Skip to main content
Erschienen in: BMC Infectious Diseases 1/2023

Open Access 01.12.2023 | Research

Role of previous infection with SARS-CoV-2 in protecting against omicron reinfections and severe complications of COVID-19 compared to pre-omicron variants: a systematic review

verfasst von: Maryam Arabi, Yousef Al-Najjar, Omna Sharma, Ibtihal Kamal, Aimen Javed, Harsh S. Gohil, Pradipta Paul, Aljazi M. Al-Khalifa, Sa’ad Laws, Dalia Zakaria

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2023

Abstract

Background

The SARS-CoV-2 virus elicited a major public concern worldwide since December 2019 due to the high number of infections and deaths caused by COVID-19. The Omicron variant was detected in October 2021 which evolved from the wild-type SARS-CoV-2 and was found to possess many mutations. Omicron exhibited high transmissibility and immune evasion as well as reduced severity when compared to the earlier variants. Although vaccinated individuals were largely protected against infections in previous waves, the high prevalence of both reinfections and breakthrough infections with Omicron was observed. The aim of this review is to understand the effectiveness of previous infection on subsequent reinfection, given its significance in driving public health policy, including vaccination prioritization and lockdown requirements.

Methods

A comprehensive literature search was conducted using several databases to target studies reporting data related to the effectiveness of the previous infection with SARS-CoV-2 in protecting against the Omicron variant. Screening of the studies, quality assessment and data extraction were conducted by two reviewers for each study.

Results

Only 27 studies met our inclusion criteria. It was observed that previous infection was less effective in preventing reinfections with the Omicron variant compared to the Delta variant irrespective of vaccination status. Furthermore, being fully vaccinated with a booster dose provided additional protection from the Omicron variant. Additionally, most infections caused by Omicron were asymptomatic or mild and rarely resulted in hospitalizations or death in comparison to the Delta wave.

Conclusion

A majority of the studies reached a consensus that although previous infection provides some degree of immunity against Omicron reinfection, it is much lower in comparison to Delta. Full vaccination with two doses was more protective against Delta than Omicron. Receiving a booster dose provided additional protection against Omicron. It is therefore clear that neither vaccination nor previous infection alone provide optimal protection; hybrid immunity has shown the best results in terms of protecting against either Omicron or Delta variants. However, additional research is needed to quantify how long immunity from vaccination versus previous infection lasts and whether individuals will benefit from variant-specific vaccinations to enhance protection from infection.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12879-023-08328-3.
Maryam Arabi, Yousef Al-Najjar and Omna Sharma contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
WHO
World Health Organization
2019-nCoV
Novel coronavirus
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
COVID-19
Coronavirus disease
VOC
Variant of Concern
CDC
Center for Disease Control and Prevention
nAb
Neutralizing antibody
mRNA
Messenger RNA
hACE2
Human angiotensin-converting enzyme 2
B.1.1.7
Alpha variant
SGTF
S-gene target failure
B.1.351
Beta variant
P.1
Gamma variant
B.1.617.2
Delta variant
B.1.1.529
Omicron variant
PRISMA
Preferred Reporting Items for Systematic reviews and MetaAnalysis
PIE
Previous Infection Effectiveness
HR
Hazard Ratio
NOS
Newcastle–Ottawa Quality Assessment Scale
PI
Previous Infection
CI
95% Confidence interval
BA.1/BA.2
Omicron subvariants
ICU
Intensive Care Unit
CD8+
Cytotoxic T cells
RBD
Receptor Binding Domain
NTD
N-terminal protein

Introduction

The World Health Organization (WHO) was informed of a local outbreak of an atypical pneumonia with unexplained etiology in Wuhan (Hubei Province, China) in late December 2019 [1]. Quickly determined to be mediated via a novel virus (2019-nCoV) of the Coronaviridae family and the Betacoronavirus genus [2], the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) elicited a major public health concern worldwide in the form of the coronavirus disease 2019 (COVID-19). Since being declared a global pandemic by the WHO on March 11, 2020 [3], the disease is estimated to be responsible for at least 630 million infections and 6.6 million deaths [4]. This tremendous degree of morbidity and mortality is mediated by viral transmission and immune escape, partly attributable to the emergence of various variants of concern (VOC) that result from rapid mutation [5]. SARS-CoV-2 VOC are defined by the United States (US) Center for Disease Control and Prevention (CDC) [6] as variants associated with “an increase in transmissibility, more severe disease (for example, increased hospitalizations or deaths), significant reduction in neutralization by antibodies generated during previous infection or vaccination, reduced effectiveness of treatments or vaccines, or diagnostic detection failures.”
Following the original Wuhan-Hu-1 strain identified in China, the D614G substitution, first prevalent in Europe, signaled one of the earliest changes in the spike (S) protein and gathered much interest as it increased infectiousness by enhancing replication and transmissibility, being present in ~ 80% of representative cases by mid-May 2020 [79]. Importantly, however, this substitution was not associated with resistance to neutralizing antibody (nAb) in serum samples of COVID-19 patients [10], or humoral immunity from SARS-CoV-2 mRNA vaccinees [11]. In contrast, the SARS-CoV-2 S protein N439K mutation, first sampled in March 2020 in Scotland and prevalent across more than 30 countries by January 2021, was found to have increased spike affinity for the human angiotensin-converting enzyme 2 (hACE2) receptor and evade antibody-mediated immunity; in particular, it showed resistance to several monoclonal antibodies and escape some polyclonal responses [12]. VOC Alpha (B.1.1.7), first detected in September 2020, quickly rose to become one of the prominent strains across the United Kingdom and was shown to be at least 50% more transmissible and affect a higher proportion of young adults under 20 [13]. It was also the first to correlate strongly with deletion at positions 69 and 70 of the spike protein (Δ69–70) rendering an inability to detect the S protein, dubbed S-gene target failure (SGTF). The VOC Beta (B.1.351), first detected in May 2020, signaled the dominant strain driving the second COVID-19 wave in South Africa fueled by increased transmissibility and/or immune escape [14]. VOC Gamma (P.1), first detected in Japan among travelers from Brazil in January 2021 and retraced to an earlier sample in Brazil from November 2020, was shown to be 1.7- to 2.4-fold transmissible and 21 to 46% less protected by previous infection compared to other strains; these were attributable to a triple mutation in the S protein (K417T, E484K, and N501Y) associated with increased binding to the hACE2 receptor [15, 16]. VOC Delta (B.1.617.2), first documented in October 2020 and responsible for the morbid second wave across India in early 2021, was found to be sixfold more resistant to serum nAbs from previous COVID-19 patients and eightfold resistant to vaccine-induced antibodies compared to Wuhan-Hu-1 with D614G, while displaying higher replication efficiency and increasing disease severity [1719]. The currently dominating VOC Omicron (B.1.1.529) was first reported from Botswana and South Africa in early November 2021 and was quickly declared a VOC by the WHO, subsequently spreading to 149 countries by January 2022 [2022].
Although vaccinated individuals were largely said to be protected against infections in previous waves, data from various sources showed the high prevalence of both reinfections and breakthrough infections with Omicron. For instance, in the initial 74 days following the first Omicron case in Iceland, 11.5% of cases were found to be reinfections, while ~ 11% of vaccinees were also found to be infected, especially in younger individuals [23]. High proportions of reinfections were similarly reported in early studies from South Africa [24], France [25, 26], Austria [27], Turkey [28], Brazil [29], and Italy [30], among others [31]. In light of this high prevalence of reinfections brought on by the Omicron VOC globally, we sought to understand the effectiveness of previous infection on subsequent reinfection by systematically reviewing all available literature on the subject, given its significance in driving public health policy, including vaccination prioritization and lockdown requirements.

Methods

The preferred reporting items for systematic reviews and metanalysis (PRISMA) statement was used to develop the protocol of this systematic review [32].
A comprehensive search was conducted to target any studies reporting the new variant of SARS-CoV-2 using the following two key words: Omicron or B.1.1.529. The following databases were searched in March 2022: PubMed, Medline, Embase, Scopus, Web of Science, Science Direct, MedRxiv, and Lens.org. All database searches utilized date limit filters of January 1, 2021 to March 6th, 2022 (or Current).

Eligibility criteria

A comprehensive literature search was conducted to target medical studies that reported any data related to the effectiveness of previous infection with SARS-CoV-2/COVID-19 in protecting against the Omicron variant. No restrictions were made based on country, age, or gender. Articles without primary data, such as review articles, were excluded after removing the duplicates. Furthermore, studies that were not in English were excluded. Any studies that reported populations with positive SARS-CoV-2 infection without stratifying the data based on the variant were excluded.

Study selection and data collection

Covidence was used for the title and abstract screening, full-text screening, and data extraction. Screening was conducted by two independent reviewers for each study and disagreements were resolved by consensus [33].

Data items

Previous infection effectiveness (PIE) values as well as values related to the hazard ratio (HR), or rates of previously infected individuals within different cohorts (SARS-CoV-2 negative, cohorts infected with any pre-Omicron variant, cohorts infected with Omicron) were extracted in this review.

Risk of bias and quality assessment

The quality of the included studies was assessed using the Newcastle–Ottawa Quality Assessment Scale (NOS) [34]. Quality assessment was conducted by two independent reviewers.

Results

Figure 1 shows the flow diagram of the study protocol. The titles and abstracts of 2397 studies were screened after removing the duplicates, of which 663 were selected for full text screening. Only 27 studies met our inclusion criteria while 636 were excluded of which 475 were irrelevant, 21 did not have enough data, 117 had no primary data, 3 were not in English, 19 used animal models, and 1 was a duplicate of another study.

