remdesivir (200 mg/d x 1d, 100 mg/d x 4d), dexamethasone iv (6 mg/d x 10d), mycophenolate (1000 mg in morning, 1500 mg in evening), pyridostigmine (6 × 60 mg), prednisone after dexamethasone (1 × 5 mg)
3: Prone position, remdesivir (200 mg/d x 1d, 100 mg/d x 4d), dexamethasone iv (6 mg x 1d)→ prednisone 60 mg/d, AZA (100 mg in morning, 50 mg in evening), pyridostigmine (3 × 60 mg), MV
1: Deceased
2: Transferred out of the ICU
3: Discharged to home
11
Ramaswamy SB, USA [43]
Case report
42 y/o, F, AChR Ab, MG diagnosed before COVID-19
Prednisone (1 × 30 mg), mycophenolate (2 × 1000 mg)
Recovery
12
Reddy YM, India [19]
Case report
65 y/o, M, AChR Ab, newly diagnosed MG triggered by COVID-19
Remdesivir, IVIG (0,4 mg/kg/d x 5d), prednisolone (30–40 mg/d), AZT (2 × 50 mg), pyridostigmine (4 × 60 mg)
Discharge on day 23
13
Saied Z, Tunisia [14]
Case series
MG diagnosed before COVID-19
1: 40 y/o, F
2: 60 y/o, F
3: 37 y/o, F, AChR Ab
4: 57 y/o, M, AChR Ab
5: 54 y/o, F, AChR Ab
1: AZM (500 mg/d × 5 d), vit C (1000 mg/day x 10d), vit D (20,000 IU), LMWH x 10d
2: AZM (500 mg/d × 5 d), Vit C (1000 mg/day x 10d), vit D (20,000 IU x 10d), AZA (150 mg/d), pyridostigmine (8 × 60 mg)
3: AZM 500 mg/d × 5 d), vit C (1000 mg/day x 10d), vit D (20,000 IU/d)
4: MV, levofloxacin (500 mg/d), AZA (150 mg/d), pyridostigmine (8 × 60 mg), prednisone (40 mg/d)
5: AZM (500 mg/d × 5 d), Vit C (1000 mg/d × 10 d), Vit D (20,000 IU), LMWH × 10 d, AZA (150 mg), pyridostigmine (8 × 60 mg), IVIG (0.4 g/kg/d × 5 d)
1: Recovery
2: Recovery
3: Recovery
4: Deceased
5: Recovery
14
Singh S, USA [44]
Case report
36 y/o, F, negative AChR Ab and MuSK Ab, MG diagnosed before COVID-19
PE (5x), mycophenolate, MV, stress dose steroid iv
Discharged after 1 month, persistent anosmia
15
Sriwastava S, USA [45]
Case report
65 y/o, F, AChR Ab, newly diagnosed ocular MG triggered by COVID-19
Pyridostigmine (4 × 60 mg decrease to 3 × 60 mg when admitted to hospital again due to COVID-19 infection), dexamethasone iv (4 doses of 6 mg), azithromycin, 1 unit convalescent plasma
Discharged after 10 days with residual symptoms of COVID-10 and ocular MG
16
Zupanic S, Belgian [49]
Case series
MG diagnosed before COVID-19
1: 55 y/o, F, AChR Ab
2: 67 y/o, M, AChR Ab
3: 80 y/o, M
4: 63 y/o, M, AChR Ab
5: 59 y/o, F, negative Ab
6: 58 y/o, M, negative Ab
7: 51 y/o, M, AChR Ab
8: 66 y/o, F
1: IVIG (0,4 g/kg/d × 5 d), pyridostigmine (240 mg/d), AZA (100 mg), prednisolone (20 mg/d)
2: IVIG (0,4 g/kg/d x 5d), pyridostigmine (300 mg/d), prednisolone (60 mg/d)
3: Pyridostigmine (90 mg/d), remdesivir/5 d, dexamethasone (8 mg × 10 d)
4: IVIG (0,4 g/kg/d x 5d), pyridostigmine (360 mg/d), AZA (100 mg), prednisolone (60 mg/d), MV
5: Pyridostigmine (300 mg/d), dexamethasone (8 mg x 10d)
6: IVIG (0,4 g/kg/d x 5d), pyridostigmine (420 mg/d), prednisolone (30 mg/d), remdesivir/5d, MV
7: IVIG (0,4 g/kg/d x 1d), pyridostigmine (300 mg/d), remdesivir/5d
8: IVIG (0,4 g/kg/d x 5d), prednisolone (20 mg/d), remdesivir/5d, MV
1: Discharge on day 7
2: Discharge on day 12
3: Discharge on day 10
4: Discharge on day 16
5: Discharge on day 8
6: Discharge on day 15
7: Discharge on day 24
8: Deceased
Table 6
Study characteristic of observational study
No.
