Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2023

Open Access 01.12.2023 | Research

Impact of chronic fibrosing interstitial lung disease on healthcare use: association between fvc decline and inpatient hospitalization

verfasst von: David Singer, Benjamin Chastek, Andrew Sargent, Jonathan C. Johnson, Sharash Shetty, Craig Conoscenti, Elana J. Bernstein

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2023

Abstract

Background

Many types of interstitial lung diseases (ILDs) may transition to progressive chronic-fibrosing ILDs with rapid lung function decline and a negative survival prognosis. In real-world clinical settings, forced vital capacity (FVC) measures demonstrating progressive decline may be linked to negative outcomes, including increased risks of costly healthcare resource utilization (HRU). Thus, we assessed the relationship between rate of decline in lung function and an increase in HRU, specifically inpatient hospitalization, among patients with chronic fibrosing ILD.

Methods

This study utilized electronic health records from 01-Oct-2015 to 31-Oct-2019. Eligible patients (≥ 18 years old) had ≥ 2 fibrosing ILD diagnosis codes, clinical activity for ≥ 15 months, and ≥ 2 FVC tests occurring 6 months apart. Patients with missing demographic data, IPF, or use of nintedanib or pirfenidone were excluded. Two groups were defined by relative change in percent of predicted FVC (FVC% pred) from baseline to 6 months: significant decline (≥ 10%) vs. marginal decline/stable FVC (decrease < 10% or increase). The primary outcome was defined as the occurrence of an inpatient hospitalization 6 months after the first FVC value. Descriptive and multivariable analysis was conducted to examine the impact of FVC decline on occurrence of inpatient hospitalization.

Results

The sample included 566 patients: 13% (n = 75) with significant decline and 87% (n = 491) with marginal decline/stable FVC; their mean age (SD) was 65 (13.7) years and 56% were female. Autoimmune diagnoses were observed among 40% of patients with significant decline, and 27% with marginal decline/stable FVC. The significant decline group had better lung function at baseline than the marginal/stable group. For patients with FVC% <80% at baseline, reduction of FVC% ≥10% was associated with significantly increased odds of an inpatient hospitalization (odds ratio [OR] 2.85; confidence interval [CI] 1.17, 6.94 [p = 0.021]).

Conclusion

Decline in FVC% ≥10% was associated with increased odds of inpatient hospitalization among patients with reduced lung function at baseline. These findings support the importance of preserving lung function among patients with fibrosing ILD.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12890-023-02637-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AHRQ
Agency for Healthcare Research and Quality
ANOVA
Analysis of variance
BIPI
Boehringer Ingelheim Pharmaceuticals
BMI
Body mass index
CCS
Clinical Classifications Software
CI
Confidence interval
COPD
Chronic obstructive pulmonary disease
ED
Emergency department
EHR
Electronic health record
ERA
Endothelin receptor antagonists
FVC
Forced vital capacity
HIPAA
Health Insurance Portability and Accountability Act
HRU
Healthcare resource utilization
ICD
International Classification of Diseases
ICMJE
International Committee of Medical Journal Editors
ICU
Intensive care unit
ILD
Interstitial lung disease
IP
Inpatient
IPF
Idiopathic pulmonary fibrosis
OCD
Optum Clinical Database
OR
Odds ratio
PDE
Phosphodiesterase
PH
Pulmonary hypertension
PPI
Proton pump inhibitors
SD
Standard deviation
sGC
Guanylate cyclase stimulators
US
United States

Background

Interstitial lung diseases (ILDs) are a heterogeneous group of disorders characterized by inflammation and/or fibrosis of the lung parenchyma; the most commonly diagnosed form is idiopathic pulmonary fibrosis (IPF) [1, 2]. While IPF is always progressive and fibrosing, other ILDs may at some point transition from acute or inflammatory behavior to a chronic fibrosing ILD with a “progressive phenotype,” associated with rapid functional decline and increased mortality [3, 4].
Chronic fibrosing ILD may be described as a fibro-proliferative or inflammatory condition and may be associated with several autoimmune disorders, infections, or environmental exposures [5]. Furthermore, researchers have suggested that progressive non-IPF ILDs share some pathogenic mechanisms and clinical disease behavior with IPF [6], but they are generally distinguished from non-progressive ILD by continuing functional decline associated with mortality [7, 8]. Declines in forced vital capacity (FVC), a primary clinical measure of lung function, were among characteristics used to identify progression in a clinical trial setting [9].
Traditionally, many chronic fibrosing ILDs were treated with corticosteroids and immunomodulators, with only modest success [10], whereas two antifibrotic therapies were approved for treatment of IPF: nintedanib [11] and pirfenidone [12]. A Phase III trial of nintedanib (INBUILD) was conducted specifically among patients who had non-IPF chronic fibrosing ILD with a progressive phenotype [9, 13]. This study showed that the annual rate of decline in FVC was significantly lower among patients who received nintedanib, as compared with those who received placebo. In March 2020, nintedanib was approved for the treatment of chronic fibrosing ILD with a progressive phenotype.
It is important to understand the impact of declining lung function among patients with ILD in real-world clinical settings. An association has been established between FVC decline and healthcare resource utilization (HRU) outcomes in IPF [1416], but this relationship has not been previously established for non-IPF chronic fibrosing ILD. The primary aim of this study was to assess the relationship between FVC decline and HRU—specifically, inpatient hospitalization—among patients with chronic fibrosing ILD.

