Skip to main content
Erschienen in: Inflammation 2/2024

06.02.2024 | RESEARCH

The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model

verfasst von: Hsiao-Wen Chiu, Chun-Hsien Wu, Wen-Yu Lin, Wei-Ting Wong, Wei-Che Tsai, Hsien-Ta Hsu, Chen-Lung Ho, Shu-Meng Cheng, Cheng-Chung Cheng, Shih-Ping Yang, Lan-Hui Li, Kuo-Feng Hua

Erschienen in: Inflammation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.

Graphical Abstract

Literatur
1.
Zurück zum Zitat Gu, J., A. Noe, P. Chandra, S. Al-Fayoumi, M. Ligueros-Saylan, R. Sarangapani, S. Maahs, G. Ksander, D.F. Rigel, A.Y. Jeng, T.H. Lin, W. Zheng, and W.P. Dole. 2010. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). Journal of Clinical Pharmacology 50 (4): 401–414. https://doi.org/10.1177/0091270009343932.CrossRefPubMed Gu, J., A. Noe, P. Chandra, S. Al-Fayoumi, M. Ligueros-Saylan, R. Sarangapani, S. Maahs, G. Ksander, D.F. Rigel, A.Y. Jeng, T.H. Lin, W. Zheng, and W.P. Dole. 2010. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). Journal of Clinical Pharmacology 50 (4): 401–414. https://​doi.​org/​10.​1177/​0091270009343932​.CrossRefPubMed
2.
Zurück zum Zitat Ruilope, L.M., A. Dukat, M. Böhm, Y. Lacourcière. J. Gong, and M.P. Lefkowitz. 2010. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375 (9722): 1255–1266. https://doi.org/10.1016/S0140-6736(09)61966-8. Ruilope, L.M., A. Dukat, M. Böhm, Y. Lacourcière. J. Gong, and M.P. Lefkowitz. 2010. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375 (9722): 1255–1266. https://​doi.​org/​10.​1016/​S0140-6736(09)61966-8.
3.
Zurück zum Zitat McMurray, J.J., M. Packer, A.S. Desai, J. Gong, M.P. Lefkowitz, A.R. Rizkala, J.L. Rouleau, V.C. Shi, S.D. Solomon, K. Swedberg, PARADIGM-HF Investigators and Committees. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. The New England Journal of Medicine 371 (11): 993–1004. https://doi.org/10.1056/NEJMoa1409077.CrossRefPubMed McMurray, J.J., M. Packer, A.S. Desai, J. Gong, M.P. Lefkowitz, A.R. Rizkala, J.L. Rouleau, V.C. Shi, S.D. Solomon, K. Swedberg, PARADIGM-HF Investigators and Committees. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. The New England Journal of Medicine 371 (11): 993–1004. https://​doi.​org/​10.​1056/​NEJMoa1409077.CrossRefPubMed
4.
Zurück zum Zitat Solomon, S.D., M. Zile, B. Pieske, A. Voors, A. Shah, E. Kraigher-Krainer, V. Shi, T. Bransford, M. Takeuchi, J. Gong, M. Lefkowitz, M. Packer, and J.J. McMurray. 2012. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 80 (9851): 1387–1395. https://doi.org/10.1016/S0140-6736(12)61227-6. Solomon, S.D., M. Zile, B. Pieske, A. Voors, A. Shah, E. Kraigher-Krainer, V. Shi, T. Bransford, M. Takeuchi, J. Gong, M. Lefkowitz, M. Packer, and J.J. McMurray. 2012. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 80 (9851): 1387–1395. https://​doi.​org/​10.​1016/​S0140-6736(12)61227-6.
5.
Zurück zum Zitat Zhang, R., X. Sun, Y. Li, W. He, H. Zhu, B. Liu, and A. Zhang. 2022. The efficacy and safety of Sacubitril/Valsartan in heart failure patients: A Review. Journal of Cardiovascular Pharmacology Therapeutics 27: 10742484211058681. https://doi.org/10.1177/10742484211058681. Zhang, R., X. Sun, Y. Li, W. He, H. Zhu, B. Liu, and A. Zhang. 2022. The efficacy and safety of Sacubitril/Valsartan in heart failure patients: A Review. Journal of Cardiovascular Pharmacology Therapeutics 27: 10742484211058681. https://​doi.​org/​10.​1177/​1074248421105868​1.