First author, country
Study design
Sample characteristic
Outcome measure
Result
1
Businaro P, Italy [36]
Cross-sectional
162 patients (11 patients had COVID-19 → 65 y/o, 54% M)
Outcome
3 patients needed MV and 2 patients died. 1 patient experienced worsening MG and improved after increasing steroid dose. COVID-19 patients significantly associated with MGFA ≥ III (p: 0,01)
2
Camelo-Filho AE, Brazil [10]
Cross-sectional
15 patients; 60% F (34.5 y/o), 40% M (61.3 y/o); 10 AChR Ab, 1 MuSK Ab
Outcome
87% admitted in the ICU, 73% needed MV, and 30% died
3
Jakubíková M, Czech [35]
Cohort
93 patients, 65.33 y/o, 51% M
Risk and protective factor
11% MG patients were dead due to COVID-19. Older age and long term use of steroid in MG patients were the risk factor of severe COVID-19 (p < 0.001, OR: 1.062, 95%CI: 1.037–1.088; p: 0.002, OR: 14.098, 95% CI: 1.784–111.43), while higher FVC before COVID-19 were protective factor of severe COVID-19 (p < 0.001, OR: 0.957, 95% CI: 0.934–0.98). Immunosuppressive drug (AZA, mycophenolate mofetil, and cyclosporine) were not associated in the worsening of COVID-19 (p: 0.8, OR: 1.147, 95% CI: 0.448–2.935; p: 0.1, OR: 3.375 95% CI: 0.91–12.515; p: 0.3, OR: 0.255, 95% CI: 0.029–2.212) and rituximab in MG patients increased the risk of death by COVID-19 (p: 0.004, OR: 35.143, 95% CI: 3.216–383.971). Remdesivir, favipiravir, and convalescent plasma were not associated with MG exacerbation (p: 0.4, OR: 1.709, 95% CI: 0.885–10.87)
4
Kalita J, India
Cohort
38 patients, 45 y/o, 42.1% F
QoL, daily living, anxiety and depression, and QoS of MG patients in COVID-19 pandemic
QoL, daily living, anxiety and depression, and QoS was impaired significantly in COVID-19 pandemic compared before pandemic (p < 0.05)
5
Sole G, French [15]
Cohort
3558 patients (0.96% had COVID-19 →55 ± 19.9 y/o, F: 55.9%)
Outcome
28 patients recovered from COVID-19, 1 remain affected, and 5 deceased. MGFA class ≥ IV was related with severe COVID-19 (p: 0.004)
6
Stojanov A, Serbia [37]
Cross-sectional
64 patients, 54.1 ± 16.4 y/o, 61.4% F
Psychological status, QoL, and QoS of MG patients in COVID-19 pandemic
Psychological status and QoL were impaired insignificantly, and QoS was reduced significantly in COVID-19 pandemic compared to 2017 (p < 0.01)
AChR Ab: acetylcholine receptor antibody
AZA: azathioprine
AZM: azithromycin
COVID-19: coronavirus disease 2019
CTX: ceftriaxone
d: day
F: female
HCQ: hydroxychloroquine
ICU: intensive care unit
iv: intravenous
IU: international unit
IVIG: intravenous immunoglobulin
LMWH: low molecular weight heparin
M: male
mg: milligram
MG: myasthenia gravis
MGFA: Myasthenia Gravis Foundation of America
MuSK Ab: muscle-specific tyrosine kinase antibody
MP: methylprednisolone
MV: mechanical ventilation
NAC; N-acetylcysteine
PE: plasma exchange
TOZ: tocilizumab
QoL: quality of life
QoS: quality of sleep
vit: vitamin
w: week
y/o: year old

Discussion

The relationship of MG and COVID-19

There were 10 descriptive studies focused in MG diagnosed before COVID-19 infection. The cohort study in French by Sole and colleagues (2021) showed that 0.96% of MG patients had COVID-19 with the mean age was 55 years, 55.9% was female, mean MG duration was 8.5 years, 26.5% had severe COVID-19, and mortality rate under 15%; while Businaro and colleagues (2021) study reported 11 COVID-19 patients from 163 MG patients in Italy [15, 36]. The risk factors of severe COVID-19 in study by Sole and colleagues (2021) based on univariate analysis were immunosuppressive drugs and MG severity (in multivariate analysis, only MG severity was related with poor outcome of COVID-19); in multivariate analysis the severity of MG patients/Myasthenia Gravis Foundation of America Classification (MGFA class ≥ IV) was related with severe COVID-19 (p: 0.004) [15]. The risk factor of severe COVID-19 in MG patients in Jakubíková M and colleagues (2021)’s study were older patients and long term use of steroid before COVID-19, and higher FVC was the protective factor. The interesting fact is that rituximab in MG patients increased the risk of COVID-19 death due to the failure of anti-SARS-CoV-2 antibody production (because rituximab acts as anti-CD20 monoclonal antibody, an important antibody to fight virus) [35]. The cross-sectional study by Camelo-Filho and colleagues (2020) reported that the COVID-19 patients with MG were 87% admitted in the ICU, 73% needed mechanical ventilation, and 30% died. This cross-sectional study also reported that risk factors for the mortality were male, geriatric, and had comorbidities [10]. COVID-19-associated risk and effects in MG (CARE-MG) reported that 40% of patients were in MG crisis and required emergency management [intravenous immunoglobulin (IVIG), plasma exchange (PLEX), or steroids], mortality rate was 24%, and 43% of patients discharged to home. [12]