Methods

Design and sample selection

This study used electronic health records (EHR) data for the study period of 01 October 2015 through 31 October 2019 (Fig. 1). Adult patients (≥ 18 years of age) were identified by at least 2 encounters with diagnoses of fibrosing ILD (Appendix Table A1 for International Classification of Diseases Clinical Modification [ICD]-10-CM codes) during the identification period of 01 April 2016 to 31 January 2019. The date of the earliest ILD diagnosis code was set as the index date. All patients were required to have clinical activity for at least 6 months before and 9 months after the index date. Patients with at least 1 FVC test result within ± 1 month of the index date (index FVC), and another test result from 168 to 212 days after the index date (follow-up FVC) were included [procedure codes in Appendix A2]. Ranges of dates were used to maximize sample size, based upon distribution of available FVC measures for eligible patients. For patients who had multiple valid FVC measures during either the index date or follow-up, the value closest to the index date or to the follow-up FVC period was selected.
We performed a retrospective observational study using EHR data from the Optum Clinical Database (OCD). By 2018, the OCD contained data on approximately 85 million unique patients across the United States and Puerto Rico, with an average of 40 months of observed data per patient. The OCD data include details of physician office visits and hospital stays, including laboratory results, prescriptions written, medications administered in the hospital, procedures, and diagnoses, as well as physician, pathology, and radiology notes. This study utilized spirometry data obtained from structured fields and through natural language processing of provider notes.
Patients were excluded if there was any missing demographic data as of the index date; if they had a diagnosis code for IPF (ICD-10-CM J84.112) during the study period; or if there were any pharmacy orders for nintedanib or pirfenidone during the study period.

Study measures

Baseline patient demographic and clinical characteristics were obtained during the period of 6-months pre-index through index date (date of first diagnosis). Demographic characteristics included age, sex, race, region, and insurance type. In addition, general comorbid condition categories were identified using the Clinical Classifications Software managed by the Agency for Healthcare Research and Quality (AHRQ; CCS for ICD-9-CM/ICD-10-CM [17]). Relevant underlying conditions were identified by diagnosis codes, and a Charlson Comorbidity Index score was calculated [18].
Predicted FVC (FVCPred) was computed using the NHANES III definition [19], adjusted according to race/ethnicity [20, 21]. Percent of predicted FVC (FVC%) was computed for the index and follow-up FVC measures, as: (FVCObserved/FVCPredicted)*100%. Baseline and follow-up ILD-related and all-cause HRU were measured for ambulatory visits, emergency department (ED) visits, and inpatient admissions. The follow-up period included time from index FVC value until the follow-up FVC value.

Statistical analyses

Analyses were performed based on patients’ change in FVC% status from index FVC to the 6-month FVC. Study patients were classified into two groups based on the relative severity of their change in FVC%: significant decline (decrease of ≥ 10%), and marginal decline/stable FVC (decrease < 10% or increase in FVC). A change in FVC% of at least 10% was chosen to define significant lung function decline to align with the criteria used to define progressive phenotype in the INBUILD clinical trial [9, 13].
All baseline and follow-up measures were analyzed descriptively. Count of patients and percentages described dichotomous and polychotomous variables and means, medians, and standard deviations (SD) described continuous variables. All measures were reported for the overall sample and for each group: significant decline vs. marginal decline/stable. To compare the two groups, F-test/ANOVA was used for continuous variables and Pearson chi-square test was used for binary variables.
Logistic regression was performed to examine the association between change in lung function (stratified by index FVC value < 80% versus ≥ 80%) [22] and all-cause inpatient hospitalizations, while controlling for potential confounders including age, index year, region, income, AHRQ comorbidities, concomitant medications, and baseline HRU (see full list of covariates in Appendix Table A3). A full model was developed including all available relevant measures as covariates, and a stepwise selection model was also conducted as a sensitivity analysis (Appendix Table A4). Variables were removed from the stepwise selection model if their p-value was > 0.2. All analyses were performed using SAS V9.4 (Cary, NC).
This study used data extracts that were fully de-identified and HIPAA-compliant. Thus, Institutional Review Board review and approval were not required.

