Skip to main content
Erschienen in: BMC Oral Health 1/2023

Open Access 01.12.2023 | Research

Morphometric analysis of tooth morphology among different malocclusion groups in a hispanic population

verfasst von: Hesham Alsaigh, Murad Alrashdi

Erschienen in: BMC Oral Health | Ausgabe 1/2023

Abstract

Background

There have been reports of unique dental morphological features amongst Latin American and Hispanic populations, and this might invalidate the use of current orthodontic diagnostic tools within this population. There are no tooth size/tooth ratio normative standards for the Hispanic population, despite overwhelming evidence about differences in tooth size between racial groups.

Objective

This study aimed to determine whether there are significant differences in 3-D tooth shape between patients with Angle Class I, Class II, and Class III dental malocclusion in the Hispanic population.

Methodology

Orthodontic study models representing Hispanic orthodontic patients with Angle Class I, II, and III dental malocclusions scanned using an intra-oral scanner. The scanned models were digitized and transferred to a geometric morphometric system. Tooth size shape were determined, quantified, and visualized using contemporary geometric morphometric computational tools using MorphoJ software. General Procrustes Analysis (GPA) and canonical variates analysis (CVA) used to delineate the features of shape that are unique to each group.

Result

The study revealed differences in tooth shape between the different dental malocclusion groups on all twenty-eight teeth that were studied; the pattern of shape differences varied between the teeth and the dental malocclusions. The MANOVA test criteria, F approximations, and P-values show that shape in all the groups was significantly different < 0.05.

Conclusion

This study revealed differences in tooth shape between the different dental malocclusions on all teeth, and the pattern of shape differences varied between the different dental malocclusions group.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Morphological analysis of teeth is critical for the diagnosis and treatment of patients with a wide variety of oral and craniofacial pathologies. There are multiple ways that have been described for measuring teeth [1, 2]. However, the methods that are pertinent to clinical management are generally focused on the clinical crown. Traditionally dental morphometrics have used linear metrics such as mesiodistal, buccolingual, and occluso-gingival dimensions [3]. Historically, tooth morphology has been studied using manual techniques which involve a variety of calipers or the Boley gauge; instruments that can only obtain linear measurements [49]. These methods are limited to providing tooth size and are inherently incapable of detecting variations in tooth shape, form, and surface topography [10]. The establishment of more detailed methods has included identifying more landmarks on teeth, [11, 12] introducing angles within teeth, [13] and the use of occlusal polygons [14, 15]. A significant development was the combined use of high-definition photographs and computer technology [16]. Occlusal polygons were further incorporated into elliptical Fourier analysis (EFA) and used to analyze molar shapes [17]. Bernal (2007) used similar approaches but went further to subject the data to generalized Procrustes analysis (GPA) [10].
Geometric morphometric method (GMM) is increasing being applied to dental and craniofacial investigations [18]. Using aspects of GMM, Pavoni et al. evaluated the palatal morphology in children with impacted incisors, [19] Al Shaharani et al. evaluated the morphology of molars in patients with hypodontia [20] and Paoloni evaluated palatal morphology in Class II patients [21]. GMM has also been used to assess skeletal morphology in Class II and Class III and cleft lip and palate patients, [2225] as well as to evaluate dental arch morphology of different malocclusion groups [26].
Advances in digital imaging and scanning have facilitated the recording of landmarks as coordinates. Robinson et al. used this concept to study tooth form from a photographic image using two-dimensional (x, y) coordinate; [27, 28] thus introducing a novel application in the study of tooth morphology. Their methodology used two-dimensional (2-D) data, as opposed to 3-D, and therefore provided only partial description of shape [29]. GMM has been used to study arch form, [30] tooth surface reconstruction, [31] and dental anthropology [32, 33].
Three-dimensional imaging has found applications in orthodontics [34]. Archives of 3-D orthodontics study models produce images that are identical to the original study models, easing access, study and exchange of clinical data [3538].
There is no research investigating differences in tooth shape among the Hispanic population. The diagnosis and management of Tooth Size Discrepancy (TSD) for Hispanics has relied on standards that do not represent the group. The aim of this study was to determine whether there are significant differences in 3-D tooth shape between patients with Angle Class I, Class II, and Class III dental malocclusion, in the Hispanic population using GMM.

Materials and methods

Sample size and study sample

The sample size was determined based on previous studies which had used linear measurements as opposed to 3-D [39]. The sample size calculations showed that when two groups of 20 samples were compared a power of 80% power detected a 0.90 mm size difference. The total sample size was 120. Forty subjects in each group; 20 male and 20 female, with an age range between 12 and 55 years old. The subjects’ materials were obtained from the records of orthodontic patients at the graduate and faculty orthodontic clinics at University of Texas Health San Antonio, School of Dentistry. The study sample consisted of intra-oral scans (iTero scanner, Align Technologies, San Jose, CA) of Hispanic patients selected from the patient database. It included initial and final orthodontics study models of patients who had previous treatment. Successive cases that met the selection criteria were selected until the sample size was achieved. The following definitions and criteria were used to select subjects for the study groups: Group 1: Class I (ANB angle 0–4 degrees, Class I molar relationship), Group 2: Class II (ANB angle 4 or more degrees, Class II molar relationship), and Group 3: Class III (ANB − 1 or less degrees, Class III molar relationship).

Inclusion criteria and exclusion criteria

The study inclusion criteria were male and female participants from one demographic area (Southwest, Texas, USA) of Hispanic ethnicity and age between 12 and 55 years old with good quality orthodontics intraoral scan and no evident facial and dentoalveolar asymmetry.
Participants were excluded if their teeth were not fully recorded on the intraoral scan, had extensive dental restoration, had traumatized or severely worn teeth, or were patients with craniofacial anomalies.