Study characteristics and demographic data

Supplementary Table S1 summarizes the types of studies and the countries they were conducted in. Among the 27 included studies, 4 were from the US, 4 from South Africa, 1 from France, 1 from Italy, 4 from the UK, 3 from India, 2 from Denmark, 2 from the Netherlands, 2 from Qatar, 2 from Portugal, and 1 from Czech Republic. The studies included 11 cohort studies, 2 retrospective cohort studies, 2 studies used data linkages, 2 population/cohort-based surveillance studies, 2 questionnaire-based survey studies, 1 prospective cohort study, 1 test negative case control study, 1 case–control study, 1 case-case study, 1 cross-sectional study, 1 case only approach/case study, 1 registry-based study and 1 seroepidemiological study. Furthermore, supplementary Table S1 shows the NOS score for each study and summarizes all the extracted data including the PIE and the rates of previous infection (PI) in the different cohorts [3561].

Effectiveness of previous infection in protecting against reinfection with Omicron compared to pre-Omicron variants such as Delta

Table 1 summarizes the PIE values reported by two studies [56, 57]. Altarawneh et al. and Šmíd et al. compared the PIE in Omicron infected cohorts with cohorts infected with Alpha, Beta, or Delta variants. Both studies stratified the data based on vaccination status. The PIE was consistently lower for the protection against reinfection with Omicron compared with the Alpha, Beta, or Delta variants regardless of the vaccination status [56]. However, PI was found to be more protective against severe, critical, or fatal COVID-19 caused by the Omicron variant relative to that caused by the Alpha variant but not the Beta or Delta variants [56]. Šmíd et al., on the other hand, reported similar results where PIE was consistently lower in protecting against Omicron reinfections compared to the Delta variant at different vaccination statuses and after different time intervals [57]. However, more comparable results were reported for both variants against hospitalization less than two months after vaccination regardless of the time after the first infection (< 6 months or > 6 months) [57]. The overall PIE (regardless of the vaccination status) against hospitalization was still lower in the Omicron cohort compared to the Delta cohort. The findings of both studies are also illustrated in Fig. 2.
Table 1
Effectiveness of previous infection in protecting against infection and/or severe complications of COVID-19 individuals in cohorts infected with different variants of SARS-CoV-2
Study
Country/Study type
Description
Delta (or other) infected cohorts
Omicron infected cohorts
Altarawaneh et al. [56]
Case control study
Qatar
aPIE overall
Alpha: 90.2% (60.2–97.6)
Beta: 85.7% (75.8–91.7)
Delta: 92.0% (87.9–94.7)
56.0% (50.6–60.9)
  
aPIE adjusted for vaccine status
Alpha: 90.3% (60.4–97.6)
Beta: 85.1% (74.5–91.3)
Delta: 91.9% (87.8–94.7)
55.9% (50.5–60.8)
  
aPIE vaccinated excluded
Alpha: 95.3% (66.0–99.3)
Beta: 85.4% (72.4–92.2)
Delta: 90.2% (81.9–94.6)
61.9% (48.2–72.0)
  
aPIE against severe, critical, or fatal COVID-19
Alpha: 69.4% (− 143.6–96.2)
Beta: 88.0% (50.7–97.1)
Delta: 100% (43.3–100)
87.8% (47.5–97.1)
Šmíd et al. [57]
Czech Republic
Database based study
b,cPIE against infection
(overall)
Shortly after infection
95% (94–96)
After 6 months
83% (82–84)
Shortly after infection
68% (68–69)
After 6 months
13% (11–14)
  
b,cPIE against infection
(not vaccinated)
2–6 months after previous infection
93% (91–94)
7–10 months
91% (90%–92%)
11–14 months
86% (85–86)
 ≥ 14 months
79% (77–81)
2–6 months after previous infection
69% (68–69)
7–10 months
48% (46–50)
11–14 months
34% (33–35)
 ≥ 14 months
17% (15–18)
  
b,cPIE against hospitalization overall
 < 6 months
100% (no case)
 > 6 months
94% (91–96)
 < 6 months
73% (55–84)
 > 6 months
66% (54–75)
  
b,cPIE against hospitalization
Full vaccination < 2 month ago
 < 6 months
100% (no case)
 > 6 months
97% (91–99)
 < 6 months
100% (no case)
 > 6 months
94% (77–95)
  
b,cPIE against hospitalization Full vaccination > 2 month ago
 < 6 months
100% (no case)
 > 6 months
98% (98–100)
 < 6 months
93% (49–99)
 > 6 months
73% (78–99)
  
b,cPIE against hospitalization
Booster < 2 month ago
 < 6 months
100% (no case)
 > 6 months
99% (99–100)
 < 6 months
100% (no case)
 > 6 months
95% (78–99)
  
b,cPIE against hospitalization
Booster > 2 month ago
 < 6 months
100% (no case)
 > 6 months
98% (85%–100%)
 < 6 months
71% (0–96)
 > 6 months
90% (64%–98%)
  
b,cPIE against
oxygen therapy overall
 < 6 months
100% (no case)
 > 6 months
98% (95%–99%)
 < 6 months
81% (40%–94%)
 > 6 months
88% (72%–94%)
  
b,cPIE against
ICU
overall
 < 6 months
100% (no case)
 > 6 months
97% (90%–99%)
 < 6 months
83% (0–98%)
 > 6 months
66% (15%–86%)
aAll values are previous infection effectiveness (PIE) with 95% confidence intervals stratified by the vaccination status
bEffectiveness of PI (95% confidence interval) against hospitalization, oxygen therapy, or intensive care stratified by the vaccination status and time of vaccination
cA positive test during the first 2 months after an infection is not considered a reinfection by definition

Rates of previously infected individuals in omicron infected cohorts compared with cohorts infected with other variants

Table 2 summarizes the rates of previously infected individuals in Omicron infected cohorts compared to cohorts infected with other variants when stratified by vaccination status. While many studies did not report the significance of the differences between the cohorts, it was observed that in three studies that reported the proportions of the naïve (not PI, not vaccinated) individuals among the Omicron and Delta cohorts, the Omicron cohort always had lower proportions of naïve patients [35, 46, 61]. Furthermore, the same three studies as well as the study by Kahn et al. reported consistently higher proportions of PI unvaccinated Omicron patients compared to the Delta patients [45]. Similar patterns were reported when PI was combined with partial or complete vaccination. However, when the rates of PI were compared in the Omicron cohorts and the cohorts with other variants of SARS-CoV-2, the Omicron cohorts had less PI individuals [35, 45, 46, 61].
Table 2
Rates of previously infected (PI) individuals in cohorts infected with different variants of SARS-CoV-2 stratified by vaccination status
Study
Country/Study type
Description
Negative cohorts
% (n/N)
Delta (or other) infected cohorts
% (n/N)
Omicron infected cohorts
% (n/N) or % (n)
P value
Eggink et al. [35]
Netherlands
Case only approach cohort study
Naïve (no PI no vaccine)
-
37.1%
(34,765/93734)
27.4% (22,071/80615)
NR
  
PI unvaccinated
-
1.4%
(1295/93734)
6.5% (5253/80615)
NR
Andeweg et al. [61]
Netherlands
Cohort study
Of the infected people the presented % were:
Naïve
(no PI no vaccine)
30.2% (90,945/300849)
52.8% (21,042/39889)
24.7% (3440/13915) BA.1
NR
  
PI unvaccinated
4.2% (12,691/300849)
1.6% (638/39889)
5.3% (739/13915) BA.1
NR
  
First start primary vaccination, then infection
1.1% (3406/300849)
0.2% (76/39889)
1.7% (240/13915) BA.1
NR
  
First infection, then primary vaccination
2.3% (7002/300849)
0.3% (139/39889)
2.1% (293/13915) BA.1
NR
  
PI, booster
0.3% (918/300849)
0% (2/39889)
0.5% (65/13915) BA.1
NR
Kahn et al. [45]
Sweden
Cohort study
PI unvaccinated (0–1 dose)
-
2.7% (265/9680)
7.1% (562/7861) PI
NR
  
Vaccinated (2–3 dose)
-
2.3% (94/4031)
6.3% (1376/21678) PI
NR
Kislaya et al. [46]
Portugal
Data linkage
Case-case study
Naïve
(no PI no vaccine)
-
10.6% (888)
6% (315)
NR
  
PI unvaccinated
-
1.3% (108)
6.2% (327)
NR
  
No PI partial vaccination
-
1.3% (112)
1.3% (68)
NR
  
PI partial/complete vaccination
-
0.3% (25)
0.84% (44)
NR
  
No PI complete vaccination
-
88.6% (7245)
85.7% (4515)
NR
Nunes et al. [39]
South Africa
Cohort study
PI
41.6% (101)
-
27.9% (53)
0.003
  
Naïve (no PI no vaccine)
10.8% (23)
-
13.2% (23)
NR
  
PI, no vaccines
6.5% (14)
-
5.2% (9)
NR
  
No PI, J&J
48.6% (104)
-
56.9% (99)
NR
  
PI + J&J
34.1% (73)
-
24.7% (43)
NR
Spensley et al. [41]
UK
Cohort study
PI overall
53.5% (516/965)
-
43.4% (63/145)
0.024
  