COVID-19 in MG patients increased the risk of myasthenic crisis, respiratory failure, and permanent pulmonary damage. Molecular mimicry of SARS-CoV-2 and acetylcholine receptor and cytokine storm due to TNF-α, IFN-γ, IL-6, regulatory T cell (Th-17), and IL-17 is contributed to the ARDS in COVID-19 and myasthenic crisis and also associated with the severity, poor outcome, and the mortality [11, 14, 39]. There were 6 descriptive studies about new-onset of MG after COVID-19 infection. The similar structure from acetylcholine receptor and SARS-CoV-2 receptor, activation latent autoimmune disease, and hyperinflammation (such as multisystem inflammatory syndrome in children) may be the possible explanation of it [9, 19, 40, 41, 45, 47, 50]. This condition requires the use of mechanical ventilation, sedating, and paralytic drugs. The vital capacity under 20 mL/kg or negative inspiratory force under -20 cmH2O or forced vital capacity under 15 m/kg indicates respiratory failure and needs ventilator support [11, 51]. The use of mechanical ventilation must also consider the safety of the medical worker because of the risk of aerosolization transmission of the virus [46, 51]. The consideration use of non-invasive ventilation and biphasic positive airway pressure ventilation (BiPAP) also can be considered before intubation [11, 51]. The use of drugs like azithromycin and hydroxychloroquine may increase the risk of myasthenic disease or even myasthenic crisis, so must consider the benefit–risk ratio before using that drugs [46]. Octaviana and colleagues (2021) reported that the use of azithromycin and hydroxychloroquine were not increased the risk of deterioration in mild myasthenic patients with COVID-19, but the use of these drugs still requires local expert consideration due to the possible myasthenic flare in first 1 month after the first treatment [13, 23]. Peters and colleagues (2021) reported the beneficial use of remdesivir in MG and COVID-19. The pharmacodynamics of remdesivir is known to be not related to the acetylcholine receptor. [48]
The management of MG which involves immunosuppressive drugs like corticosteroid should be continued (with the consideration of local expert opinion and national guideline) [10, 52, 53]. A meta-analysis by van Paassen and colleagues (2021) reported the beneficial effect of corticosteroid on short-term mortality and the need for mechanical ventilation in COVID-19 patients due to the protective role (suppress the immune response of inflammatory cytokine) [52]. Sole and colleagues (2021) also reported that immunosuppressive drugs (like steroids) used for MG treatment were not related with poor outcome in COVID-19 patients nor protective effect [15]. Camelo-Filho and colleagues (2020) reported the beneficial effect of corticosteroids and immunosuppressive drugs which reduce the use of mechanical ventilation [10]. Saied Z and colleagues (2021) also described the good outcome of MG patients with COVID-19 who got corticosteroid [14]. The use of another immunosuppressive (mycophenolate mofetil) or immunomodulatory drug (IVIG or PLEX) in this condition must be considered case-by-case based on the benefit–risk ratio and the consideration of local experts [10, 22, 49, 54]. Jakubíková and colleagues (2021) reported that immunosuppressant drugs did not affect the worsening of COVID-19 due to the suppression of cytokine storm [35]. The use of immunosuppressive drug, targeted C5-complement inhibition (eculizumab) is also proved to be effective drug for MG and COVID-19 infection [55, 56]. Camelo-Filho and colleagues (2020) reported the good outcome with PLEX therapy and IVIG, and Zupanic and colleagues (2021) reported the beneficial use of IVIG in this case [10, 49]. The choice of PLEX or IVIG in the patient with COVID-19 and MG need special consideration from local expert, because PLEX has protective antibody and the mechanism to dispose of inflammatory cytokine, but PLEX removes both protective and harmful antibodies [42, 54]. Sriwastava and colleagues (2020) reported the continued use of pyridostigmine [45]. The results further confirm that the recommendation from the Guidance for the management of MG and LEMS during the COVID-19 pandemic by International MG/COVID-19 Working Group about the use of immunosuppressive drugs [22]. International MG/COVID-19 Working Group also recommends the adjustment of management according to each patient with underlying comorbidities by recommendation of expert, and continue standard MG management including pyridostigmine and eculizumab [22]. The use of pyridostigmine especially after intubation must need special attention because the effect of excessive airway secretion, and can be temporarily stopped if needed. [51]
Kalita and colleagues (2021) and Stojanov and colleagues (2020) reported the impact of COVID-19 pandemic on the quality of life and mental status of MG patients [37, 57]. The rapid transmission and the mortality rate of COVID-19 infection caused anxiety and depression in vulnerable people, including MG patients. This finding proved that professional therapeutic advice (from physician, psychologist, other medical workers, and the community) and psychosocial support are needed to reduce the stress especially in autoimmune diseases that need immunosuppressive therapy. The isolation precaution practice (standard and transmission practice: including hand hygiene, the use of personal protective equipment, and physical distancing) is also an important factor to reduce COVID-19 transmission. [22, 37, 57]