7.
Zurück zum Zitat Haynes, R., P.K. Judge, N. Staplin, W.G. Herrington, B.C. Storey, A. Bethel, L. Bowman, N. Brunskill, P. Cockwell, M. Hill, P.A. Kalra, J.J.V. McMurray, M. Taal, D.C. Wheeler, M.J. Landray, and C. Baigent. 2018. Effects of Sacubitril/Valsartan versus Irbesartan in patients with chronic kidney disease. Circulation 138 (15): 1505–1514. https://doi.org/10.1161/CIRCULATIONAHA.118.034818.CrossRefPubMed Haynes, R., P.K. Judge, N. Staplin, W.G. Herrington, B.C. Storey, A. Bethel, L. Bowman, N. Brunskill, P. Cockwell, M. Hill, P.A. Kalra, J.J.V. McMurray, M. Taal, D.C. Wheeler, M.J. Landray, and C. Baigent. 2018. Effects of Sacubitril/Valsartan versus Irbesartan in patients with chronic kidney disease. Circulation 138 (15): 1505–1514. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​118.​034818.CrossRefPubMed
8.
Zurück zum Zitat Belali, O.M., M.M. Ahmed, M. Mohany, T.M. Belali, M.M. Alotaibi, A. Al-Hoshani, and S.S. Al-Rejaie. 2022. LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways. International Journal of Molecular Sciences 23 (3): 1288. https://doi.org/10.3390/ijms23031288.CrossRefPubMedPubMedCentral Belali, O.M., M.M. Ahmed, M. Mohany, T.M. Belali, M.M. Alotaibi, A. Al-Hoshani, and S.S. Al-Rejaie. 2022. LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways. International Journal of Molecular Sciences 23 (3): 1288. https://​doi.​org/​10.​3390/​ijms23031288.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Ye, S., L. Su, P. Shan, B. Ye, S. Wu, G. Liang, and W. Huang. 2021. LCZ696 attenuated doxorubicin-induced chronic cardiomyopathy through the TLR2-MyD88 complex formation. Frontiers in Cell and Developmental Biology 9: 654051. https://doi.org/10.3389/fcell.2021.654051. Ye, S., L. Su, P. Shan, B. Ye, S. Wu, G. Liang, and  W. Huang. 2021. LCZ696 attenuated doxorubicin-induced chronic cardiomyopathy through the TLR2-MyD88 complex formation. Frontiers in Cell and Developmental Biology 9: 654051. https://​doi.​org/​10.​3389/​fcell.​2021.​654051.
10.
Zurück zum Zitat Alqahtani, F., M. Mohany, A.F. Alasmari, A.Z. Alanazi, O.M. Belali, M.M. Ahmed, and S.S. Al-Rejaie. 2020. Angiotensin II receptor neprilysin inhibitor (LCZ696) compared to Valsartan attenuates hepatotoxicity in STZ-induced hyperglycemic rats. International Journal of Medicine and Medical Sciences 17 (18): 3098–3106. https://doi.org/10.7150/ijms.49373. Alqahtani, F., M. Mohany, A.F. Alasmari, A.Z. Alanazi, O.M. Belali, M.M. Ahmed, and S.S. Al-Rejaie. 2020. Angiotensin II receptor neprilysin inhibitor (LCZ696) compared to Valsartan attenuates hepatotoxicity in STZ-induced hyperglycemic rats. International Journal of Medicine and Medical Sciences 17 (18): 3098–3106. https://​doi.​org/​10.​7150/​ijms.​49373.
11.