Results

Sample description

Among 123,065 patients with diagnoses for fibrosing ILD, 1,134 had 2 FVC values available in the required time period (Fig. 2). The final study population included 566 patients (Fig. 2): 75 (13%) with significant decline in FVC and 491 (87%) with marginal decline/stable FVC.
The mean (SD) age was 64.7 (13.7) years, with no significant difference between the two groups (Table 1). The majority of the study population was female (56%), non-Hispanic (92%), Caucasian (83%) and insured by commercial (30%) or Medicare (37%) plans, with no significant differences in baseline characteristics between the two groups.
Table 1
Demographic Characteristics by FVC Decline Groups
Demographics
Total
(N = 566)
Significant Decline
(N = 75)
Marginal Decline/Stable
(N = 491)
p-value
Age, mean (SD)
64.7 (13.7)
66.1 (13.1)
64.5 (13.8)
0.338
 Median
67.00
68.00
66.00
 
Age group, n (%)
    
 18–29
14 (2.5)
1 (1.3)
13 (2.7)
0.495
 30–39
21 (3.7)
3 (4.0)
18 (3.7)
0.887
 40–49
40 (7.1)
3 (4.0)
37 (7.5)
0.266
 50–59
100 (17.7)
15 (20.0)
85 (17.3)
0.570
 60–69
160 (28.3)
20 (26.7)
140 (28.5)
0.741
 70–79
156 (27.6)
21 (28.0)
135 (27.5)
0.927
 ≥ 80
75 (13.3)
12 (16.0)
63 (12.8)
0.451
Gender, n (%)
    
 Female
318 (56.2)
41 (54.7)
277 (56.4)
0.776
 Male
248 (43.8)
34 (45.3)
214 (43.6)
0.776
Year of index date, n (%)
    
 2016
342 (60.4)
51 (68.0)
291 (59.3)
0.150
 2017
122 (21.6)
13 (17.3)
109 (22.2)
0.340
 2018
102 (18.0)
11 (14.7)
91 (18.5)
0.417
Race, n (%)
    
 Caucasian
469 (82.9)
65 (86.7)
404 (82.3)
0.348
 African American
69 (12.2)
9 (12.0)
60 (12.2)
0.957
 Asian
4 (0.7)
0 (0.0)
4 (0.8)
0.433
 Other/Unknown
24 (4.2)
1 (1.3)
23 (4.7)
0.180
Ethnicity, n (%)
    
 Hispanic
15 (2.7)
1 (1.3)
14 (2.9)
0.466
 Non-Hispanic
523 (92.4)
73 (97.3)
450 (91.7)
0.084
 Other/Unknown
28 (5.0)
1 (1.3)
27 (5.5)
0.121
US Census Region, n (%)
    
 Northeast
159 (28.1)
14 (18.7)
145 (29.5)
0.051
 Midwest
317 (56.0)
50 (66.7)
267 (54.4)
0.046
 South
48 (8.5)
8 (10.7)
40 (8.2)
0.466
 West
29 (5.1)
3 (4.0)
26 (5.3)
0.636
 Other/Unknown
13 (2.3)
0 (0.0)
13 (2.7)
0.154
Insurance Type, n (%)
    
 Commercial
169 (29.9)
21 (28.0)
148 (30.1)
0.706
 Medicaid
23 (4.1)
1 (1.3)
22 (4.5)
0.199
 Medicare
208 (36.8)
32 (42.7)
176 (35.9)
0.254
 Commercial/Medicaid
14 (2.5)
3 (4.0)
11 (2.2)
0.361
 Commercial/Medicare
104 (18.4)
12 (16.0)
92 (18.7)
0.569
 Medicare/Medicaid
15 (2.7)
1 (1.3)
14 (2.9)
0.446
 Commercial/Medicare/Medicaid
5 (0.9)
0 (0.0)
5 (1.0)
0.380
 Uninsured
6 (1.1)
1 (1.3)
5 (1.0)
0.804
 Missing/Unknown
22 (3.9)
4 (5.3)
18 (3.7)
0.487
Note. FVC = forced vital capacity; SD = standard deviation; US = United States