Advisory Committee on Immunization Practices (ACIP), American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM), US Centers for Disease Control and Prevention (CDC), and International MG/COVID-19 Working Group recommend that MG patients can receive COVID-19 vaccine with the local physician recommendation (consider benefit–risk ratio and the attention of vaccination schedule based on patient’s condition and treatment due to the possibility of vaccine influencing immune response) and the consideration of best practice standard because the safety data of it are still in clinical trial [22, 5862]. There were three case reports that discussed about the possibility exacerbation of moderate symptoms of MG because of COVID-19 mRNA vaccine in geriatric patients, but these reports need further follow-up and research related that incidences were causal or coincidental [6365]. While Plymate and colleagues (2021) reported the safety of mRNA COVID-19 vaccine in MG patients and the benefit of additional doses of vaccine [66]. The Guidance for the management of MG and LEMS during the COVID-19 pandemic by International MG/COVID-19 Working Group suggests the use of dead vaccine in this group [22]. Ruan and colleagues (2021) reported the safety of inactivated COVID-19 vaccine (90.9% did not show MG symptoms in 1 month after vaccination and 9.1% had minor symptom but resolved quickly) [67]. The consideration of COVID-19 vaccination in MG patients is also based on the research that influenza vaccine is safe in MG patients. [59, 68, 69]

Strength and limitation of the study

This systematic review consisted of 22 studies that explained the relationship of MG and COVID-19. The majority of the studies discussed the management and clinical outcome of patient with MG and COVID-19.
The limitation of the study was the most of study was descriptive study, the baseline characteristics were various, the variance of the demography in the human study, confounding variables in each study (human study), the lack of data of patients in outpatient settings, and limited follow-up time.

Future implication

The current systematic review can be a scientific reading and material to physician, researcher, and all of the readers associated with the relationship of MG and COVID-19. Further research is needed with the larger sample size with diverse demographic variances and longer follow-up time; and also the marker of early detection of deterioration in MG and COVID-19.

Conclusion

COVID-19 infection can increase the risk of new-onset myasthenia gravis, myasthenic crisis, respiratory failure, and mortality rate due to cytokine storm in myasthenia gravis patients. The management of COVID-19 patients with myasthenia gravis is tailored to each person and based on national guidelines and local expert recommendations.

Acknowledgements

None.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests/conflicts of interest concerning this article.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):1–8.CrossRef Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):1–8.CrossRef
2.
3.
Zurück zum Zitat Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8.PubMedPubMedCentralCrossRef Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:1–7.CrossRef Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:1–7.CrossRef
5.
7.
Zurück zum Zitat Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the coronavirus disease 2019 (COVID-19) outbreak. Stroke. 2020;51(5):1356–7.PubMedPubMedCentralCrossRef Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the coronavirus disease 2019 (COVID-19) outbreak. Stroke. 2020;51(5):1356–7.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Assini A, Gandoglia I, Damato V, Rikani K, Evoli A, Del Sette M. Myasthenia gravis associated with anti-MuSK antibodies developed after SARS-CoV-2 infection. Eur J Neurol. 2021;28(10):3537–9.PubMedCrossRef Assini A, Gandoglia I, Damato V, Rikani K, Evoli A, Del Sette M. Myasthenia gravis associated with anti-MuSK antibodies developed after SARS-CoV-2 infection. Eur J Neurol. 2021;28(10):3537–9.PubMedCrossRef
10.
Zurück zum Zitat Camelo-Filho AE, Silva AMS, Estephan EP, Zambon AA, Mendonça RH, Souza PVS, et al. Myasthenia gravis and COVID-19: clinical characteristics and outcomes. Front Neurol. 2020;11:1–5.CrossRef Camelo-Filho AE, Silva AMS, Estephan EP, Zambon AA, Mendonça RH, Souza PVS, et al. Myasthenia gravis and COVID-19: clinical characteristics and outcomes. Front Neurol. 2020;11:1–5.CrossRef
12.
Zurück zum Zitat Muppidi S, Guptill JT, Jacob S, Li Y, Farrugia ME, Guidon AC, et al. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol. 2020;19(12):970–1.PubMedPubMedCentralCrossRef Muppidi S, Guptill JT, Jacob S, Li Y, Farrugia ME, Guidon AC, et al. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol. 2020;19(12):970–1.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Octaviana F, Yugo HP, Safri AY, Indrawati LA, Wiratman W, Ayuningtyas T, et al. Case series: COVID-19 in patients with mild to moderate myasthenia gravis in a National Referral Hospital in Indonesia. eNeurologicalSci. 2021;23:1–3.CrossRef Octaviana F, Yugo HP, Safri AY, Indrawati LA, Wiratman W, Ayuningtyas T, et al. Case series: COVID-19 in patients with mild to moderate myasthenia gravis in a National Referral Hospital in Indonesia. eNeurologicalSci. 2021;23:1–3.CrossRef
16.