Scanning and landmarks

All the orthodontic study models were scanned with maximum resolution using an intra-oral scanner (iTero scanner, Align Technologies, San Jose, CA). The dental landmarks were tooth specific, where 19 points of the landmark were used for molars, 16 for premolars, and 12 for anterior teeth. Table 1 provide a list and definitions of all landmarks used for geometric morphometric analysis, 19 landmark for molars, 16 for premolars, and 12 for anterior teeth. The 3-D scanned models were saved in the STL format and identified by the same investigator using the software Checkpoint (Stratovan Corporation, Davis, CA). [40] The x, y, z coordinates defining the landmarks were exported as simple data text files and uploaded onto MorphoJ 1.07a. [41] a software designed to perform geometric morphometric analysis.
Table 1
Landmarks used for Geometric Morphometric Analysis
No.
Upper and Lower Molars
Upper and Lower Premolars
Upper and Lower Anterior Teeth
1
Mesial contact points
Mesial contact points
Mesial contact points
2
Distal contact points
Distal contact points
Distal contact points
3
Occlusal extent of buccal groove
Lingual cusp tip
Gingival margin lingual middle point
4
Occlusal extent of lingual groove
Buccal cusp tip
Incisal middle point
5
Mesial lingual cusp tip
Mesial point of buccal cusp
Mesial point incisal
6
Distal lingual cusp tip
Distal point of buccal cusp
Distal point incisal
7
Mesial buccal cusp tip
Mesial pit
Gingival margin buccal most mesial point
8
Distal buccal cusp tip
Distal pit
Gingival margin buccal most distal point
9
Central pit
Gingival margin buccal most mesial point
Gingival margin buccal middle point
10
Gingival margin buccal most mesial point
Gingival margin buccal most distal point
Middle point buccal
11
Gingival margin buccal most distal point
Gingival margin buccal middle point
Gingival margin lingual most mesial point
12
Gingival margin buccal middle point
Middle point buccal
Gingival margin lingual most distal point
13
Middle point buccal
Gingival margin lingual most mesial point
 
14
Gingival margin lingual most mesial point
Gingival margin lingual most distal point
 
15
Gingival margin lingual most distal point
Gingival margin lingual middle point
 
16
Gingival margin lingual middle point
Middle point lingual
 
17
Middle point lingual
  
18
Distobuccal cusp tip (lower first molar)
  
19
Occlusal extent of distobuccal groove (lower first molar)
  

Geometric morphometric analysis

The landmarks’ x, y and z coordinates for each tooth were uploaded onto the software MorphoJ 1.07a. [41]. The first pre-analysis process was to detect outliers. MorphoJ 1.07a. provided an output comparing each specimen to the mean output of all individual specimen. The output also included a plotting of the distribution of specimen distances compared to the mean shape of all specimens in a group [41]. The extreme outliers were discarded. Previous work has attributed the extreme outliers to errors in instrumentation.
The individual outcomes were rotated, centered, and scaled to remove all non-shape related variations, using General Procrustes Analysis (GPA). [42, 43] This was followed by canonical variates analysis (CVA) using MorphoJ 1.07a to delineate the features of shape that are unique to each of the four groups. These were displayed as wireframe graphs which were used as the read-out for differences in morphological shape among the groups. A discriminant function analysis (DFA) was used to create wireframe graphs displaying the differences between any two groups.

Validation of landmark reproducibility

For intraobserver error, six permanent teeth measured: Lower left first molar, lower left canine, lower right second premolar, upper right first molar, upper right central incisor, and upper left first premolar. These teeth were identified on intra-oral scans obtained as described above. The specific tooth landmarks were obtained on each of the scanned images, and this was repeated three times with intervals of one week using Stratovan Checkpoint software by one examiner. The data was processed by a Procrustes ANOVA in MorphoJ 1.07a and the digitization error assessed.