PI + ChAdOx1
-
-
46.2% (226/489)
0.75
  
PI + BNT1262b2
-
-
47.2% (260/551)
0.75
N Total number of subjects in the cohort
n number of subjects who were PI or as specified in each row
Table 3 summarizes the rates of previously infected individuals in Omicron infected cohorts compared to cohorts infected with other variants without stratifying the data based on the vaccination status. All 10 studies that compared the overall rates of PI in the Omicron and Delta infected cohorts reported lower rates of PI among the Delta patients [38, 42, 49, 5154, 5860]. Hajjo et al. reported the clinical characteristics of the PI individuals in the Omicron infected cohort. Interestingly, 41.9% and 44.2% of the PI patients had asymptomatic or mild infections, respectively [47].
Table 3
Rates of previously infected (PI) individuals in cohorts infected with different variants of SARS-CoV-2 (regardless of the vaccination status)
Study
Country/Study type
Description
Negative cohorts
% (n/N)
Delta (or other) infected cohorts
% (n/N)
Omicron infected cohorts
% (n/N) or % (n)
P value
Lewnard et al. [58]
USA
Cohort study
15 December 2021 to 17 January 2022
(Documented PI)
-
0.4%
(84/23305)
0.5%
(1,163/222688)
NR
  
3 February to 17 March 2022
(Documented PI)
-
-
0.6%
(75/12756) BA.1
0.4%
(7/1905) BA.2
NR
Stegger et al. [59]
Denmark
Danish COVID-19 surveillance
Rate of second infection when PI with BA.1
-
0% (0/263)
6.46% (17/263) BA.1
17.87% (47/263) BA.2
NR
  
Rate of second infection when PI with BA.2
-
0% (0/263)
0% (0/263) BA.1
1.14% (3/263) BA.2
NR
  
Rate of second infection when PI with Delta
-
11.4% (30/263)
9.88% (26/263) BA.1
53.23% (140/263) BA.2
NR
  
Rate of second infection when PI (overall)
-
11.4% (30/263)
12.54% (33/263) BA.1
72.24% (190/263) BA.2
NR
Andrews et al. [60]
UK
Test-negative case–control
Rate of PI out of the Delta and Omicron
16.5% (260,073/1572621)
1.8% (3,754/204154)
11.1% (98,150/886774)
NR
Espenhain et al. [38]
Denmark
Data from the routine Danish surveillance of COVID-19
PI
-
0.9% (160/19137)
4.3% (34/785)
NR
Davies et al. [42]
South Africa
Cohort study
HR for PI (vs. None)
-
-
Death
1.10 (0.63—1.92)
Severe hospitalization or death
0.60 (0.37—0.98)
Hospitalization or death
0.28 (0.19—0.40)
-
  
PI
-
Wave 3 (Delta, 20/5/2021 to 23/6/2021)
3.2% (140/4403)
Wave 4 (Omicron, 14/11/2021 to 11/12/2021)
11.3% (580/5144)
-
Peralta-Santos et al. [49]
Portugal
Cohort Study
National network group of laboratories
PI
-
1.6% (146/9397)
6.8% (449/6581)
 < 0.001
Wolter et al. [51]
South Africa
Data linkage study
aPI
-
4.5% (43/948) (non SGTF)
10.4% (1100/10 547)
(SGTF)
0.18
Ward et al. [52]
UK
Data linkage
aPI
 PI
-
1% (2211/221146)
6.6% (53,724/814003)
NR
Garg et al. [53]
India
Cohort study
 PI
-
8.2% (6/182)
17.1% (14/82)
NR
Krutikov et al. [54]
UK
Prospective cohort study
 PI
-
Pre-Omicron
4.3% (17/400)
12.7% (236/1864)
 < 0.0001
Shrestha et al. [36]
USA
Retrospective cohort study
PI
-
-
2.9%
(88/4585) symptomatic
1.5%
(2/133) hospitalized
-
Hajjo et al. [47]
Jordan
Questionnaire based study
Reinfected within 90 days
-
-
8.6%
(43/500)
of which:
41.9% (18/43) asymptomatic
44.2% (19/43) mild
2.3% (1/43) moderate
2.3% (1/43) severe
9.3% (4/43) unspecified
-
Smith-Jeffcoat et al. [37]
USA
Cohort (convention attendees)
PI
0% (0/7)
-
6.25% (1/16)
NR
Sharma et al. [40]
Rajasthan, India
Cohort study
PI
-
-
43.2% (126)
-
MMWR [43]
USA
Cohort study
PI
-
-
14% (6/43)
-
Madhi et al. [44]
South Africa
seroepidemiologic survey
PI
-
-
2.8% (195)
-
Maisa et al. [48]
France
Questionnaire based
PI
-
-
14% (39/278)
2% hospitalized (7/294) – of these 7, 2 PI
-
Qassim et al. [50]
Qatar
Cross sectional study
No PI
-
-
90.8% (141,839)
-
  
PI < 90 days before the study
-
-
0.4% (560)
-
  
PI overall
-
-
8.8% (13,803)
-
N: Total number of subjects in the cohort
n: number of subjects who were PI or as specified in each row
SGTF samples with S gene target failure (strongly indicative of an Omicron variant)
aReinfection was defined by an individual having at least one positive SARS-CoV-2 test more than 90 days before the current positive test
Stegger et al. not only compared the rates of PI among Omicron patients with Delta patients, but they also compared the rates in the BA.1 cohorts with the BA.2 cohorts when individuals were previously infected with BA.1, BA.2, or Delta [59]. The rates were always higher for BA.2 reinfections regardless of the type of the first infection.

Discussion

This systematic review compiled reported data that may give insight into the effectiveness of previous infection with any SARS-CoV-2 variant in protecting against Omicron infection and its severe complications compared to pre-Omicron variants. Data compiled was in the form of either the rates of previously infected individuals in cohorts infected with Omicron or other variants, or as the effectiveness of previous infection, which is expressed as the percentage of the reduction of infection, hospitalization, etc. caused by the previous infection. This is particularly important as previous infection is now considered equivalent to vaccination in some countries as part of the safety and protection measures. Furthermore, several studies stratified their data based on the vaccination status, a factor that cannot be ignored when previous infection is evaluated as a protector against infection. Therefore, below is a thorough discussion of the possible role of previous infection in protecting against the Omicron infection and its severe complications, while considering the summative effect of different levels of vaccination. We also evaluate in this review whether the high rates of reinfections during the Omicron wave might be the drive for the reduced severity of Omicron compared to the pre-Omicron variants. Furthermore, the possible mechanisms for immune evasion and the relatively higher rates of reinfections with the Omicron variant as compared to the Delta and other variants are explored below.

Effectiveness of previous infection against Omicron as compared to Delta and the other variants

Several studies compared the rates of previously infected individuals in Omicron infected cohorts with cohorts infected with other variants without stratifying the data based on the vaccination status. Lower rates of previous infections among the Omicron patients were consistently reported compared to the other cohorts. Similarly, the studies that stratified the data based on vaccination status reported higher rates of reinfection in Omicron cohorts. For example, Eggink et al., Andeweg et al., Kislaya et al., and Kahn et al. similarly reported higher proportions of previously infected unvaccinated Omicron patients compared to Delta patients [35, 45, 46, 61]. This may indicate less protection by previous infection against the Omicron variant compared to Delta. Similar results were obtained for previously infected cohorts with partial or complete vaccination, which could be explained by the ability of the Omicron variant to escape immunity induced by either vaccination or previous infection [62, 63]. However, the Omicron cohorts had less previously infected individuals when compared with the SARS-CoV-2 negative cohorts, suggesting that prior infection may still provide a certain level of protection against Omicron infections.
While the above studies compared the rates of reinfection in cohorts with Omicron and other variants, two studies compared the effectiveness of previous infection and vaccination in protecting against infections, hospitalization, and severe outcomes caused by Omicron and the other variants. Studies conducted by Šmíd et al. and Altarawaneh et al. reported consistently lower levels of protection against reinfection with Omicron compared with the Alpha, Beta, and Delta variants, regardless of vaccination status [56, 57]. However, Altarawaneh et al. reported that previous infection provided higher protection against severe, critical, or fatal COVID-19 caused by the Omicron variant relative to that of the Alpha variant, but not the Beta or the Delta variants [56]. This study used a case–control, test-negative design to evaluate the effectiveness of previous infection in preventing new symptomatic instances of Omicron and other variants in Qatar, along with preventing death or hospitalization due to reinfection [56]. Compared to the Delta, Beta, and Alpha variants, previous infection was least effective in preventing reinfection against Omicron, with an effectiveness of 56.0% (95% CI 50.6–60.9) [56]. The effectiveness of previous infection in preventing severe COVID-19 was greatest in Delta, followed by Beta, Omicron, and Alpha. In the Omicron and Alpha variants, the greatest number of reinfected individuals progressed to severe COVID-19, and the least number occurred in those with the Beta variant, while none occurred in the Delta variant [56]. Overall, SARS-CoV-2 infection resulted in substantial protection against reinfection with the Alpha, Beta, and Delta variants, but not Omicron.
Similar results were obtained by Šmíd et. al who performed a similar analysis in the Czech population and showed that prior infection provided an overall protection of 68% against reinfection in the Omicron wave, which declined to 13% six months later, thus consistent with the waning immunity theory proposed for Omicron [57]. Furthermore, prior infection was 73% protective against Omicron-induced hospitalization, which declined after 6 months to 66% [57]. In general, it was observed that the effectiveness of previous infection was lower in protecting against Omicron infections compared to the Delta variant at different vaccination statuses and after variable time intervals.