Zurück zum Zitat Setiawan MRD, Sumada IK. Infeksi COVID-19 pada pasien myasthenia gravis: sebuah tinjauan pustaka. Intisari Sains Medis. 2021;12(1):285–9. Setiawan MRD, Sumada IK. Infeksi COVID-19 pada pasien myasthenia gravis: sebuah tinjauan pustaka. Intisari Sains Medis. 2021;12(1):285–9.
17.
Zurück zum Zitat Hehir MK, Silvestri NJ. Generalized myasthenia gravis: classification, clinical presentation, natural history, and epidemiology. Neurol Clin. 2018;36(2):253–60.PubMedCrossRef Hehir MK, Silvestri NJ. Generalized myasthenia gravis: classification, clinical presentation, natural history, and epidemiology. Neurol Clin. 2018;36(2):253–60.PubMedCrossRef
18.
Zurück zum Zitat Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Reddy YM, Santhosh Kumar B, Osman S, Murthy JMK. Temporal association between SARS-CoV-2 and new-onset myasthenia gravis: Is it causal or coincidental? BMJ Case Rep. 2021;14(7):1–4. Reddy YM, Santhosh Kumar B, Osman S, Murthy JMK. Temporal association between SARS-CoV-2 and new-onset myasthenia gravis: Is it causal or coincidental? BMJ Case Rep. 2021;14(7):1–4.
20.
Zurück zum Zitat Costamagna G, Abati E, Bresolin N, Pietro CG, Corti S. Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. J Neurol. 2020;268(5):1580–91.PubMedPubMedCentralCrossRef Costamagna G, Abati E, Bresolin N, Pietro CG, Corti S. Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. J Neurol. 2020;268(5):1580–91.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Sheikh S, Alvi U, Soliven B, Rezania K. Drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med. 2021;10(7):1–20.CrossRef Sheikh S, Alvi U, Soliven B, Rezania K. Drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med. 2021;10(7):1–20.CrossRef
22.
Zurück zum Zitat Jacob S, Muppidi S, Guidon A, Guptill J, Hehir M, Howard JF, et al. Guidance for the management of myasthenia gravis (MG) and Lambert- Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:1–3.CrossRef Jacob S, Muppidi S, Guidon A, Guptill J, Hehir M, Howard JF, et al. Guidance for the management of myasthenia gravis (MG) and Lambert- Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:1–3.CrossRef
23.
Zurück zum Zitat Solé G, Salort-Campana E, Pereon Y, Stojkovic T, Wahbi K, Cintas P, et al. Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev Neurol (Paris). 2020;176(6):507–15.CrossRef Solé G, Salort-Campana E, Pereon Y, Stojkovic T, Wahbi K, Cintas P, et al. Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev Neurol (Paris). 2020;176(6):507–15.CrossRef
24.
Zurück zum Zitat Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:1–9. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:1–9.
25.
Zurück zum Zitat Higgins J, Green S. Cochrane handbook for systematic reviews of intervention 5.2. United Kingdom: John Wiley and Sons; 2017. p. 1–50. Higgins J, Green S. Cochrane handbook for systematic reviews of intervention 5.2. United Kingdom: John Wiley and Sons; 2017. p. 1–50.
26.
Zurück zum Zitat Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ. 2020;368:1–6. Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ. 2020;368:1–6.
28.
Zurück zum Zitat Herzog R, Álvarez-pasquin MJ, Díaz C, Luis J, Barrio D, Estrada JM, et al. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013;13(154):1–17. Herzog R, Álvarez-pasquin MJ, Díaz C, Luis J, Barrio D, Estrada JM, et al. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013;13(154):1–17.
29.
Zurück zum Zitat Viswanathan M, Ansari MT, Berkman ND, Chang S, Hartling L, McPheeters M, et al. Assessing the Risk of Bias in Systematic Reviews of Health Care Interventions. 2017 Dec 13. In: Methods guide for effectiveness and comparative effectiveness reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008-. Viswanathan M, Ansari MT, Berkman ND, Chang S, Hartling L, McPheeters M, et al. Assessing the Risk of Bias in Systematic Reviews of Health Care Interventions. 2017 Dec 13. In: Methods guide for effectiveness and comparative effectiveness reviews [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008-.
30.
Zurück zum Zitat Islam M, Iqbal U, Walther B, Atique S, Dubey N, Nguyen P, et al. Benzodiazepine use and risk of dementia in the elderly population: a systematic review and meta-analysis. Neuroepidemiology. 2016;47:181–91.PubMedCrossRef Islam M, Iqbal U, Walther B, Atique S, Dubey N, Nguyen P, et al. Benzodiazepine use and risk of dementia in the elderly population: a systematic review and meta-analysis. Neuroepidemiology. 2016;47:181–91.PubMedCrossRef
31.
Zurück zum Zitat Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of studies in meta-analyses: advantages and limitations of the Newcastle Ottawa Scale. World J Meta-Anal. 2017;5(4):80–4.CrossRef Luchini C, Stubbs B, Solmi M, Veronese N. Assessing the quality of studies in meta-analyses: advantages and limitations of the Newcastle Ottawa Scale. World J Meta-Anal. 2017;5(4):80–4.CrossRef
32.