Results

Of the 183 sets of dental casts, 120 were analyzed. Forty subjects in each group; 20 male and 20 female in each group, with an age range between 12 and 55 years old. The other 63 dental castes were excluded due to either teeth were not fully recorded on the intraoral scan, presence of extensive dental restorations, traumatized or severely worn teeth, or patient with craniofacial anomalies. The result of the intraobserver analysis showed an excellent landmark reproducibility, where the mean squares (MS) of shape digitization errors were smaller than MS of individuals, Table 2.
Table 2
Digitization Error of Shape
Tooth#
Effect
Error of Shape
Individual
Digitization Error
SS
MS
DF
F
P
SS
MS
DF
upper right first molar
0.38238947
0.0009656300
396
36.40
< 0.0001
0.02334273
0.0000265258
880
upper right central incisor
0.92324788
0.0035373482
261
13.36
< 0.0001
0.15354333
0.0000337027
580
upper left first premolar
0.45683295
0.0012380297
369
36.73
< 0.0001
0.02763624
0.000038
820
lower left first molar
1.01743469
0.0022609660
450
132.70
< 0.0001
0.01703879
0.0000170388
1000
lower left canine
2.39298744
0.0091685342
261
26.99
< 0.0001
0.19702193
0.0003396930
580
lower right second premolar
1.08931960
0.0029520856
369
94.50
< 0.0001
0.02561479
0.0000312375
820
The multivariate analysis of variance test criteria, F approximations, and P-values for the hypothesis of no overall malocclusion effect using Wilks’s Lambda test showed that shape in all the groups was significantly different for all teeth (Tables 3 and 4). The changes in shape are displayed in wireframe graphs associated with each CV, where the light blue representing the mean configuration of all the individual shapes and the dark blue determines a 5 Mahalanobis distance units change. Figure 1 shows an example of upper lateral incisors between subjects with Angle Class I, II, and III malocclusions. The results yielded a significant difference in the shape of the right and left lateral incisors when compared between groups of different dental malocclusion, where the first canonical (CV1) explains 77.59% of the total variation, followed by 22.40% for the second canonical (CV2). CV1 separates Class II (positive axis) from Class I and III (negative axis). While CV2 separates Class I and Class II (positive axis) from Class III (negative axis).
Table 3
MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall Malocclusion Effect using Wilks’s Lambda for upper Permanent teeth
Statistic
Value
F Value
Num DF
Den DF
Pr > F
Upper right second molars
0.57674501
2.41
20
152
0.0014
Upper right first molars
0.52859224
3.79
20
202
< 0.0001
Upper right second premolars
0.45628836
4.47
20
186
< 0.0001
Upper right first premolars
0.51748010
3.94
20
202
< 0.0001
Upper right canines
0.68827764
1.70
20
166
0.0369
Upper right lateral incisors
0.57883233
2.80
20
178
0.0002
Upper right central incisors
0.64148491
2.24
20
180
0.0029
Upper left central incisors
0.69620727
2.00
20
202
0.0085
Upper left lateral incisors
0.62971370
2.37
20
182
0.0015
Upper left canines
0.58521175
2.64
20
172
0.0004
Upper left first premolars
0.59689648
2.91
20
198
< 0.0001
Upper left second premolars
0.45628836
4.47
20
186
< 0.0001
Upper left first molars
0.61148273
2.68
20
192
0.0003
Upper left second molars
0.66878648
1.60
20
144
0.0590
Table 4
MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall Malocclusion Effect using Wilks’s Lambda for lower Permanent teeth
Statistic
Value
F Value
Num DF
Den DF
Pr > F
Lower left second molars
0.50355871
2.74
20
134
0.0003
Lower left first molars
0.38033365
5.53
20
178
< 0.0001
Lower left second premolars
0.42985192
5.04
20
192
< 0.0001
Lower left first premolars
0.41738604
4.99
20
182
< 0.0001
Lower left canines
0.60909834
2.11
20
150
0.0060
Lower left lateral incisors
0.66541502
2.10
20
186
0.0055
Lower left central incisors
0.74419686
1.54
20
194
0.0705
Lower right central incisors
0.64206521
2.55
20
206
0.0005
Lower right lateral incisors
0.57122396
2.91
20
180
< 0.0001
Lower right canines
0.50307833
3.24
20
158
< 0.0001
Lower right first premolars
0.58449710
2.65
20
172
0.0004
Lower right second premolars
0.53326385
3.25
20
176
< 0.0001
Lower right first molars
0.54459802
3.37
20
190
< 0.0001
Lower right second molars
0.38576124
3.42
20
112
< 0.0001
Discriminant function analysis (DFA) generated comparative a wireframe graphs between each two groups. Among the three malocclusion groups, the most morphological difference was between Class I and Class II groups for the following teeth: Upper right second molars, Upper right first molars, Upper right second premolars, Upper right first premolars, Upper right canines, Upper right lateral incisors, Upper right central incisors, Upper left lateral incisors, Upper left canines, Upper left canines, Upper left second premolars, Upper left first molars. Lower left first molars, Lower left second premolars, Lower left lateral incisors, Lower left central incisors, Lower right second premolars, Lower right second molars.
Another morphological difference was noted between Class I and Class III groups for upper left central incisors, and Lower right central incisors. For Class II and Class III groups, morphological difference noted in upper left second molars, lower left second molars, lower left first premolars, lower left canines, lower right lateral incisors, lower right canines, lower right first premolars, and lower right first molars. Tables 5 and 6 showed details description of the Mahalanobis Distances from Conical Variates Analysis for upper and lower Permanent dentition.
Table 5
Mahalanobis Distances from Conical Variates Analysis for Upper Permanent Teeth
 
Group
Class I
Class II
Class III
Upper right second molars
Class I
-
< 0.0001
< 0.0001
Class II
3.80
-
< 0.0001
Class III
2.95
3.53
-
Upper right first molars
Class I
-
< 0.0001
< 0.0001
Class II
3.05
-
< 0.0001
Class III
3.03
3.03
-
Upper right second premolars
Class I
-
< 0.0001
< 0.0001
Class II
3.56
-
< 0.0001
Class III
3.49
3.47
-
Upper right first premolars
Class I
-
< 0.0001
< 0.0001
Class II
3.06
-
< 0.0001
Class III
2.54
2.70
-
Upper right canines
Class I
-
< 0.0001
< 0.0001
Class II
2.22
-
0.0020
Class III
2.03
1.74
-
Upper right lateral incisors
Class I
-
< 0.0001
< 0.0001
Class II
3.20
-
< 0.0001
Class III
1.94
2.36
-
Upper right central incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.58
-
< 0.0001
Class III
2.43
2.06
-
Upper left central incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.10
-
0.0001
Class III
2.17
1.73
-
Upper left lateral incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.40
-
0.0003
Class III
2.05
1.79
-
Upper left canines
Class I
-
< 0.0001
0.0002
Class II
2.22
-
< 0.0001
Class III
1.93
2.13
-
Upper left first premolars
Class I
-
< 0.0001
< 0.0001
Class II
3.20
-
< 0.0001
Class III
2.65
2.40
-
Upper left second premolars
Class I
-
< 0.0001
< 0.0001
Class II
3.24
-
< 0.0001
Class III
2.74
2.86
-
Upper left first molars
Class I
-
< 0.0001
< 0.0001
Class II
3.39
-
< 0.0001
Class III
2.67
2.68
-
Upper left second molars
Class I
-
< 0.0001
< 0.0001
Class II
2.77
-
< 0.0001
Class III
2.43
2.93
-
Table 6
Mahalanobis Distances from Conical Variates Analysis for Lower Permanent Teeth
Teeth
Group
Class I
Class II
Class III
Lower left second molars
Class I
-
< 0.0001
< 0.0001
Class II
3.49
-
< 0.0001
Class III
3.63
4.02
-
Lower left first molars
Class I
-
< 0.0001
< 0.0001
Class II
5.16
-
< 0.0001
Class III
4.63
4.56
-
Lower left second premolars
Class I
-
< 0.0001
< 0.0001
Class II
2.85
-
< 0.0001
Class III
2.78
3.21
-
Lower left first premolars
Class I
-
< 0.0001
< 0.0001
Class II
3.59
-
< 0.0001
Class III
3.61
4.03
-
Lower left canines
Class I
-
< 0.0001
< 0.0001
Class II
2.46
-
< 0.0001
Class III
2.60
2.64
-
Lower left lateral incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.61
-
< 0.0001
Class III
1.81
2.18
-
Lower left central incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.00
-
< 0.0001
Class III
1.76
1.98
-
Lower right central incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.04
-
< 0.0001
Class III
2.23
1.80
-
Lower right lateral incisors
Class I
-
< 0.0001
< 0.0001
Class II
2.00
-
< 0.0001
Class III
2.06
2.28
-
Lower right canines
Class I
-
< 0.0001
< 0.0001
Class II
2.69
-
< 0.0001
Class III
2.04
3.57
-
Lower right first premolars
Class I
-
< 0.0001
< 0.0001
Class II
2.17
-
< 0.0001
Class III
3.01
3.11
-
Lower right second premolars
Class I
-
< 0.0001
< 0.0001
Class II
2.33
-
< 0.0001
Class III
3.26
3.21
-
Lower right first molars
Class I
-
< 0.0001
< 0.0001
Class II
2.67
-
< 0.0001
Class III
3.32
3.72
-
Lower right second molars
Class I
-
< 0.0001
< 0.0001
Class II
4.28
-
< 0.0001
Class III
4.09
3.76
-