Previous infections and the BA.1 vs the BA.2 variants

Various subvariants of Omicron have been detected and studied, with the original being dubbed BA.1 (B.1.1.529.1), followed by the subsequent identification of some sub lineages and recombinants with distinct properties. Using compiled epidemiological data from the US, we briefly describe the relative course of the major Omicron subvariants: BA.1 reached its peak around late January 2022, accounting for > 98% of cases. BA.2 largely replaced its predecessor, and by mid-April 2022, caused ~ 75% of total cases.
Stegger et al. investigated if the Omicron subvariant BA.2 can evade immunity gained following a BA.1 infection and how this may affect the severity of COVID-19. The paper included previously infected individuals with BA.1, BA.2, or Delta and then re-infected with either of the three variants within 20 to 60 days. Although rare, BA.2 reinfections occurred shortly following a prior BA.1 infection, with 18% of the cases being BA.1-BA.2 reinfections [59]. Most BA.2 reinfections following a BA.1 or Delta infection occurred in young (< 30 years), unvaccinated individuals and resulted in mildly severe COVID-19. It was therefore elucidated that BA.2 has the inherent trait of inducing reinfections in previously infected BA.1 individuals with little or no vaccine protection [59]. However, BA.1 reinfections in those previously infected with BA.1 may simply be a residual infection due to the similarity in genomes. In those with a secondary BA.2 infection, a lower viral load was present, which may suggest a subsequent infection that is more temporary and superficial. This observation might be explained by T cell-mediated immunity acquired during the previous infection [64]. There are up to 40 non-synonymous mutations and deletions in BA.1 and BA.2, including critical changes in the spike gene's N-terminal and 74 receptor binding domains, all of which alter the immunological response [59].
Andeweg et al. conducted a test-negative study including two cohorts with previously infected individuals: Delta-Omicron BA.1 and Omicron BA.1-BA.2. Between BA.1 and BA.2, the protection afforded by vaccination and prior infection was equivalent [61]. However, previous SARS-CoV-2 infections and/or vaccination, including the booster dose, provided much less protection against Omicron BA.1compared to Delta [61]. Furthermore, protection afforded by the booster dose against Omicron BA.1 and BA.2 had dramatically declined three months following booster immunization [61]. Prior infection and primary vaccination combined offered higher protection against Omicron than either alone. Thus, individuals who had been booster vaccinated and previously infected showed the highest levels of protection. The order of vaccination and infection had little impact on the amount of protection imparted. However, the variant of the previous infection impacted the level of protection, as there was more susceptibility to Omicron despite previous infection with non-Omicron variants [61]. Previous infection provided better protection against both subvariants in the < 18 age group compared to the 19–59 age group [61]. However, individuals 60 years or older had greater protection against Omicron with the combination of vaccination and previous infection compared to younger adults. In sera from individuals who are both vaccinated and infected, broadly neutralizing antibodies against numerous variants, but not Omicron, were detected independent of the chronology of vaccination and infection [65]. Overall, both for BA.1 and BA.2, primary vaccination and pre-Omicron infections provided little protection against Omicron infection.

Is previous infection alone enough to protect against the omicron variant?

Šmíd et. al showed that, overall, previous infection conferred greater protection against Delta than Omicron, consistently being > 95% across various combinations of vaccination and time since previous infection [57]. For the Omicron variant, when an individual was vaccinated and subsequently infected, the likelihood of being protected against a reinfection was higher than being vaccinated after a previous infection. Multiple recent studies showed that previous infection alone was not enough to protect against reinfection for either variant. Furthermore, the highest degree of protection can be acquired only if a previously infected individual is fully vaccinated against COVID-19. Altarawaneh et. al revealed similar findings wherein protection against Delta among other variants was as high as 92% both with and without accounting for vaccination status [56]. However, this protection dropped to 56% for Omicron. Shrestha et al. explored the importance of vaccination in previously infected individuals. The study was conducted over a period of one year in Cleveland Clinic, Ohio, and data was extracted based on the cumulative incidence of COVID-19 infection, symptomatic COVID-19, and hospitalization [36]. It was concluded that both vaccination and previous infection provide protection against COVID-19 infection in comparison to those with no previous infection and vaccination [36]. Likewise, Šmíd et al. suggested that a combination of both previous infections offering immunity as well as vaccination worked best together in delivering the greatest level of protection. However, either factor alone did not offer substantial protection [57]. This study further investigated the usage of any kind of oxygen therapy and the need for ICU admission in the data set. The paper found evidence that the Omicron variant is less responsive to immunity produced by vaccination and any previous infections, specifically when compared to Delta which proves to be more severe than Omicron but more responsive to vaccination and previous infections [57].
Despite initial concerns of various adverse events stemming from accelerated production and distribution of the various SARS-CoV-2 vaccines [6669], they have undoubtedly been the most effective shield against this pandemic [7072], estimated to have prevented 20 million deaths in the first year of roll-out alone [73]. Vaccines were shown to act as a booster in those previously infected by eliciting a similar titer count compared to infection-naïve individuals receiving 2 doses [74, 75], while also providing more durable protection in such individuals [76, 77]. Thus, although mRNA vaccines have been shown to elicit increased adverse events in patients with a history of COVID-19 infection [78, 79], boosters have been recommended due to their superior role in preventing hospitalization (from Delta) compared to non-recent full vaccination, prior infection, or vaccine-enhanced prior infection [80].

Duration of immunity caused by previous infection

A study by Flacco et. al looked at an Italian population to analyze the length of immunity against Omicron proceeding a primary infection. The duration that immunity caused by previous infection may protect individuals from reinfections was demonstrated to be relatively long, over 12 months, as the reinfection rates were similar following primary infection and after 18–22 months from primary infection [55]. Madhi et al. suggested that natural infection may induce a diverse polyepitopic cell-mediated immune response that targets the spike protein, nucleocapsid protein, and membrane protein. As a result, cell-mediated immunity is likely to be more durable than neutralizing antibody-mediated immunity [44]. Furthermore, natural infection induces robust memory T-cell responses, including long-lived cytotoxic (CD8 +) T cells [8183].
Kurahashi et al., reported that 2 doses of mRNA vaccination induced cross-neutralizing activity against omicron in SARS-CoV-2 convalescent patients [84]. Furthermore, Andeweg et. al evaluated patients in the Netherlands to determine whether primary vaccination, booster doses, or previous infection protected against Omicron [61]. It was seen that waning immunity was very apparent with full primary vaccination, resulting in a drop of protection from 70% to nearly 32% in 30 weeks for Omicron compared to 78–95% to 71–84% for Delta [61]. This protection was slightly enhanced with a booster dose, reaching 69% effectiveness against Omicron in the first month and 51% in the fourth month [61]. Interestingly, the study showed that this decrease was not seen in individuals who both received a booster dose and were previously infected [61]. This is critical as it suggests that while there is a concept of waning immunity over time in Omicron [85], can be prevented by being boosted against COVID-19, particularly if the individual was previously infected.

Reinfections: from scarcity to commonplace

Prior to the rise of Omicron, reinfections following a previous infection (most likely due to an earlier variant) were scarce, with such cases being carefully studied to identify potential predisposing risk factors [86]. At the time, reinfections were found to be less severe than primary infections, likely mediated by protection conferred by immunity caused by previous infection against reinfections with Alpha and Beta VOC [62, 87]. However, the rise of Omicron and its subvariants saw robust immune evasion from not only convalescent plasma obtained from prior COVID-19 patients, but also from vaccinees, including those boosted, and even against monoclonal antibodies [8891].
The rapid infectiousness of Omicron and its subvariants is mediated by more than thirty amino acid mutations in the S protein, of whom fifteen are in the receptor binding domain (RBD), and at least three further mutations of the furin cleavage site [92, 93]. N-terminal protein (NTD) mutations of the S protein have shown to be responsible for significant evasion from NTD-targeting nAbs [94], whereas some RBD mutations have been associated with immune evasion, being primarily responsible for vaccine breakthrough infections and re-infections; nevertheless [95]. Despite these hypermutations of the S protein, Omicron has been shown to retain, and in some cases, increase its affinity for hACE2 receptor [96]. Mutations at the S1/S2 protein border have been linked to increased fusogenicity, which in turn has been linked to pathogenicity. Delta was revealed to possess both increased fusogenicity and pathogenicity, whereas Omicron BA.1 exhibited both lower fusogenicity and milder pathogenicity [97]. The mutations in the furin cleavage site also mediated important roles in infectivity and evasion of immunity [98]. Compared to previous variants, Omicron reportedly also contained lower viral copy numbers in lung epithelial cells but increased viral copy number in the nasal airway epithelial cells. This, coupled with a switch in Omicron’s infection mechanism, from syncytia formation to endosomal fusion and thus signaling an increase in the number of potentially affected cell types, further provided evidence of its increased transmissibility but decreased severity [99]. This was further supported by statistically significant reductions in hospital and ICU admissions, need for oxygen therapy, and death in Omicron-infected patients compared to those infected with other lineages as reported by several studies [100].
In addition to the reduced virulence of the Omicron variant, the role of prior infection in minimizing the severity of Omicron reinfections was investigated in several studies. Given data suggesting that the Omicron variant has high immune escape capabilities compared to other variants [24], Wolter et al. proposed that many of the Omicron infections were likely to be reinfections rather than first-time infections [51]. With reinfections being less severe, this could in part entail the observed reduced severity in the Omicron cohort [63].