Zurück zum Zitat Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil Mid Res. 2020;7(1):1–11. Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil Mid Res. 2020;7(1):1–11.
35.
Zurück zum Zitat Jakubíková M, Týblová M, Tesař A, Horáková M, Vlažná D, Ryšánková I, et al. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. Eur J Neurol. 2021;28:3418–25.PubMedCrossRef Jakubíková M, Týblová M, Tesař A, Horáková M, Vlažná D, Ryšánková I, et al. Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. Eur J Neurol. 2021;28:3418–25.PubMedCrossRef
36.
Zurück zum Zitat Businaro P, Vaghi G, Marchioni E, Diamanti L, Arceri S, Bini P, et al. COVID-19 in patients with myasthenia gravis: Epidemiology and disease course. Muscle Nerve. 2021;64(2):206–11.PubMedCrossRef Businaro P, Vaghi G, Marchioni E, Diamanti L, Arceri S, Bini P, et al. COVID-19 in patients with myasthenia gravis: Epidemiology and disease course. Muscle Nerve. 2021;64(2):206–11.PubMedCrossRef
37.
Zurück zum Zitat Stojanov A, Stojanov J, Milosevic V, Malobabic M, Stanojevic G, Stevic M, et al. The impact of the Coronavirus Disease-2019 pandemic on the psychological status and quality of life of myasthenia gravis patients. Ann Indian Acad Neurol. 2020;23(4):510–4.PubMedPubMedCentral Stojanov A, Stojanov J, Milosevic V, Malobabic M, Stanojevic G, Stevic M, et al. The impact of the Coronavirus Disease-2019 pandemic on the psychological status and quality of life of myasthenia gravis patients. Ann Indian Acad Neurol. 2020;23(4):510–4.PubMedPubMedCentral
38.
Zurück zum Zitat Adhikari R, Suram VK, Deepika K, Joseph T. A fatal case of myasthenia gravis exacerbation in Covid-19 leading to acute respiratory failure. J Neurol Transl Neurosci. 2020;6(1):1–3. Adhikari R, Suram VK, Deepika K, Joseph T. A fatal case of myasthenia gravis exacerbation in Covid-19 leading to acute respiratory failure. J Neurol Transl Neurosci. 2020;6(1):1–3.
39.
Zurück zum Zitat Aksoy E, Oztutgan T. COVID-19 presentation in association with myasthenia gravis: a case report and review of the literature. Case Rep Infect Dis. 2020;2020:1–4. Aksoy E, Oztutgan T. COVID-19 presentation in association with myasthenia gravis: a case report and review of the literature. Case Rep Infect Dis. 2020;2020:1–4.
40.
Zurück zum Zitat Essajee F, Lishman J, Solomons R, Abraham DR, Goussard P, Van Toorn R. Transient acetylcholine receptor-related myasthenia gravis, post multisystem inflammatory syndrome in children (MIS-C) temporally associated with COVID-19 infection. BMJ Case Rep. 2021;14(8):1–4.CrossRef Essajee F, Lishman J, Solomons R, Abraham DR, Goussard P, Van Toorn R. Transient acetylcholine receptor-related myasthenia gravis, post multisystem inflammatory syndrome in children (MIS-C) temporally associated with COVID-19 infection. BMJ Case Rep. 2021;14(8):1–4.CrossRef
41.
Zurück zum Zitat Huber M, Rogozinski S, Puppe W, Framme C, Höglinger G, Hufendiek K, et al. Postinfectious onset of myasthenia gravis in a COVID-19 patient. Front Neurol. 2020;11:1–5.CrossRef Huber M, Rogozinski S, Puppe W, Framme C, Höglinger G, Hufendiek K, et al. Postinfectious onset of myasthenia gravis in a COVID-19 patient. Front Neurol. 2020;11:1–5.CrossRef
42.
Zurück zum Zitat Moschella P, Roth P. Isolated COVID-19 infection precipitates myasthenia gravis crisis: a case report. Clin Pract Cases Emerg Med. 2020;4(4):524–6.PubMedPubMedCentralCrossRef Moschella P, Roth P. Isolated COVID-19 infection precipitates myasthenia gravis crisis: a case report. Clin Pract Cases Emerg Med. 2020;4(4):524–6.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ramaswamy SB, Govindarajan R. Covid-19 in refractory myasthenia gravis—a case report of successful outcome. J Neuromuscul Dis. 2020;7(3):361–4.PubMedPubMedCentralCrossRef Ramaswamy SB, Govindarajan R. Covid-19 in refractory myasthenia gravis—a case report of successful outcome. J Neuromuscul Dis. 2020;7(3):361–4.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Singh S, Govindarajan R. COVID-19 and generalized myasthenia gravis exacerbation: a case report. Clin Neurol Neurosurg. 2020;196:1–2.CrossRef Singh S, Govindarajan R. COVID-19 and generalized myasthenia gravis exacerbation: a case report. Clin Neurol Neurosurg. 2020;196:1–2.CrossRef
45.