Discussion

The GMM methods that were used in this study ensured detailed and objective quantification of the shape of the study samples. In addition, the GMM methods circumvented the inability of traditional metric and angular analyses to separate the effects of size on shape [10, 18, 44, 45]. The relatively large number of landmarks and their optimal distribution facilitated the capture of enough data; thus, ensuring accuracy in describing shape. This contrasts to the techniques which have been used variously to quantify tooth shape. Most of these are derived from traditional linear measurements, especially the ratio of mesio-distal (MD) and bucco-lingual (BL) metrics [46, 47]. The information derived is limited and does not describe most of the in tooth shape. The adaptation of 3D GMM analysis of subjects who fit into three subgroups of malocclusion was not only more efficient, but also more reproducible.
Differences in tooth shape between various racial groups have been reported. Lavelle (1972) studied the dental crown diameters of a White, African American, and Southeast Asian population sample [48]. The study reported the smallest dimensions in the White sample, next was the Asian sample, and the African American subjects had the largest dimension. Merz et al. (1991) reported similar findings, with larger mesio-distal canine, premolar and molar crown dimensions of the African American subjects [49]. According to Yuen et al. (1997), Australian Aboriginals had larger tooth dimensions compared to the Hong Kong Southern Chinese population, and Caucasians who had the smallest dimensions of the populations studied [50]. In a study comparing the mesio-distal tooth width of White British males to British of Pakistani origin, Radnzic (1987) found no statistically significant differences between the groups; concluding that the populations may have shared a common Caucasian lineage [51]. Other studies concluded that the population in Iceland had larger tooth dimensions compared to other Europeans [52]. In addition, Brook et al. (2009) reported that a Southern Chinese population had the largest mesio-distal crown size compared to a White North American population sample, and the Romano British sample had the smallest dimensions in the study [53].
Tooth shape is influenced by several factors [54] These include genetic, epigenetic, and environmental, factors as well as evolutionary adaptation processes [55, 56]. In this study, tooth shape difference amongst teeth in dental malocclusions Class I, II, and III was reported for all the twenty-eight teeth that were analyzed. This contrasts to the difference in centroid size (CS) in the same sample; CS difference was detected in only four teeth. The differences in shape were very similar in principal and symmetrical between left and right. The shape changes were reproducible when analyzed and visualized using wireframes, and scatter plot of the first two conical variates graphs representing a change in Mahalanobis distance units. This finding was unusual from a basic tooth development perspective. Although tooth development is controlled by common morphogenetic pathways, each tooth germ develops as an independent biological entity [57].
The effects of dental malocclusion class on tooth shape in this study can be represented by the upper lateral incisor; a tooth that has been reported to contribute to TSD [58]. The results indicate did not show any significant malocclusion-related difference between the upper lateral incisors in both male and females samples. However, there were significant differences in the shape of lateral incisors among the different malocclusion groups. Buccal views of wireframe graphs show that Class I is wider in shape mesiodistally, and Class II is longer in shape. The shape of the lateral incisor in Class III malocclusion did not show any significant difference from either Class I or II.
The effects on shape reported for the upper lateral incisor in this study are not in conformity with what would have been expected based on previous studies. Benward et al. [58] reported a higher level of tooth deformities in the maxilla of Class III patients. Eustaquio Araujo [59] concluded that the anterior tooth size discrepancy was greater in Class III patients compared to Class I and Class II. In these studies, the maxillary discrepancies in Class III were attributed to the upper lateral incisor. Although it is conceivable that a larger sample size might produce results that would more closely reflect the previous studies, the dissimilarity may be due to differences attributable to the ethnic background of the population studied.
This study revealed differences in tooth shape between the different dental malocclusions on all twenty-eight teeth that were studied, and the pattern of shape differences varied between the dental malocclusions. In addition, the study showed some unique differences in shape of teeth compared to the more commonly studied population as exemplified by the upper lateral incisors. This suggests that the shape variation described is a unique entity inherent in the Hispanic population studied. This study provides some guidelines towards future directions. This includes using larger sample sizes, comparative population studies, and correlation with dental and craniofacial abnormalities, which was a limitation in this study.