Conclusion and recommendations

Our review summarized recent studies that analyzed effectiveness of previous infection in protecting against the Omicron variant. Most of the studies reached a consensus that although previous infection provides some degree of immunity against Omicron reinfection, it is much lower in comparison to Delta. When evaluating vaccination status, being fully vaccinated with two doses was more protective against Delta than Omicron and receiving a booster dose served to provide additional protection against Omicron. Given recent emerging data on the newer variants, it is clear that neither vaccination nor previous infection alone provide optimal protection; hybrid immunity has demonstrated the best results in terms of protecting against either Omicron or Delta variants. However, additional research is needed to quantify how long immunity from vaccination versus previous infection lasts, and whether individuals will benefit from variant-specific vaccinations to enhance protection from infection (Fig. 3).

Study limitations

This study has some limitations. Although several papers analyzed the effectiveness of previous infection in protecting against reinfection from the Omicron variant, some of them did not stratify the data based on vaccination status. Additionally, most studies did not stratify data based on time since vaccination and previous infection. This factor is important to consider as waning immunity overtime can provide a false impression of being protected against reinfection. This is especially relevant for Omicron, where antigenic modifications have been revealed to reduce antibody responsiveness after vaccination and previous infection. Since every country had its own timeline for COVID-19 waves, it can be argued that the data is not necessarily generalizable globally since there are other factors that influence rates of infection, such as public response to mask mandates and other personal protective factors. Additionally, certain countries had more prominent subvariants which may have significantly different characteristics to the main Omicron or Delta variant, and thus influence representativeness of this data in that population.