Zurück zum Zitat Sriwastava S, Tandon M, Kataria S, Daimee M, Sultan S. New onset of ocular myasthenia gravis in a patient with COVID-19: a novel case report and literature review. J Neurol. 2021;268(8):2690–6.PubMedCrossRef Sriwastava S, Tandon M, Kataria S, Daimee M, Sultan S. New onset of ocular myasthenia gravis in a patient with COVID-19: a novel case report and literature review. J Neurol. 2021;268(8):2690–6.PubMedCrossRef
46.
Zurück zum Zitat Anand P, Slama MCC, Kaku M, Ong C, Cervantes-Arslanian AM, Zhou L, et al. COVID-19 in patients with myasthenia gravis. Muscle Nerve. 2020;62(2):254–8.PubMedCrossRef Anand P, Slama MCC, Kaku M, Ong C, Cervantes-Arslanian AM, Zhou L, et al. COVID-19 in patients with myasthenia gravis. Muscle Nerve. 2020;62(2):254–8.PubMedCrossRef
47.
Zurück zum Zitat Karimi N, Okhovat AA, Ziaadini B, Haghi Ashtiani B, Nafissi S, Fatehi F. Myasthenia gravis associated with novel coronavirus 2019 infection: a report of three cases. Clin Neurol Neurosurg. 2021;208:18–20.CrossRef Karimi N, Okhovat AA, Ziaadini B, Haghi Ashtiani B, Nafissi S, Fatehi F. Myasthenia gravis associated with novel coronavirus 2019 infection: a report of three cases. Clin Neurol Neurosurg. 2021;208:18–20.CrossRef
48.
Zurück zum Zitat Peters BJ, Rabinstein AA, DuBrock HM. Use of remdesivir in myasthenia gravis and COVID-19. Pharmacother J Hum Pharmacol Drug Ther. 2021;41(6):546–50.CrossRef Peters BJ, Rabinstein AA, DuBrock HM. Use of remdesivir in myasthenia gravis and COVID-19. Pharmacother J Hum Pharmacol Drug Ther. 2021;41(6):546–50.CrossRef
49.
Zurück zum Zitat Županić S, Perić Šitum M, Majdak M, Karakaš M, Bašić S, Sporiš D. Case series of COVID-19 in patients with myasthenia gravis: a single institution experience. Acta Neurol Belg. 2021;121(4):1039–44.PubMedPubMedCentralCrossRef Županić S, Perić Šitum M, Majdak M, Karakaš M, Bašić S, Sporiš D. Case series of COVID-19 in patients with myasthenia gravis: a single institution experience. Acta Neurol Belg. 2021;121(4):1039–44.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Finsterer J, Scorza FA. Perspectives of neuro-COVID: myasthenia. Front Neurol. 2021;12:1–5.CrossRef Finsterer J, Scorza FA. Perspectives of neuro-COVID: myasthenia. Front Neurol. 2021;12:1–5.CrossRef
51.
Zurück zum Zitat Wu X, Yuan J, Karim R, Wang Y. Management of myasthenia gravis during COVID-19 pandemic. Preprints. 2020;6:1–9. Wu X, Yuan J, Karim R, Wang Y. Management of myasthenia gravis during COVID-19 pandemic. Preprints. 2020;6:1–9.
52.
Zurück zum Zitat van Paassen J, Vos JS, Hoekstra EM, Neumann KMI, Boot PC, Arbous SM. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care. 2020;24(1):1–22. van Paassen J, Vos JS, Hoekstra EM, Neumann KMI, Boot PC, Arbous SM. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care. 2020;24(1):1–22.
54.
Zurück zum Zitat Hoang P, Hurtubise B, Muppidi S. Clinical reasoning: therapeutic considerations in myasthenic crisis due to COVID-19 infection. Neurology. 2020;95(18):840–3.PubMedCrossRef Hoang P, Hurtubise B, Muppidi S. Clinical reasoning: therapeutic considerations in myasthenic crisis due to COVID-19 infection. Neurology. 2020;95(18):840–3.PubMedCrossRef
55.
Zurück zum Zitat Annane D, Heming N, Grimaldi-Bensouda L, Frémeaux-Bacchi V, Vigan M, Roux A-L, et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof-of-concept study. EClinicalMedicine. 2020;28:1–9.CrossRef Annane D, Heming N, Grimaldi-Bensouda L, Frémeaux-Bacchi V, Vigan M, Roux A-L, et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof-of-concept study. EClinicalMedicine. 2020;28:1–9.CrossRef
56.
Zurück zum Zitat Mantegazza R, Cavalcante P. Eculizumab for the treatment of myasthenia gravis. Expert Opin Biol Ther. 2020;20(9):991–8.PubMedCrossRef Mantegazza R, Cavalcante P. Eculizumab for the treatment of myasthenia gravis. Expert Opin Biol Ther. 2020;20(9):991–8.PubMedCrossRef
57.