Conclusion

The shape variation is a distinct entity inherent in the Hispanic population, where there is a significant difference in 3-D tooth shape between patients with Angle Class I, Class II, and Class III dental malocclusions compared to other populations.

Acknowledgements

The authors would like to acknowledge Dr. Peter Gakunga and Dr. Kate Spradley for their supervision, guidance, suggestions, and corrections. The authors also would like to thank the Deanship of Scientific Research, Qassim University, for funding publication of this project.

Declarations

The study protocol was carried out in accordance with relevant guidelines and regulations. The protocol reviewed and approved by the Institutional Review Board at the University of Texas Health Science Center, San Antonio, Protocol number HSC20190749E. Informed consent was obtained from participants and/or the legal guardian.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Rokaya D, Kitisubkanchana J, Wonglamsam A, Santiwong P, Srithavaj T, Humagain M. Nepalese esthetic Dental (NED) proportion in nepalese Population. Kathmandu Univ Med J (KUMJ). 2015;13:244–9.PubMedCrossRef Rokaya D, Kitisubkanchana J, Wonglamsam A, Santiwong P, Srithavaj T, Humagain M. Nepalese esthetic Dental (NED) proportion in nepalese Population. Kathmandu Univ Med J (KUMJ). 2015;13:244–9.PubMedCrossRef
3.
Zurück zum Zitat Kieser J, Groeneveld H, Preston C. A metric analysis of the south african caucasoid dentition. J Dent Association South Africa = Die Tydskrif van die Tandheelkundige Vereniging van Suid-Afrika. 1985;40:121. Kieser J, Groeneveld H, Preston C. A metric analysis of the south african caucasoid dentition. J Dent Association South Africa = Die Tydskrif van die Tandheelkundige Vereniging van Suid-Afrika. 1985;40:121.
4.
Zurück zum Zitat Bolton WA. Disharmony in tooth size and its relation to the analysis and treatment of Malocclusion. Angle Orthod. 1958;28:113–30. Bolton WA. Disharmony in tooth size and its relation to the analysis and treatment of Malocclusion. Angle Orthod. 1958;28:113–30.
5.
Zurück zum Zitat GARN SM, LEWIS AB. The gradient and the pattern of crown-size reduction in simple hypodontia. Angle Orthod. 1970;40:51–8.PubMed GARN SM, LEWIS AB. The gradient and the pattern of crown-size reduction in simple hypodontia. Angle Orthod. 1970;40:51–8.PubMed
6.
7.
Zurück zum Zitat Moorrees CF, Thomsen S, Jensen E, Yen PK-J. Mesiodistal crown diameters of the deciduous and permanent teeth in individuals. J Dent Res. 1957;36:39–47.PubMedCrossRef Moorrees CF, Thomsen S, Jensen E, Yen PK-J. Mesiodistal crown diameters of the deciduous and permanent teeth in individuals. J Dent Res. 1957;36:39–47.PubMedCrossRef
8.
Zurück zum Zitat Richardson ER, Malhotra SK. Mesiodistal crown dimension of the permanent dentition of american negroes. Am J Orthod. 1975;68:157–64.PubMedCrossRef Richardson ER, Malhotra SK. Mesiodistal crown dimension of the permanent dentition of american negroes. Am J Orthod. 1975;68:157–64.PubMedCrossRef
9.
Zurück zum Zitat Stuart Hunter W, Priest WR. Errors and discrepancies in measurement of tooth size. J Dent Res. 1960;39:405–14.CrossRef Stuart Hunter W, Priest WR. Errors and discrepancies in measurement of tooth size. J Dent Res. 1960;39:405–14.CrossRef
10.
Zurück zum Zitat Bernal V. Size and shape analysis of human molars: comparing traditional and geometric morphometric techniques. Homo. 2007;58:279–96.PubMedCrossRef Bernal V. Size and shape analysis of human molars: comparing traditional and geometric morphometric techniques. Homo. 2007;58:279–96.PubMedCrossRef
11.
Zurück zum Zitat Biggerstaff RH. The basal area of posterior tooth crown components: the assessment of within tooth variations of premolars and molars. Am J Phys Anthropol. 1969;31:163–70.PubMedCrossRef Biggerstaff RH. The basal area of posterior tooth crown components: the assessment of within tooth variations of premolars and molars. Am J Phys Anthropol. 1969;31:163–70.PubMedCrossRef
12.
Zurück zum Zitat Biggerstaff RH. Electronic methods for the analysis of the human post-canine dentition. Am J Phys Anthropol. 1969;31:235–42.PubMedCrossRef Biggerstaff RH. Electronic methods for the analysis of the human post-canine dentition. Am J Phys Anthropol. 1969;31:235–42.PubMedCrossRef
13.
Zurück zum Zitat Morris DH. Maxillary first premolar angular differences between north american Indians and non-north american Indians. Am J Phys Anthropol. 1981;54:431–3.PubMedCrossRef Morris DH. Maxillary first premolar angular differences between north american Indians and non-north american Indians. Am J Phys Anthropol. 1981;54:431–3.PubMedCrossRef
14.
Zurück zum Zitat Bailey SE. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. J Hum Evol. 2004;47:183–98.PubMedCrossRef Bailey SE. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. J Hum Evol. 2004;47:183–98.PubMedCrossRef
15.
Zurück zum Zitat Morris DH. Maxillary molar occlusal polygons in five human samples. Am J Phys Anthropol. 1986;70:333–8.PubMedCrossRef Morris DH. Maxillary molar occlusal polygons in five human samples. Am J Phys Anthropol. 1986;70:333–8.PubMedCrossRef
16.