Acknowledgements

We would like to thank Weill Cornell Medicine-Qatar for the continuous support.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge
Literatur
1.
Zurück zum Zitat World Health Organization. WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. 2020. World Health Organization. WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. 2020.
2.
Zurück zum Zitat Khan NA, Al-Thani H, El-Menyar A. The emergence of new SARS-CoV-2 variant (Omicron) and increasing calls for COVID-19 vaccine boosters-The debate continues. Travel Med Infect Dis. 2022;45:102246.PubMedCrossRef Khan NA, Al-Thani H, El-Menyar A. The emergence of new SARS-CoV-2 variant (Omicron) and increasing calls for COVID-19 vaccine boosters-The debate continues. Travel Med Infect Dis. 2022;45:102246.PubMedCrossRef
3.
Zurück zum Zitat World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. WHO Dir Gen speeches. 2020; March:4. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. WHO Dir Gen speeches. 2020; March:4.
5.
Zurück zum Zitat Amicone M, Borges V, Alves MJ, Isidro J, Zé-Zé L, Duarte S, et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol Med public Heal. 2022;10:142–55.CrossRef Amicone M, Borges V, Alves MJ, Isidro J, Zé-Zé L, Duarte S, et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol Med public Heal. 2022;10:142–55.CrossRef
6.
Zurück zum Zitat Centers for Disease Control and Prevention (CDC). SARS-CoV-2 Variant Classifications and Definitions. CDC. 2023. Centers for Disease Control and Prevention (CDC). SARS-CoV-2 Variant Classifications and Definitions. CDC. 2023.
7.
Zurück zum Zitat Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021;592:116–21.PubMedCrossRef Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021;592:116–21.PubMedCrossRef
8.
Zurück zum Zitat Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812-827.e19.PubMedPubMedCentralCrossRef Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812-827.e19.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature. 2021;592:122–7.PubMedCrossRef Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature. 2021;592:122–7.PubMedCrossRef
10.
Zurück zum Zitat Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021;18:318–27.PubMedCrossRef Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021;18:318–27.PubMedCrossRef
11.
Zurück zum Zitat Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184:2372-2383.e9.PubMedPubMedCentralCrossRef Garcia-Beltran WF, Lam EC, St. Denis K, Nitido AD, Garcia ZH, Hauser BM, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184:2372-2383.e9.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021;184:1171-1187.e20.PubMedPubMedCentralCrossRef Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021;184:1171-1187.e20.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593:266–9.PubMedCrossRef Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593:266–9.PubMedCrossRef
14.
Zurück zum Zitat Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592:438–43.PubMedCrossRef Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592:438–43.PubMedCrossRef
15.
Zurück zum Zitat Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol. 2022;12:809244.PubMedPubMedCentralCrossRef Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, et al. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol. 2022;12:809244.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Faria NR, Mellan TA, Whittaker C, Claro IM, Candido D Da S, Mishra S, et al. Genomics and epidemiology of the P1 SARS-CoV-2 lineage in Manaus. Brazil Science. 2021;372:815–21.PubMed Faria NR, Mellan TA, Whittaker C, Claro IM, Candido D Da S, Mishra S, et al. Genomics and epidemiology of the P1 SARS-CoV-2 lineage in Manaus. Brazil Science. 2021;372:815–21.PubMed
17.
Zurück zum Zitat Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, et al. SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra India. Microorganisms. 2021;9:1542.PubMedPubMedCentralCrossRef Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, et al. SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra India. Microorganisms. 2021;9:1542.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599:114–9.PubMedPubMedCentralCrossRef Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599:114–9.PubMedPubMedCentralCrossRef
20.
23.
Zurück zum Zitat Eythorsson E, Runolfsdottir HL, Ingvarsson RF, Sigurdsson MI, Palsson R. Rate of SARS-CoV-2 Reinfection During an Omicron Wave in Iceland. JAMA Netw Open. 2022;5:e2225320–e2225320.PubMedPubMedCentralCrossRef Eythorsson E, Runolfsdottir HL, Ingvarsson RF, Sigurdsson MI, Palsson R. Rate of SARS-CoV-2 Reinfection During an Omicron Wave in Iceland. JAMA Netw Open. 2022;5:e2225320–e2225320.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science (80- ). 2022;376:eabn4947.CrossRef Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science (80- ). 2022;376:eabn4947.CrossRef
25.
Zurück zum Zitat Bastard J, Taisne B, Figoni J, Mailles A, Durand J, Fayad M, et al. Impact of the Omicron variant on SARS-CoV-2 reinfections in France, March 2021 to February 2022. Euro Surveill Bull Eur sur les Mal Transm. 2022;27:2200247 Eur Commun Dis Bull. Bastard J, Taisne B, Figoni J, Mailles A, Durand J, Fayad M, et al. Impact of the Omicron variant on SARS-CoV-2 reinfections in France, March 2021 to February 2022. Euro Surveill Bull Eur sur les Mal Transm. 2022;27:2200247 Eur Commun Dis Bull.
26.
Zurück zum Zitat Nguyen NN, Houhamdi L, Hoang VT, Stoupan D, Fournier P-E, Raoult D, et al. High rate of reinfection with the SARS-CoV-2 Omicron variant. J Infect. 2022;85:174–211.PubMedPubMedCentralCrossRef Nguyen NN, Houhamdi L, Hoang VT, Stoupan D, Fournier P-E, Raoult D, et al. High rate of reinfection with the SARS-CoV-2 Omicron variant. J Infect. 2022;85:174–211.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Vera-Lise I, Dominik E, Elisabeth R, Kerstin H, Raffael F, Angelika X, et al. Rapid reinfections with different or same Omicron SARS-CoV-2 sub-variants. J Infect. 2022;85:e96–8.PubMedPubMedCentralCrossRef Vera-Lise I, Dominik E, Elisabeth R, Kerstin H, Raffael F, Angelika X, et al. Rapid reinfections with different or same Omicron SARS-CoV-2 sub-variants. J Infect. 2022;85:e96–8.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Özüdoğru O, Bahçe YG, Acer Ö. SARS CoV-2 reinfection rate is higher in the Omicron variant than in the Alpha and Delta variants. Ir J Med Sci. 2023;192(2):751–56. Özüdoğru O, Bahçe YG, Acer Ö. SARS CoV-2 reinfection rate is higher in the Omicron variant than in the Alpha and Delta variants. Ir J Med Sci. 2023;192(2):751–56.
29.
Zurück zum Zitat Freire-Neto FP, Teixeira DG, da Cunha DCS, Morais IC, Tavares CPM, Gurgel GP, et al. SARS-CoV-2 reinfections with BA.1 (Omicron) variant among fully vaccinated individuals in northeastern Brazil. PLoS Negl Trop Dis. 2022;16:e0010337.PubMedPubMedCentralCrossRef Freire-Neto FP, Teixeira DG, da Cunha DCS, Morais IC, Tavares CPM, Gurgel GP, et al. SARS-CoV-2 reinfections with BA.1 (Omicron) variant among fully vaccinated individuals in northeastern Brazil. PLoS Negl Trop Dis. 2022;16:e0010337.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Mencacci A, Gili A, Camilloni B, Bicchieraro G, Spaccapelo R, Bietta C, et al. Immediate reinfection with Omicron variant after clearance of a previous SARS-CoV-2 infection. J Infect Public Health. 2022;15:983–5.PubMedPubMedCentralCrossRef Mencacci A, Gili A, Camilloni B, Bicchieraro G, Spaccapelo R, Bietta C, et al. Immediate reinfection with Omicron variant after clearance of a previous SARS-CoV-2 infection. J Infect Public Health. 2022;15:983–5.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010;8:336–41.PubMedCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010;8:336–41.PubMedCrossRef
34.
Zurück zum Zitat Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital Research Institute. 2021. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital Research Institute. 2021.
35.
Zurück zum Zitat Eggink D, Andeweg SP, Vennema H, van Maarseveen N, Vermaas K, Vlaemynck B, et al. Increased risk of infection with SARS-CoV-2 Omicron BA.1 compared with Delta in vaccinated and previously infected individuals, the Netherlands, 22 November 2021 to 19 January 2022. Eurosurveill. 2022;27:2101196.CrossRef Eggink D, Andeweg SP, Vennema H, van Maarseveen N, Vermaas K, Vlaemynck B, et al. Increased risk of infection with SARS-CoV-2 Omicron BA.1 compared with Delta in vaccinated and previously infected individuals, the Netherlands, 22 November 2021 to 19 January 2022. Eurosurveill. 2022;27:2101196.CrossRef
36.
Zurück zum Zitat Shrestha NK, Burke PC, Nowacki AS, Terpeluk P, Gordon SM. Necessity of Coronavirus Disease 2019 (COVID-19) Vaccination in Persons Who Have Already Had COVID-19. Clin Infect Dis. 2022;75:e662–71.PubMedCrossRef Shrestha NK, Burke PC, Nowacki AS, Terpeluk P, Gordon SM. Necessity of Coronavirus Disease 2019 (COVID-19) Vaccination in Persons Who Have Already Had COVID-19. Clin Infect Dis. 2022;75:e662–71.PubMedCrossRef
37.
Zurück zum Zitat Smith-Jeffcoat SE, Pomeroy MA, Sleweon S, Sami S, Ricaldi JN, Gebru Y, et al. Multistate Outbreak of SARS-CoV-2 B.1.1.529 (Omicron) Variant Infections Among Persons in a Social Network Attending a Convention — New York City, November 18–December 20, 2021. MMWR Morb Mortal Wkly Rep. 2022;71:238–42.PubMedPubMedCentralCrossRef Smith-Jeffcoat SE, Pomeroy MA, Sleweon S, Sami S, Ricaldi JN, Gebru Y, et al. Multistate Outbreak of SARS-CoV-2 B.1.1.529 (Omicron) Variant Infections Among Persons in a Social Network Attending a Convention — New York City, November 18–December 20, 2021. MMWR Morb Mortal Wkly Rep. 2022;71:238–42.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Espenhain L, Funk T, Overvad M, Edslev SM, Fonager J, Ingham AC, et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021. Eurosurveill. 2021;26:2101146.CrossRef Espenhain L, Funk T, Overvad M, Edslev SM, Fonager J, Ingham AC, et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021. Eurosurveill. 2021;26:2101146.CrossRef
39.
Zurück zum Zitat Nunes MC, Mbotwe-Sibanda S, Baillie VL, Kwatra G, Aguas R, Madhi SA. SARS-CoV-2 Omicron Symptomatic Infections in Previously Infected or Vaccinated South African Healthcare Workers. Vaccines. 2022;10:459.PubMedPubMedCentralCrossRef Nunes MC, Mbotwe-Sibanda S, Baillie VL, Kwatra G, Aguas R, Madhi SA. SARS-CoV-2 Omicron Symptomatic Infections in Previously Infected or Vaccinated South African Healthcare Workers. Vaccines. 2022;10:459.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Sharma RP, Gautam S, Sharma P, Singh R, Sharma H, Parsoya D, et al. Genomic profile of SARS-CoV-2 Omicron variant and its correlation with disease severity in Rajasthan. Front Med. 2022;9:888408.CrossRef Sharma RP, Gautam S, Sharma P, Singh R, Sharma H, Parsoya D, et al. Genomic profile of SARS-CoV-2 Omicron variant and its correlation with disease severity in Rajasthan. Front Med. 2022;9:888408.CrossRef
41.
Zurück zum Zitat Spensley KJ, Gleeson S, Martin P, Thomson T, Clarke CL, Pickard G, et al. Comparison of vaccine effectiveness against the omicron (B.1.1.529) variant in hemodialysis patients. Kidney Int Reports. 2022;7:1406–9.CrossRef Spensley KJ, Gleeson S, Martin P, Thomson T, Clarke CL, Pickard G, et al. Comparison of vaccine effectiveness against the omicron (B.1.1.529) variant in hemodialysis patients. Kidney Int Reports. 2022;7:1406–9.CrossRef
42.