Zurück zum Zitat Acanfora, D., M. Ciccone, P. Scicchitano, C. Acanfora, and G. Casucci. 2020. Neprilysin inhibitor-angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients. The European Heart Journal - Cardiovascular Pharmacotherapy 6 (3): 135–136. https://doi.org/10.1093/ehjcvp/pvaa028. Acanfora, D., M. Ciccone, P. Scicchitano, C. Acanfora, and G. Casucci. 2020. Neprilysin inhibitor-angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients. The European Heart Journal - Cardiovascular Pharmacotherapy 6 (3): 135–136. https://​doi.​org/​10.​1093/​ehjcvp/​pvaa028.
20.
Zurück zum Zitat Potere, N., M.G. Del Buono, R. Caricchio, P.C. Cremer, A. Vecchié, E. Porreca, D. Dalla Gasperina, F. Dentali, A. Abbate, and A. Bonaventura. 2022. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 85: 104299. https://doi.org/10.1016/j.ebiom.2022.104299. Potere, N., M.G. Del Buono, R. Caricchio, P.C. Cremer, A. Vecchié, E. Porreca, D. Dalla Gasperina, F. Dentali, A. Abbate, and A. Bonaventura. 2022. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 85: 104299. https://​doi.​org/​10.​1016/​j.​ebiom.​2022.​104299.
24.
Zurück zum Zitat Wong, W.T., L.H. Li, Y.K. Rao, S.P. Yang, S.M. Cheng, W.Y. Lin, C.C. Cheng, A. Chen, and K.F. Hua. 2018. Repositioning of the β-blocker Carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Frontiers in Immunology 9: 1920. https://doi.org/10.3389/fimmu.2018.01920. Wong, W.T., L.H. Li, Y.K. Rao, S.P. Yang, S.M. Cheng, W.Y. Lin, C.C. Cheng, A. Chen, and K.F. Hua. 2018. Repositioning of the β-blocker Carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Frontiers in Immunology 9: 1920. https://​doi.​org/​10.​3389/​fimmu.​2018.​01920.
26.
Zurück zum Zitat Shen, J., Z. Fan, G. Sun, and G. Qi. 2021. Sacubitril/valsartan (LCZ696) reduces myocardial injury following myocardial infarction by inhibiting NLRP3‑induced pyroptosis via the TAK1/JNK signaling pathway. Molecular Medicine Reports 24 (3): 676. https://doi.org/10.3892/mmr.2021.12315. Shen, J., Z. Fan, G. Sun, and G. Qi. 2021. Sacubitril/valsartan (LCZ696) reduces myocardial injury following myocardial infarction by inhibiting NLRP3‑induced pyroptosis via the TAK1/JNK signaling pathway. Molecular Medicine Reports 24 (3): 676. https://​doi.​org/​10.​3892/​mmr.​2021.​12315.
27.
Zurück zum Zitat Liao, P.C., L.K. Chao, J.C. Chou, W.C. Dong, C.N. Lin, C.Y. Lin, A. Chen, S.M. Ka, C.L. Ho, and K.F. Hua. 2013. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflammation Research 62 (1): 89–96. https://doi.org/10.1007/s00011-012-0555-2.CrossRefPubMed Liao, P.C., L.K. Chao, J.C. Chou, W.C. Dong, C.N. Lin, C.Y. Lin, A. Chen, S.M. Ka, C.L. Ho, and K.F. Hua. 2013. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflammation Research 62 (1): 89–96. https://​doi.​org/​10.​1007/​s00011-012-0555-2.CrossRefPubMed
29.
Zurück zum Zitat Tsai W.C., WT. Wong, H.T. Hsu, Y.H. Cheng, Y.H. Yu, W.J. Chen, C.L. Ho, H.C. Hsu, K.F. Hua. 2022. Surfactin Containing Bacillus licheniformis-Fermented Products Alleviate Dextran Sulfate Sodium-Induced Colitis by Inhibiting Colonic Inflammation and the NLRP3 Inflammasome in Mice. Animals (Basel) 12 (24): 3456. https://doi.org/10.3390/ani12243456. Tsai W.C., WT. Wong, H.T. Hsu, Y.H. Cheng, Y.H. Yu, W.J. Chen, C.L. Ho, H.C. Hsu, K.F. Hua. 2022. Surfactin Containing Bacillus licheniformis-Fermented Products Alleviate Dextran Sulfate Sodium-Induced Colitis by Inhibiting Colonic Inflammation and the NLRP3 Inflammasome in Mice. Animals (Basel) 12 (24): 3456. https://​doi.​org/​10.​3390/​ani12243456.