Zurück zum Zitat Bailey S, Glantz M, Weaver TD, Viola B. The affinity of the dental remains from Obi-Rakhmat Grotto, Uzbekistan. J Hum Evol. 2008;55:238–48.PubMedCrossRef Bailey S, Glantz M, Weaver TD, Viola B. The affinity of the dental remains from Obi-Rakhmat Grotto, Uzbekistan. J Hum Evol. 2008;55:238–48.PubMedCrossRef
17.
Zurück zum Zitat Ferrario VF, Sforza C, Tartaglia GM, Colombo A, Serrao G. Size and shape of the human first permanent molar: a Fourier analysis of the occlusal and equatorial outlines. Am J Phys Anthropology: Official Publication Am Association Phys Anthropologists. 1999;108:281–94.CrossRef Ferrario VF, Sforza C, Tartaglia GM, Colombo A, Serrao G. Size and shape of the human first permanent molar: a Fourier analysis of the occlusal and equatorial outlines. Am J Phys Anthropology: Official Publication Am Association Phys Anthropologists. 1999;108:281–94.CrossRef
18.
Zurück zum Zitat Perez SI, Bernal V, Gonzalez PN. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat. 2006;208:769–84.PubMedCrossRef Perez SI, Bernal V, Gonzalez PN. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat. 2006;208:769–84.PubMedCrossRef
19.
Zurück zum Zitat Pavoni C, Franchi L, Buongiorno M, Cozza P. Evaluation of maxillary arch morphology in children with unilaterally impacted incisors via three-dimensional analysis of digital dental casts: a controlled study. J Orofac Orthopedics/Fortschritte der Kieferorthopädie. 2016;77:16–21.CrossRef Pavoni C, Franchi L, Buongiorno M, Cozza P. Evaluation of maxillary arch morphology in children with unilaterally impacted incisors via three-dimensional analysis of digital dental casts: a controlled study. J Orofac Orthopedics/Fortschritte der Kieferorthopädie. 2016;77:16–21.CrossRef
21.
Zurück zum Zitat Paoloni V, Lione R, Farisco F, Halazonetis DJ, Franchi L, Cozza P. Morphometric covariation between palatal shape and skeletal pattern in class II growing subjects. Eur J Orthod. 2017;39:371–6.PubMedCrossRef Paoloni V, Lione R, Farisco F, Halazonetis DJ, Franchi L, Cozza P. Morphometric covariation between palatal shape and skeletal pattern in class II growing subjects. Eur J Orthod. 2017;39:371–6.PubMedCrossRef
22.
Zurück zum Zitat Bednar KA, Briss DS, Bamashmous MS, Grayson BH, Shetye PR. Palatal and alveolar tissue Deficiency in Infants with Complete Unilateral Cleft lip and palate. The Cleft Palate-Craniofacial Journal. 2018;55:64–9.PubMedCrossRef Bednar KA, Briss DS, Bamashmous MS, Grayson BH, Shetye PR. Palatal and alveolar tissue Deficiency in Infants with Complete Unilateral Cleft lip and palate. The Cleft Palate-Craniofacial Journal. 2018;55:64–9.PubMedCrossRef
23.
Zurück zum Zitat Moreno LU, Howe S, Kummet C, Vela K, Dawson D, Southard T. Phenotypic diversity in white adults with moderate to severe class II malocclusion. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies. Am Board Orthod. 2014;145:305–16.CrossRef Moreno LU, Howe S, Kummet C, Vela K, Dawson D, Southard T. Phenotypic diversity in white adults with moderate to severe class II malocclusion. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies. Am Board Orthod. 2014;145:305–16.CrossRef
24.
Zurück zum Zitat Moreno LU, Vela K, Kummet C, Dawson D, Southard T. Phenotypic diversity in white adults with moderate to severe class III malocclusion. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board. of Orthodontics. 2013;144:32–42. Moreno LU, Vela K, Kummet C, Dawson D, Southard T. Phenotypic diversity in white adults with moderate to severe class III malocclusion. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board. of Orthodontics. 2013;144:32–42.
25.
Zurück zum Zitat Pugliese F, Palomo JM, Calil LR, de Medeiros Alves A, Lauris JRP, Garib D. Dental arch size and shape after maxillary expansion in bilateral complete cleft palate: a comparison of three expander designs. Angle Orthod. 2020;90:233–8.PubMedCrossRef Pugliese F, Palomo JM, Calil LR, de Medeiros Alves A, Lauris JRP, Garib D. Dental arch size and shape after maxillary expansion in bilateral complete cleft palate: a comparison of three expander designs. Angle Orthod. 2020;90:233–8.PubMedCrossRef
26.
Zurück zum Zitat Miller SF, Vela KC, Levy SM, Southard TE, Gratton DG, Moreno Uribe LM. Patterns of morphological integration in the dental arches of individuals with malocclusion. Am J Hum Biology. 2016;28:879–89.CrossRef Miller SF, Vela KC, Levy SM, Southard TE, Gratton DG, Moreno Uribe LM. Patterns of morphological integration in the dental arches of individuals with malocclusion. Am J Hum Biology. 2016;28:879–89.CrossRef
27.
Zurück zum Zitat Kieser JA, Bernal V, Neil Waddell J, Raju S. The uniqueness of the human anterior dentition: a geometric morphometric analysis. J Forensic Sci. 2007;52:671–7.PubMedCrossRef Kieser JA, Bernal V, Neil Waddell J, Raju S. The uniqueness of the human anterior dentition: a geometric morphometric analysis. J Forensic Sci. 2007;52:671–7.PubMedCrossRef
28.
Zurück zum Zitat Robinson D, Blackwell P, Stillman E, Brook A. Impact of landmark reliability on the planar Procrustes analysis of tooth shape. Arch Oral Biol. 2002;47:545–54.PubMedCrossRef Robinson D, Blackwell P, Stillman E, Brook A. Impact of landmark reliability on the planar Procrustes analysis of tooth shape. Arch Oral Biol. 2002;47:545–54.PubMedCrossRef