Zurück zum Zitat Davies M, Kassanjee R, Rousseau P, Morden E, Johnson L, Solomon W, et al. Outcomes of laboratory-confirmed <scp>SARS-CoV</scp> -2 infection in the Omicron-driven fourth wave compared with previous waves in the Western Cape Province. South Africa Trop Med Int Heal. 2022;27:564–73.CrossRef Davies M, Kassanjee R, Rousseau P, Morden E, Johnson L, Solomon W, et al. Outcomes of laboratory-confirmed <scp>SARS-CoV</scp> -2 infection in the Omicron-driven fourth wave compared with previous waves in the Western Cape Province. South Africa Trop Med Int Heal. 2022;27:564–73.CrossRef
43.
Zurück zum Zitat SARS-CoV-2 B.1.1.529 (Omicron) Variant — United States, December 1–8, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1731–4. SARS-CoV-2 B.1.1.529 (Omicron) Variant — United States, December 1–8, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1731–4.
44.
Zurück zum Zitat Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, et al. Population immunity and covid-19 severity with omicron variant in South Africa. N Engl J Med. 2022;386:1314–26.PubMedCrossRef Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, et al. Population immunity and covid-19 severity with omicron variant in South Africa. N Engl J Med. 2022;386:1314–26.PubMedCrossRef
45.
Zurück zum Zitat Kahn F, Bonander C, Moghaddassi M, Rasmussen M, Malmqvist U, Inghammar M, et al. Risk of severe COVID-19 from the Delta and Omicron variants in relation to vaccination status, sex, age and comorbidities – surveillance results from southern Sweden, July 2021 to January 2022. Eurosurveill. 2022;27:2200121.CrossRef Kahn F, Bonander C, Moghaddassi M, Rasmussen M, Malmqvist U, Inghammar M, et al. Risk of severe COVID-19 from the Delta and Omicron variants in relation to vaccination status, sex, age and comorbidities – surveillance results from southern Sweden, July 2021 to January 2022. Eurosurveill. 2022;27:2200121.CrossRef
46.
Zurück zum Zitat Kislaya I, Peralta-Santos A, Borges V, Vieira L, Sousa C, Ferreira B, et al. Comparative complete scheme and booster effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infections with SARS-CoV-2 Omicron (BA.1) and Delta (B.1.617.2) variants. medRxiv. 2022. https://doi.org/10.1101/2022.01.31.22270200. Kislaya I, Peralta-Santos A, Borges V, Vieira L, Sousa C, Ferreira B, et al. Comparative complete scheme and booster effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infections with SARS-CoV-2 Omicron (BA.1) and Delta (B.1.617.2) variants. medRxiv. 2022. https://​doi.​org/​10.​1101/​2022.​01.​31.​22270200.
47.
Zurück zum Zitat Hajjo R, AbuAlSamen MM, Alzoubi HM, Alqutob R. The Epidemiology of Hundreds of Individuals Infected with Omicron BA.1 in Middle-Eastern Jordan. medRxiv. 2022;2022.01.23.22269442. Hajjo R, AbuAlSamen MM, Alzoubi HM, Alqutob R. The Epidemiology of Hundreds of Individuals Infected with Omicron BA.1 in Middle-Eastern Jordan. medRxiv. 2022;2022.01.23.22269442.
48.
Zurück zum Zitat Maisa A, Spaccaferri G, Fournier L, Schaeffer J, Deniau J, Rolland P, et al. First cases of Omicron in France are exhibiting mild symptoms, November 2021–January 2022. Infect Dis Now. 2022;52:160–4.PubMedPubMedCentralCrossRef Maisa A, Spaccaferri G, Fournier L, Schaeffer J, Deniau J, Rolland P, et al. First cases of Omicron in France are exhibiting mild symptoms, November 2021–January 2022. Infect Dis Now. 2022;52:160–4.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Peralta-Santos A, Rodrigues EF, Moreno J, Ricoca V, Casaca P, Fernandes E, et al. Omicron (BA.1) SARS-CoV-2 variant is associated with reduced risk of hospitalization and length of stay compared with Delta (B.1.617.2). medRxiv. 2022;:2022.01.20.22269406. Peralta-Santos A, Rodrigues EF, Moreno J, Ricoca V, Casaca P, Fernandes E, et al. Omicron (BA.1) SARS-CoV-2 variant is associated with reduced risk of hospitalization and length of stay compared with Delta (B.1.617.2). medRxiv. 2022;:2022.01.20.22269406.
50.
Zurück zum Zitat Qassim SH, Chemaitelly H, Ayoub HH, AlMukdad S, Tang P, Hasan MR, et al. Effects of BA.1/BA.2 subvariant, vaccination and prior infection on infectiousness of SARS-CoV-2 omicron infections. J Travel Med. 2022;29:taac068.PubMedPubMedCentralCrossRef Qassim SH, Chemaitelly H, Ayoub HH, AlMukdad S, Tang P, Hasan MR, et al. Effects of BA.1/BA.2 subvariant, vaccination and prior infection on infectiousness of SARS-CoV-2 omicron infections. J Travel Med. 2022;29:taac068.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet. 2022;399:437–46.PubMedPubMedCentralCrossRef Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet. 2022;399:437–46.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Ward IL, Bermingham C, Ayoubkhani D, Gethings OJ, Pouwels KB, Yates T, et al. Risk of covid-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): retrospective cohort study. BMJ. 2022;378:e070695.PubMedCrossRef Ward IL, Bermingham C, Ayoubkhani D, Gethings OJ, Pouwels KB, Yates T, et al. Risk of covid-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): retrospective cohort study. BMJ. 2022;378:e070695.PubMedCrossRef
53.
Zurück zum Zitat Garg R, Gautam P, Suroliya V, Agarwal R, Bhugra A, Kaur US, et al. Evidence of early community transmission of Omicron (B.1.1529) in Delhi- A city with very high seropositivity and past-exposure. Travel Med Infect Dis. 2022;46:102276.PubMedPubMedCentralCrossRef Garg R, Gautam P, Suroliya V, Agarwal R, Bhugra A, Kaur US, et al. Evidence of early community transmission of Omicron (B.1.1529) in Delhi- A city with very high seropositivity and past-exposure. Travel Med Infect Dis. 2022;46:102276.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Krutikov M, Stirrup O, Nacer-Laidi H, Azmi B, Fuller C, Tut G, et al. Outcomes of SARS-CoV-2 omicron infection in residents of long-term care facilities in England (VIVALDI): a prospective, cohort study. Lancet Heal Longev. 2022;3:e347–55.CrossRef Krutikov M, Stirrup O, Nacer-Laidi H, Azmi B, Fuller C, Tut G, et al. Outcomes of SARS-CoV-2 omicron infection in residents of long-term care facilities in England (VIVALDI): a prospective, cohort study. Lancet Heal Longev. 2022;3:e347–55.CrossRef
55.
Zurück zum Zitat Flacco ME, Soldato G, Acuti Martellucci C, Di Martino G, Carota R, Caponetti A, et al. Risk of SARS-CoV-2 Reinfection 18 months after primary infection: population-level observational study. Front Public Heal. 2022;10:884121.CrossRef Flacco ME, Soldato G, Acuti Martellucci C, Di Martino G, Carota R, Caponetti A, et al. Risk of SARS-CoV-2 Reinfection 18 months after primary infection: population-level observational study. Front Public Heal. 2022;10:884121.CrossRef
56.
Zurück zum Zitat Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S, AlMukdad S, et al. Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. N Engl J Med. 2022;386:1288–90.PubMedCrossRef Altarawneh HN, Chemaitelly H, Hasan MR, Ayoub HH, Qassim S, AlMukdad S, et al. Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. N Engl J Med. 2022;386:1288–90.PubMedCrossRef
57.
Zurück zum Zitat Šmíd M, Berec L, Přibylová L, Májek O, Pavlík T, Jarkovský J, et al. Protection by vaccines and previous infection against the omicron variant of severe acute respiratory syndrome coronavirus 2. J Infect Dis. 2022;226:1385–90.PubMedCrossRef Šmíd M, Berec L, Přibylová L, Májek O, Pavlík T, Jarkovský J, et al. Protection by vaccines and previous infection against the omicron variant of severe acute respiratory syndrome coronavirus 2. J Infect Dis. 2022;226:1385–90.PubMedCrossRef
58.
Zurück zum Zitat Lewnard JA, Hong VX, Patel MM, Kahn R, Lipsitch M, Tartof SY. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nat Med. 2022;28:1933–43.PubMedPubMedCentralCrossRef Lewnard JA, Hong VX, Patel MM, Kahn R, Lipsitch M, Tartof SY. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nat Med. 2022;28:1933–43.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Stegger M, Edslev SM, Sieber RN, Cäcilia Ingham A, Ng KL, Tang M-HE, et al. Occurrence and significance of Omicron BA.1 infection followed by BA.2 reinfection. medRxiv. 2022;:2022.02.19.22271112. Stegger M, Edslev SM, Sieber RN, Cäcilia Ingham A, Ng KL, Tang M-HE, et al. Occurrence and significance of Omicron BA.1 infection followed by BA.2 reinfection. medRxiv. 2022;:2022.02.19.22271112.
60.
Zurück zum Zitat Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N Engl J Med. 2022;386:1532–46.PubMedCrossRef Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N Engl J Med. 2022;386:1532–46.PubMedCrossRef
61.
Zurück zum Zitat Andeweg SP, de Gier B, Eggink D, van den Ende C, van Maarseveen N, Ali L, et al. Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections. Nat Commun. 2022;13:4738.PubMedPubMedCentralCrossRef Andeweg SP, de Gier B, Eggink D, van den Ende C, van Maarseveen N, Ali L, et al. Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections. Nat Commun. 2022;13:4738.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Abu-Raddad LJ, Chemaitelly H, Bertollini R. Severity of SARS-CoV-2 Reinfections as Compared with Primary Infections. N Engl J Med. 2021;385:2487–9.PubMedCrossRef Abu-Raddad LJ, Chemaitelly H, Bertollini R. Severity of SARS-CoV-2 Reinfections as Compared with Primary Infections. N Engl J Med. 2021;385:2487–9.PubMedCrossRef
64.
Zurück zum Zitat Riou C, Keeton R, Moyo-Gwete T, Hermanus T, Kgagudi P, Baguma R, et al. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci Transl Med. 2022;14:eabj6824.PubMedPubMedCentralCrossRef Riou C, Keeton R, Moyo-Gwete T, Hermanus T, Kgagudi P, Baguma R, et al. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci Transl Med. 2022;14:eabj6824.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Bates TA, McBride SK, Leier HC, Guzman G, Lyski ZL, Schoen D, et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol. 2022;7:eabn8014.PubMedCrossRef Bates TA, McBride SK, Leier HC, Guzman G, Lyski ZL, Schoen D, et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol. 2022;7:eabn8014.PubMedCrossRef
67.
Zurück zum Zitat Al-Ali D, Elshafeey A, Mushannen M, Kawas H, Shafiq A, Mhaimeed N, et al. Cardiovascular and haematological events post COVID-19 vaccination: a systematic review. J Cell Mol Med. 2022;26:636–53.PubMedCrossRef Al-Ali D, Elshafeey A, Mushannen M, Kawas H, Shafiq A, Mhaimeed N, et al. Cardiovascular and haematological events post COVID-19 vaccination: a systematic review. J Cell Mol Med. 2022;26:636–53.PubMedCrossRef
68.
Zurück zum Zitat Bshesh K, Khan W, Vattoth AL, Janjua E, Nauman A, Almasri M, et al. Lymphadenopathy post-COVID-19 vaccination with increased FDG uptake may be falsely attributed to oncological disorders: a systematic review. J Med Virol. 2022;94:1833–45.PubMedPubMedCentralCrossRef Bshesh K, Khan W, Vattoth AL, Janjua E, Nauman A, Almasri M, et al. Lymphadenopathy post-COVID-19 vaccination with increased FDG uptake may be falsely attributed to oncological disorders: a systematic review. J Med Virol. 2022;94:1833–45.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Shafiq A, Salameh MA, Laswi I, Mohammed I, Mhaimeed O, Mhaimeed N, et al. Neurological immune-related adverse events after COVID-19 vaccination: a systematic review. J Clin Pharmacol. 2022;62:291–303.PubMedCrossRef Shafiq A, Salameh MA, Laswi I, Mohammed I, Mhaimeed O, Mhaimeed N, et al. Neurological immune-related adverse events after COVID-19 vaccination: a systematic review. J Clin Pharmacol. 2022;62:291–303.PubMedCrossRef
70.
Zurück zum Zitat Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2022;114:252–60. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2022;114:252–60.
71.