Zurück zum Zitat Kalita J, Tripathi A, Dongre N, Misra UK. Impact of COVID-19 pandemic and lockdown in a cohort of myasthenia gravis patients in India. Clin Neurol Neurosurg. 2021;202:1–6.CrossRef Kalita J, Tripathi A, Dongre N, Misra UK. Impact of COVID-19 pandemic and lockdown in a cohort of myasthenia gravis patients in India. Clin Neurol Neurosurg. 2021;202:1–6.CrossRef
59.
Zurück zum Zitat Roy B, Kovvuru S, Nalleballe K, Onteddu SR, Nowak RJ. Electronic health record derived-impact of COVID-19 on myasthenia gravis. J Neurol Sci. 2021;423:1–2.CrossRef Roy B, Kovvuru S, Nalleballe K, Onteddu SR, Nowak RJ. Electronic health record derived-impact of COVID-19 on myasthenia gravis. J Neurol Sci. 2021;423:1–2.CrossRef
61.
Zurück zum Zitat Živković SA, Gruener G, Narayanaswami P. Doctor—Should I get the COVID-19 vaccine? Infection and immunization in individuals with neuromuscular disorders. Muscle Nerve. 2021;63(3):294–303.PubMedPubMedCentralCrossRef Živković SA, Gruener G, Narayanaswami P. Doctor—Should I get the COVID-19 vaccine? Infection and immunization in individuals with neuromuscular disorders. Muscle Nerve. 2021;63(3):294–303.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Chavez A, Pougnier C. A case of COVID-19 vaccine associated new diagnosis myasthenia gravis. J Prim Care Community Heal. 2021;12:19–21. Chavez A, Pougnier C. A case of COVID-19 vaccine associated new diagnosis myasthenia gravis. J Prim Care Community Heal. 2021;12:19–21.
64.
Zurück zum Zitat Desai UG. Myasthenia gravis exacerbation following second dose of mRNA-1273 vaccine. RRNMF Neuromuscul J. 2021;2(2):46–7.CrossRef Desai UG. Myasthenia gravis exacerbation following second dose of mRNA-1273 vaccine. RRNMF Neuromuscul J. 2021;2(2):46–7.CrossRef
65.
Zurück zum Zitat Tagliaferri AR, Narvaneni S, Azzam MH, Grist W. A Case of COVID-19 vaccine causing a myasthenia gravis crisis. Cureus. 2021;13(6):13–5. Tagliaferri AR, Narvaneni S, Azzam MH, Grist W. A Case of COVID-19 vaccine causing a myasthenia gravis crisis. Cureus. 2021;13(6):13–5.
66.
Zurück zum Zitat Plymate LC, Pepper G, Krist MP, Koelle DM. Immunogenicity of repeat COVID-19 mRNA vaccinations in a patient with myasthenia gravis receiving mycophenolate, prednisone, and eculizumab. J Transl Autoimmun. 2021;4:1–3.CrossRef Plymate LC, Pepper G, Krist MP, Koelle DM. Immunogenicity of repeat COVID-19 mRNA vaccinations in a patient with myasthenia gravis receiving mycophenolate, prednisone, and eculizumab. J Transl Autoimmun. 2021;4:1–3.CrossRef
67.
Zurück zum Zitat Ruan Z, Tang Y, Li C, Sun C, Zhu Y, Li Z, et al. COVID-19 vaccination in patients with myasthenia gravis: a single-center case series. Vaccines. 2021;9(1112):1–10. Ruan Z, Tang Y, Li C, Sun C, Zhu Y, Li Z, et al. COVID-19 vaccination in patients with myasthenia gravis: a single-center case series. Vaccines. 2021;9(1112):1–10.
68.
Zurück zum Zitat Strijbos E, Tannemaat MR, Alleman I, de Meel RHP, Bakker JA, van Beek R, et al. A prospective, double-blind, randomized, placebo-controlled study on the efficacy and safety of influenza vaccination in myasthenia gravis. Vaccine. 2019;37(7):919–25.PubMedCrossRef Strijbos E, Tannemaat MR, Alleman I, de Meel RHP, Bakker JA, van Beek R, et al. A prospective, double-blind, randomized, placebo-controlled study on the efficacy and safety of influenza vaccination in myasthenia gravis. Vaccine. 2019;37(7):919–25.PubMedCrossRef
69.
Zurück zum Zitat Zinman L, Thoma J, Kwong JC, Kopp A, Stukel TA, Juurlink DN. Safety of influenza vaccination in patients with myasthenia gravis: a population-based study. Muscle Nerve. 2009;40(6):947–51.PubMedCrossRef Zinman L, Thoma J, Kwong JC, Kopp A, Stukel TA, Juurlink DN. Safety of influenza vaccination in patients with myasthenia gravis: a population-based study. Muscle Nerve. 2009;40(6):947–51.PubMedCrossRef
Metadaten
Titel
The relationship between myasthenia gravis and COVID-19: a systematic review
verfasst von
Dodik Tugasworo
Aditya Kurnianto
Retnaningsih
Yovita Andhitara
Rahmi Ardhini
Jethro Budiman
Publikationsdatum
01.12.2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1186/s41983-022-00516-3

Weitere Artikel der Ausgabe 1/2022

The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.