29.
Zurück zum Zitat Camporesi M, Franchi L, Baccetti T, Antonini A. Thin-plate spline analysis of arch form in a southern european population with an ideal natural occlusion. Eur J Orthod. 2006;28:135–40.PubMedCrossRef Camporesi M, Franchi L, Baccetti T, Antonini A. Thin-plate spline analysis of arch form in a southern european population with an ideal natural occlusion. Eur J Orthod. 2006;28:135–40.PubMedCrossRef
30.
Zurück zum Zitat Buchaillard SI, Ong SH, Payan Y, Foong K. 3D statistical models for tooth surface reconstruction. Comput Biol Med. 2007;37:1461–71.PubMedCrossRef Buchaillard SI, Ong SH, Payan Y, Foong K. 3D statistical models for tooth surface reconstruction. Comput Biol Med. 2007;37:1461–71.PubMedCrossRef
31.
Zurück zum Zitat Gómez-Robles A, Martinón-Torres M, De Castro JB, et al. A geometric morphometric analysis of hominin upper first molar shape. J Hum Evol. 2007;53:272–85.PubMedCrossRef Gómez-Robles A, Martinón-Torres M, De Castro JB, et al. A geometric morphometric analysis of hominin upper first molar shape. J Hum Evol. 2007;53:272–85.PubMedCrossRef
32.
Zurück zum Zitat Gomez-Robles A, Martinon-Torres M, de Castro JMB, Prado L, Sarmiento S, Arsuaga JL. Geometric morphometric analysis of the crown morphology of the lower first premolar of hominins, with special attention to Pleistocene Homo. J Hum Evol. 2008;55:627–38.PubMedCrossRef Gomez-Robles A, Martinon-Torres M, de Castro JMB, Prado L, Sarmiento S, Arsuaga JL. Geometric morphometric analysis of the crown morphology of the lower first premolar of hominins, with special attention to Pleistocene Homo. J Hum Evol. 2008;55:627–38.PubMedCrossRef
33.
Zurück zum Zitat Hajeer M, Millet D, Ayoub A, Siebert J. Current products and practices. Applications of 3D imaging in orthodontics: part. I J Orthod. 2004;31:62–70.PubMedCrossRef Hajeer M, Millet D, Ayoub A, Siebert J. Current products and practices. Applications of 3D imaging in orthodontics: part. I J Orthod. 2004;31:62–70.PubMedCrossRef
34.
Zurück zum Zitat Hajeer M, Millett D, Ayoub A, Siebert J. Applications of 3D imaging in orthodontics: part II. J Orthodont. 2004;31:154–62.CrossRef Hajeer M, Millett D, Ayoub A, Siebert J. Applications of 3D imaging in orthodontics: part II. J Orthodont. 2004;31:154–62.CrossRef
35.
Zurück zum Zitat Bell A, Ayoub A, Siebert P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthodont. 2003;30:219–23.CrossRef Bell A, Ayoub A, Siebert P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthodont. 2003;30:219–23.CrossRef
36.
Zurück zum Zitat Fields HW Jr. Orthodontic-restorative treatment for relative mandibular anterior excess tooth-size problems. Am J Orthod. 1981;79:176–83.PubMedCrossRef Fields HW Jr. Orthodontic-restorative treatment for relative mandibular anterior excess tooth-size problems. Am J Orthod. 1981;79:176–83.PubMedCrossRef
37.
Zurück zum Zitat Quimby ML, Vig KW, Rashid RG, Firestone AR. The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod. 2004;74:298–303.PubMed Quimby ML, Vig KW, Rashid RG, Firestone AR. The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod. 2004;74:298–303.PubMed
38.
Zurück zum Zitat Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialosi TJ. Comparison of measurements made on digital and plaster models. Am J Orthod Dentofac Orthop. 2003;124:101–5.CrossRef Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialosi TJ. Comparison of measurements made on digital and plaster models. Am J Orthod Dentofac Orthop. 2003;124:101–5.CrossRef
39.
Zurück zum Zitat Brook A, Elcock C, Al-Sharood M, McKeown H, Khalaf K, Smith R. Further studies of a model for the etiology of anomalies of tooth number and size in humans. Connect Tissue Res. 2002;43:289–95.PubMedCrossRef Brook A, Elcock C, Al-Sharood M, McKeown H, Khalaf K, Smith R. Further studies of a model for the etiology of anomalies of tooth number and size in humans. Connect Tissue Res. 2002;43:289–95.PubMedCrossRef
40.
Zurück zum Zitat Corporation S. Stratovan Checkpoint. 2020.02.05.1043 ed 2020.02.05. Corporation S. Stratovan Checkpoint. 2020.02.05.1043 ed 2020.02.05.
41.
Zurück zum Zitat Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11:353–7.PubMedCrossRef Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11:353–7.PubMedCrossRef
42.
Zurück zum Zitat Mitteroecker P, Gunz P. Advances in geometric morphometrics. Evol Biol. 2009;36:235–47.CrossRef Mitteroecker P, Gunz P. Advances in geometric morphometrics. Evol Biol. 2009;36:235–47.CrossRef
43.
Zurück zum Zitat Slice DE. Geometric morphometrics. Annual Review of Anthropology 2007;36. Slice DE. Geometric morphometrics. Annual Review of Anthropology 2007;36.
44.
Zurück zum Zitat Kerr WJS, Ford I. The variability of some craniofacial dimensions. Angle Orthod. 1991;61:205–10.PubMed Kerr WJS, Ford I. The variability of some craniofacial dimensions. Angle Orthod. 1991;61:205–10.PubMed
45.
Zurück zum Zitat Hanihara T, Ishida H. Metric dental variation of major human populations. Am J Phys Anthropology: Official Publication Am Association Phys Anthropologists. 2005;128:287–98.CrossRef Hanihara T, Ishida H. Metric dental variation of major human populations. Am J Phys Anthropology: Official Publication Am Association Phys Anthropologists. 2005;128:287–98.CrossRef