Zurück zum Zitat Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med. 2022;20:200.PubMedPubMedCentralCrossRef Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med. 2022;20:200.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Mohammed I, Nauman A, Paul P, Ganesan S, Chen K-H, Jalil SMS, et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum Vaccin Immunother. 2022;18:1–20.CrossRef Mohammed I, Nauman A, Paul P, Ganesan S, Chen K-H, Jalil SMS, et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum Vaccin Immunother. 2022;18:1–20.CrossRef
73.
Zurück zum Zitat Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22:1293–302.PubMedPubMedCentralCrossRef Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22:1293–302.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Gobbi F, Buonfrate D, Moro L, Rodari P, Piubelli C, Caldrer S, et al. Antibody Response to the BNT162b2 mRNA COVID-19 Vaccine in Subjects with Prior SARS-CoV-2 Infection. Viruses. 2021;13:422.PubMedPubMedCentralCrossRef Gobbi F, Buonfrate D, Moro L, Rodari P, Piubelli C, Caldrer S, et al. Antibody Response to the BNT162b2 mRNA COVID-19 Vaccine in Subjects with Prior SARS-CoV-2 Infection. Viruses. 2021;13:422.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Wei J, Matthews PC, Stoesser N, Diamond I, Studley R, Rourke E, et al. SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection. Nat Commun. 2022;13:3748.PubMedPubMedCentralCrossRef Wei J, Matthews PC, Stoesser N, Diamond I, Studley R, Rourke E, et al. SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection. Nat Commun. 2022;13:3748.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Ali H, Alahmad B, Al-Shammari AA, Alterki A, Hammad M, Cherian P, et al. Previous COVID-19 Infection and Antibody Levels After Vaccination. Front public Heal. 2021;9:778243.CrossRef Ali H, Alahmad B, Al-Shammari AA, Alterki A, Hammad M, Cherian P, et al. Previous COVID-19 Infection and Antibody Levels After Vaccination. Front public Heal. 2021;9:778243.CrossRef
77.
Zurück zum Zitat Rennert L, Ma Z, McMahan CS, Dean D. Effectiveness and protection duration of Covid-19 vaccines and previous infection against any SARS-CoV-2 infection in young adults. Nat Commun. 2022;13:3946.PubMedPubMedCentralCrossRef Rennert L, Ma Z, McMahan CS, Dean D. Effectiveness and protection duration of Covid-19 vaccines and previous infection against any SARS-CoV-2 infection in young adults. Nat Commun. 2022;13:3946.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Tré-Hardy M, Cupaiolo R, Papleux E, Wilmet A, Horeanga A, Antoine-Moussiaux T, et al. Reactogenicity, safety and antibody response, after one and two doses of mRNA-1273 in seronegative and seropositive healthcare workers. J Infect. 2021;83:237–79.PubMedPubMedCentralCrossRef Tré-Hardy M, Cupaiolo R, Papleux E, Wilmet A, Horeanga A, Antoine-Moussiaux T, et al. Reactogenicity, safety and antibody response, after one and two doses of mRNA-1273 in seronegative and seropositive healthcare workers. J Infect. 2021;83:237–79.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Raw RK, Kelly CA, Rees J, Wroe C, Chadwick DR. Previous COVID-19 infection, but not Long-COVID, is associated with increased adverse events following BNT162b2/Pfizer vaccination. J Infect. 2021;83:381–412.PubMedPubMedCentralCrossRef Raw RK, Kelly CA, Rees J, Wroe C, Chadwick DR. Previous COVID-19 infection, but not Long-COVID, is associated with increased adverse events following BNT162b2/Pfizer vaccination. J Infect. 2021;83:381–412.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Waxman JG, Makov-Assif M, Reis BY, Netzer D, Balicer RD, Dagan N, et al. Comparing COVID-19-related hospitalization rates among individuals with infection-induced and vaccine-induced immunity in Israel. Nat Commun. 2022;13:2202.PubMedPubMedCentralCrossRef Waxman JG, Makov-Assif M, Reis BY, Netzer D, Balicer RD, Dagan N, et al. Comparing COVID-19-related hospitalization rates among individuals with infection-induced and vaccine-induced immunity in Israel. Nat Commun. 2022;13:2202.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Milne G, Hames T, Scotton C, Gent N, Johnsen A, Anderson RM, et al. Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? Lancet Respir Med. 2021;9:1450–66.PubMedPubMedCentralCrossRef Milne G, Hames T, Scotton C, Gent N, Johnsen A, Anderson RM, et al. Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? Lancet Respir Med. 2021;9:1450–66.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596:268–72.PubMedPubMedCentralCrossRef Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596:268–72.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (80- ). 2021;371:eabf4063.CrossRef Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (80- ). 2021;371:eabf4063.CrossRef
84.
Zurück zum Zitat Kurahashi Y, Furukawa K, Sutandhio S, Tjan LH, Iwata S, Sano S, et al. Cross-neutralizing activity against omicron could be obtained in SARS-CoV-2 convalescent patients who received two doses of mRNA vaccination. J Infect Dis. 2022;226:1391–5.PubMedCrossRef Kurahashi Y, Furukawa K, Sutandhio S, Tjan LH, Iwata S, Sano S, et al. Cross-neutralizing activity against omicron could be obtained in SARS-CoV-2 convalescent patients who received two doses of mRNA vaccination. J Infect Dis. 2022;226:1391–5.PubMedCrossRef
85.
Zurück zum Zitat Paul P, El-Naas A, Hamad O, Salameh MA, Mhaimeed N, Laswi I, et al. Effectiveness of the pre-Omicron COVID-19 vaccines against Omicron in reducing infection, hospitalization, severity, and mortality compared to Delta and other variants: A systematic review. Hum Vaccin Immunother. 2023;19(1). Paul P, El-Naas A, Hamad O, Salameh MA, Mhaimeed N, Laswi I, et al. Effectiveness of the pre-Omicron COVID-19 vaccines against Omicron in reducing infection, hospitalization, severity, and mortality compared to Delta and other variants: A systematic review. Hum Vaccin Immunother. 2023;19(1).
86.
Zurück zum Zitat Wang J, Kaperak C, Sato T, Sakuraba A. COVID-19 reinfection: a rapid systematic review of case reports and case series. J Investig Med. 2021;69:1253 LP – 1255.CrossRef Wang J, Kaperak C, Sato T, Sakuraba A. COVID-19 reinfection: a rapid systematic review of case reports and case series. J Investig Med. 2021;69:1253 LP – 1255.CrossRef
87.
Zurück zum Zitat Chemaitelly H, Bertollini R, Abu-Raddad LJ. Efficacy of Natural Immunity against SARS-CoV-2 Reinfection with the Beta Variant. N Engl J Med. 2021;385:2585–6.PubMedCrossRef Chemaitelly H, Bertollini R, Abu-Raddad LJ. Efficacy of Natural Immunity against SARS-CoV-2 Reinfection with the Beta Variant. N Engl J Med. 2021;385:2585–6.PubMedCrossRef
88.
Zurück zum Zitat Sheward DJ, Kim C, Fischbach J, Sato K, Muschiol S, Ehling RA, et al. Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising antibodies. Lancet Infect Dis. 2022;22:1538–40.PubMedPubMedCentralCrossRef Sheward DJ, Kim C, Fischbach J, Sato K, Muschiol S, Ehling RA, et al. Omicron sublineage BA.2.75.2 exhibits extensive escape from neutralising antibodies. Lancet Infect Dis. 2022;22:1538–40.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Yao L, Zhu K-L, Jiang X-L, Wang X-J, Zhan B-D, Gao H-X, et al. Omicron subvariants escape antibodies elicited by vaccination and BA.2.2 infection. Lancet Infect Dis. 2022;22:1116–7.PubMedPubMedCentralCrossRef Yao L, Zhu K-L, Jiang X-L, Wang X-J, Zhan B-D, Gao H-X, et al. Omicron subvariants escape antibodies elicited by vaccination and BA.2.2 infection. Lancet Infect Dis. 2022;22:1116–7.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Khan K, Karim F, Ganga Y, Bernstein M, Jule Z, Reedoy K, et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nat Commun. 2022;13:4686.PubMedPubMedCentralCrossRef Khan K, Karim F, Ganga Y, Bernstein M, Jule Z, Reedoy K, et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nat Commun. 2022;13:4686.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C, et al. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. eBioMedicine. 2022;82. Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C, et al. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. eBioMedicine. 2022;82.
92.
Zurück zum Zitat Christoph J, Dorota K, Lennart K, Fabian Z, Timo J, J. SKM, et al. Omicron: What Makes the Latest SARS-CoV-2 Variant of Concern So Concerning? J Virol. 2022;96:e02077-2 Christoph J, Dorota K, Lennart K, Fabian Z, Timo J, J. SKM, et al. Omicron: What Makes the Latest SARS-CoV-2 Variant of Concern So Concerning? J Virol. 2022;96:e02077-2
93.
Zurück zum Zitat Zhang L, Mann M, Syed ZA, Reynolds HM, Tian E, Samara NL, et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc Natl Acad Sci. 2021;118:e2109905118.PubMedPubMedCentralCrossRef Zhang L, Mann M, Syed ZA, Reynolds HM, Tian E, Samara NL, et al. Furin cleavage of the SARS-CoV-2 spike is modulated by O-glycosylation. Proc Natl Acad Sci. 2021;118:e2109905118.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Fan Y, Li X, Zhang L, Wan S, Zhang L, Zhou F. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther. 2022;7:141.PubMedPubMedCentralCrossRef Fan Y, Li X, Zhang L, Wan S, Zhang L, Zhou F. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther. 2022;7:141.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther. 2021;6:430.PubMedPubMedCentralCrossRef Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther. 2021;6:430.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Hong Q, Han W, Li J, Xu S, Wang Y, Xu C, et al. Molecular basis of receptor binding and antibody neutralization of Omicron. Nature. 2022;604:546–52.PubMedCrossRef Hong Q, Han W, Li J, Xu S, Wang Y, Xu C, et al. Molecular basis of receptor binding and antibody neutralization of Omicron. Nature. 2022;604:546–52.PubMedCrossRef
97.
Zurück zum Zitat Xia S, Wang L, Zhu Y, Lu L, Jiang S. Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages. Signal Transduct Target Ther. 2022;7:241.PubMedPubMedCentralCrossRef Xia S, Wang L, Zhu Y, Lu L, Jiang S. Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages. Signal Transduct Target Ther. 2022;7:241.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Ou X, Yang Z, Zhu D, Mao S, Wang M, Jia R, et al. Microbial GWAS studies revealing combinations of Omicron RBD mutations existed and may contribute to antibody evasion and ACE2 binding. medRxiv. 2022;:2022.01.19.22269510. Ou X, Yang Z, Zhu D, Mao S, Wang M, Jia R, et al. Microbial GWAS studies revealing combinations of Omicron RBD mutations existed and may contribute to antibody evasion and ACE2 binding. medRxiv. 2022;:2022.01.19.22269510.
100.
Zurück zum Zitat Arabi M, Al-Najjar Y, Mhaimeed N, Salameh MA, Paul P, AlAnni J, et al. Severity of the Omicron SARS-CoV-2 variant compared with the previous lineages: A systematic review. J Cell Mol Med. 2023;00:1–22. Arabi M, Al-Najjar Y, Mhaimeed N, Salameh MA, Paul P, AlAnni J, et al. Severity of the Omicron SARS-CoV-2 variant compared with the previous lineages: A systematic review. J Cell Mol Med. 2023;00:1–22.
Metadaten
Titel
Role of previous infection with SARS-CoV-2 in protecting against omicron reinfections and severe complications of COVID-19 compared to pre-omicron variants: a systematic review
verfasst von
Maryam Arabi
Yousef Al-Najjar
Omna Sharma
Ibtihal Kamal
Aimen Javed
Harsh S. Gohil
Pradipta Paul
Aljazi M. Al-Khalifa
Sa’ad Laws
Dalia Zakaria
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2023
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-023-08328-3

Weitere Artikel der Ausgabe 1/2023

BMC Infectious Diseases 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.