30.
Zurück zum Zitat Yang, N., Z. Xia, N. Shao, B. Li, L. Xue, Y. Peng, F. Zhi, and Y. Yang. 2017. Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Scientific Reports 7 (1): 11036. https://doi.org/10.1038/s41598-017-11408-5. Yang, N., Z. Xia, N. Shao, B. Li, L. Xue, Y. Peng, F. Zhi, and Y. Yang. 2017. Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Scientific Reports 7 (1): 11036. https://​doi.​org/​10.​1038/​s41598-017-11408-5.
35.
Zurück zum Zitat Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671. https://doi.org/10.1038/nature15541.CrossRefPubMed Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671. https://​doi.​org/​10.​1038/​nature15541.CrossRefPubMed
40.
Zurück zum Zitat Xian, H., K. Watari, E. Sanchez-Lopez, J. Offenberger, J. Onyuru, H. Sampath, W. Ying, H.M. Hoffman, G.S. Shadel, and M. Karin. 2022. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55 (8): 1370–1385.e8. https://doi.org/10.1016/j.immuni.2022.06.007. Xian, H., K. Watari, E. Sanchez-Lopez, J. Offenberger, J. Onyuru, H. Sampath, W. Ying, H.M. Hoffman, G.S. Shadel, and M. Karin. 2022. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55 (8): 1370–1385.e8. https://​doi.​org/​10.​1016/​j.​immuni.​2022.​06.​007.
41.
Zurück zum Zitat Zhong, Z., S. Liang, E. Sanchez-Lopez, F. He, S. Shalapour, XJ. Lin, J. Wong, S. Ding, E. Seki, B. Schnabl, AL. Hevener, HB. Greenberg, T. Kisseleva, and M. Karin. 2018. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560(7717):198–203. https://doi.org/10.1038/s41586-018-0372-z. Zhong, Z., S. Liang, E. Sanchez-Lopez, F. He, S. Shalapour,  XJ. Lin, J. Wong, S. Ding, E. Seki,  B. Schnabl, AL. Hevener, HB. Greenberg, T. Kisseleva, and M. Karin. 2018. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560(7717):198–203. https://​doi.​org/​10.​1038/​s41586-018-0372-z.
43.
Zurück zum Zitat Baroja-Mazo, A., F. Martín-Sánchez, A.I. Gomez, C.M. Martínez, J. Amores-Iniesta, V. Compan, M. Barberà-Cremades, J. Yagüe, E. Ruiz-Ortiz, J. Antón, S. Buján, I. Couillin, D. Brough, J.I. Arostegui, and P. Pelegrín. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology 15 (8): 738–748. https://doi.org/10.1038/ni.2919. Baroja-Mazo, A., F. Martín-Sánchez, A.I. Gomez, C.M. Martínez, J. Amores-Iniesta, V. Compan, M. Barberà-Cremades, J. Yagüe, E. Ruiz-Ortiz, J. Antón, S. Buján, I. Couillin, D. Brough, J.I. Arostegui, and P. Pelegrín. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology 15 (8): 738–748. https://​doi.​org/​10.​1038/​ni.​2919.
44.
Zurück zum Zitat Tan, H.W.S., G. Lu, H. Dong, Y.L. Cho, A. Natalia, L. Wang, C. Chan, D. Kappei, S.C. Taneja Ling, H. Shao, S.Y. Tsai, WX. Ding, and H.M. Shen. 2022. A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nature Communications 13 (1): 3720. https://doi.org/10.1038/s41467-022-31213-7. Tan, H.W.S., G. Lu, H. Dong, Y.L. Cho, A. Natalia, L. Wang, C. Chan, D. Kappei, S.C. Taneja Ling, H. Shao, S.Y. Tsai, WX. Ding, and H.M. Shen. 2022. A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nature Communications 13 (1): 3720. https://​doi.​org/​10.​1038/​s41467-022-31213-7.