46.
Zurück zum Zitat RUNE B. SARNÄS K-V. tooth size and tooth formation in children with advanced hypodontia. Angle Orthod. 1974;44:316–21.PubMed RUNE B. SARNÄS K-V. tooth size and tooth formation in children with advanced hypodontia. Angle Orthod. 1974;44:316–21.PubMed
47.
Zurück zum Zitat Schalk-Van Der Weide Y, Bosman F. Tooth size in relatives of individuals with oligodontia. Arch Oral Biol. 1996;41:469–72.PubMedCrossRef Schalk-Van Der Weide Y, Bosman F. Tooth size in relatives of individuals with oligodontia. Arch Oral Biol. 1996;41:469–72.PubMedCrossRef
48.
Zurück zum Zitat Lavelle C. Maxillary and mandibular tooth size in different racial groups and in different occlusal categories. Am J Orthod Dentofac Orthop. 1972;61:29–37.CrossRef Lavelle C. Maxillary and mandibular tooth size in different racial groups and in different occlusal categories. Am J Orthod Dentofac Orthop. 1972;61:29–37.CrossRef
49.
Zurück zum Zitat Merz ML, Isaacson RJ, Germane N, Rubenstein LK. Tooth diameters and arch perimeters in a black and a white population. Am J Orthod Dentofac Orthop. 1991;100:53–8.CrossRef Merz ML, Isaacson RJ, Germane N, Rubenstein LK. Tooth diameters and arch perimeters in a black and a white population. Am J Orthod Dentofac Orthop. 1991;100:53–8.CrossRef
50.
Zurück zum Zitat Yuen KK, So LL, Tang EL. Mesiodistal crown diameters of the primary and permanent teeth in southern Chinese—a longitudinal study. Eur J Orthod. 1997;19:721–31.PubMedCrossRef Yuen KK, So LL, Tang EL. Mesiodistal crown diameters of the primary and permanent teeth in southern Chinese—a longitudinal study. Eur J Orthod. 1997;19:721–31.PubMedCrossRef
51.
Zurück zum Zitat Radnzic D. Comparative study of mesiodistal crown diameters and arch dimensions between indigenous british and pakistani immigrant populations. Am J Phys Anthropol. 1987;72:479–83.PubMedCrossRef Radnzic D. Comparative study of mesiodistal crown diameters and arch dimensions between indigenous british and pakistani immigrant populations. Am J Phys Anthropol. 1987;72:479–83.PubMedCrossRef
52.
Zurück zum Zitat Axelsson G, Kirveskari P. Crown size of permanent teeth in Icelanders. Acta Odontol Scand. 1983;41:181–6.PubMedCrossRef Axelsson G, Kirveskari P. Crown size of permanent teeth in Icelanders. Acta Odontol Scand. 1983;41:181–6.PubMedCrossRef
53.
Zurück zum Zitat Brook A, Griffin R, Townsend G, Levisianos Y, Russell J, Smith R. Variability and patterning in permanent tooth size of four human ethnic groups. Arch Oral Biol. 2009;54:79–S85.CrossRef Brook A, Griffin R, Townsend G, Levisianos Y, Russell J, Smith R. Variability and patterning in permanent tooth size of four human ethnic groups. Arch Oral Biol. 2009;54:79–S85.CrossRef
54.
Zurück zum Zitat Kondo S, Townsend GC. Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. Am J Phys Anthropology: Official Publication Am Association Phys Anthropologists. 2006;129:196–203.CrossRef Kondo S, Townsend GC. Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. Am J Phys Anthropology: Official Publication Am Association Phys Anthropologists. 2006;129:196–203.CrossRef
55.
Zurück zum Zitat Ungar PS, Teaford MF. Human diet: its origin and evolution. Greenwood Publishing Group; 2002. Ungar PS, Teaford MF. Human diet: its origin and evolution. Greenwood Publishing Group; 2002.
56.
Zurück zum Zitat Brook A. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol. 2009;54:3–S17.CrossRef Brook A. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol. 2009;54:3–S17.CrossRef
57.
Zurück zum Zitat Gómez-Robles A, Polly PD. Morphological integration in the hominin dentition: evolutionary, developmental, and functional factors. Evolution: Int J Org Evol. 2012;66:1024–43.CrossRef Gómez-Robles A, Polly PD. Morphological integration in the hominin dentition: evolutionary, developmental, and functional factors. Evolution: Int J Org Evol. 2012;66:1024–43.CrossRef
58.
Zurück zum Zitat Cua-Benward G, Dibaj S, Ghassemi B. The prevalence of congenitally missing teeth in class I, II, III malocclusions. J Clin Pediatr Dent. 1992;17:15–7.PubMed Cua-Benward G, Dibaj S, Ghassemi B. The prevalence of congenitally missing teeth in class I, II, III malocclusions. J Clin Pediatr Dent. 1992;17:15–7.PubMed
59.
Zurück zum Zitat Araujo E, Souki M. Bolton anterior tooth size discrepancies among different malocclusion groups. Angle Orthod. 2003;73:307–13.PubMed Araujo E, Souki M. Bolton anterior tooth size discrepancies among different malocclusion groups. Angle Orthod. 2003;73:307–13.PubMed
Metadaten
Titel
Morphometric analysis of tooth morphology among different malocclusion groups in a hispanic population
verfasst von
Hesham Alsaigh
Murad Alrashdi
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2023
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02882-7

Weitere Artikel der Ausgabe 1/2023

BMC Oral Health 1/2023 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Zahnmedizin

Bestellen Sie unseren kostenlosen Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.