45.
Zurück zum Zitat Puissant, A., N. Fenouille, and P. Auberger. 2012. When autophagy meets cancer through p62/SQSTM1. American Journal of Cancer Research 2 (4): 397–413.PubMedPubMedCentral Puissant, A., N. Fenouille, and P. Auberger. 2012. When autophagy meets cancer through p62/SQSTM1. American Journal of Cancer Research 2 (4): 397–413.PubMedPubMedCentral
47.
Zurück zum Zitat Jiang, H., Y. Xie, J. Lu, H. Li, K. Zeng, Z. Hu, D. Wu, J. Yang, Z. Yao, H. Chen, X. Gong, and X. Yu. 2023. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 1–18. https://doi.org/10.1080/15548627.2023.2249392. Jiang, H., Y. Xie, J. Lu, H. Li, K. Zeng, Z. Hu, D. Wu, J. Yang, Z. Yao, H. Chen, X. Gong, and X. Yu. 2023. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 1–18. https://​doi.​org/​10.​1080/​15548627.​2023.​2249392.
70.
Zurück zum Zitat Qu, Y., S. Misaghi, A. Izrael-Tomasevic, K. Newton, L.L. Gilmour, M. Lamkanfi, S. Louie, N. Kayagaki, J. Liu, L. Kömüves, J.E. Cupp, D. Arnott, D. Monack, and V.M. Dixit. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 90 (7421): 539–542. https://doi.org/10.1038/nature11429.CrossRef Qu, Y., S. Misaghi, A. Izrael-Tomasevic, K. Newton, L.L. Gilmour, M. Lamkanfi, S. Louie, N. Kayagaki, J. Liu, L. Kömüves, J.E. Cupp, D. Arnott, D. Monack, and V.M. Dixit. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 90 (7421): 539–542. https://​doi.​org/​10.​1038/​nature11429.CrossRef
73.
Zurück zum Zitat Peng, S., X.F. Lu, Y.D. Qi, J. Li, J. Xu, T.Y. Yuan, X.Y. Wu, Y. Ding, W.H. Li, G.Q. Zhou, Y. Wei, J. Li, S.W. Chen, and S.W. Liu. 2020. LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. Oxidative Medicine and Cellular Longevity 2020: 9815039. https://doi.org/10.1155/2020/9815039.CrossRefPubMedPubMedCentral Peng, S., X.F. Lu, Y.D. Qi, J. Li, J. Xu, T.Y. Yuan, X.Y. Wu, Y. Ding, W.H. Li, G.Q. Zhou, Y. Wei, J. Li, S.W. Chen, and S.W. Liu. 2020. LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. Oxidative Medicine and Cellular Longevity 2020: 9815039. https://​doi.​org/​10.​1155/​2020/​9815039.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Poelzl, A., C. Lassnig, S. Tangermann, D. Hromadová, U. Reichart, R. Gawish, K. Mueller, R. Moriggl, A. Linkermann, M. Glösmann, L. Kenner, M. Mueller, and B. Strobl. 2021. TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death and Differentiation 28 (2): 748–763. https://doi.org/10.1038/s41418-020-00621-x.CrossRefPubMed Poelzl, A., C. Lassnig, S. Tangermann, D. Hromadová, U. Reichart, R. Gawish, K. Mueller, R. Moriggl, A. Linkermann, M. Glösmann, L. Kenner, M. Mueller, and B. Strobl. 2021. TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death and Differentiation 28 (2): 748–763. https://​doi.​org/​10.​1038/​s41418-020-00621-x.CrossRefPubMed
Metadaten
Titel
The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model
verfasst von
Hsiao-Wen Chiu
Chun-Hsien Wu
Wen-Yu Lin
Wei-Ting Wong
Wei-Che Tsai
Hsien-Ta Hsu
Chen-Lung Ho
Shu-Meng Cheng
Cheng-Chung Cheng
Shih-Ping Yang
Lan-Hui Li
Kuo-Feng Hua
Publikationsdatum
06.02.2024
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01939-7

Weitere Artikel der Ausgabe 2/2024

Inflammation 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.