Clinical characteristics

The mean Charlson comorbidity score of the study population was 1.62 (± 1.71), with no statistically significant differences between the two groups (Table 2). The most common types of autoimmune ILDs were rheumatoid arthritis (8.5%) and systemic sclerosis (5.0%). Common comorbid conditions of interest prevalent in the study population included chronic obstructive pulmonary disease (33.6%), obstructive sleep apnea (18.7%), asthma (15.0%), heart failure (13.1%), and pulmonary hypertension (12.2%). No statistically significant differences were observed between groups in comorbid conditions. Baseline ED encounters occurred among 16.6% and inpatient hospitalizations among 23% of patients. There were no differences in baseline HRU between the two groups. The most common baseline medications included corticosteroids (38.9%) and histamine H2 receptor antagonists/proton pump inhibitors (29.0%).
The mean (SD) index FVC% for the overall study population was 80.2 (28.0). The significant decline group had higher mean (SD) index FVC% [88.5 (31.4)] than the marginal decline/stable FVC group [78.9 (27.3)]; p = 0.006. The proportion of patients with FVC% ≥80% was higher in the significant decline group than in the marginal decline/stable FVC group (61.3% vs. 40.7%, p < 0.001). The proportion of patients with FVC% of 70% to < 80% was lower in the significant decline group than in the marginal decline/stable FVC group (9.3% vs. 18.9%, p = 0.042).
Table 2
Clinical Characteristics by FVC Decline Groups
 
Total
(N = 566)
Significant Decline
(N = 75)
Marginal Decline/Stable
(N = 491)
p-value
Baseline Charlson comorbidity score, mean (SD)
1.62 (1.71)
1.85 (1.66)
1.59 (1.72)
0.209
Autoimmune ILDs, n (%)
    
Rheumatoid arthritis
48 (8.5)
5 (6.7)
43 (8.8)
0.545
Sarcoidosis
40 (7.1)
9 (12.0)
31 (6.3)
0.073
Systemic sclerosis
28 (5.0)
5 (6.7)
23 (4.7)
0.461
Lupus
18 (3.2)
5 (6.7)
13 (2.7)
0.065
Mixed connective disease
14 (2.5)
1 (1.3)
13 (2.7)
0.495
Sjögren’s syndrome
9 (1.6)
2 (2.7)
7 (1.4)
0.424
Dermatomyositis/polymyositis
7 (1.2)
3 (4.0)
4 (0.8)
0.020
Comorbid Conditions, n (%)
    
COPD
190 (33.6)
27 (36.0)
163 (33.2)
0.632
Obstructive sleep apnea
106 (18.7)
17 (22.7)
89 (18.1)
0.348
Asthma
85 (15.0)
11 (14.7)
74 (15.1)
0.927
Heart failure
74 (13.1)
11 (14.7)
63 (12.8)
0.660
Pulmonary hypertension
69 (12.2)
7 (9.3)
62 (12.6)
0.417
Lung cancer
11 (1.9)
2 (2.7)
9 (1.8)
0.626
Baseline HRU measures, n (%)
    
All-cause ambulatory visit, 6 months pre-index
509 (89.9)
69 (92.0)
440 (89.6)
0.522
All-cause ED visit, 6 months pre-index
94 (16.6)
14 (18.7)
80 (16.3)
0.607
All-cause IP stay, 6 months pre-index
130 (23.0)
16 (21.3)
114 (23.2)
0.718
All-cause IP stay (with ICU), 6-months pre-index*
20 (15.4)
3 (18.8)
17 (14.9)
0.690
Baseline medications, n (%)
    
Corticosteroid
220 (38.9)
32 (42.7)
188 (38.3)
0.469
H2-antagonists and PPIs
164 (29.0)
18 (24.0)
146 (29.7)
0.308
Mycophenolate mofetil
34 (6.0)
5 (6.7)
29 (5.9)
0.796
Tacrolimus
27 (4.8)
2 (2.7)
25 (5.1)
0.359
ERAs, PDE-5s, prostacyclins, sGCs
13 (2.3)
1 (1.3)
12 (2.4)
0.550
Azathioprine
8 (1.4)
3 (4.0)
5 (1.0)
0.042
Rituximab
6 (1.1)
0 (0.0)
6 (1.2)
0.336
Cyclophosphamide
3 (0.5)
0 (0.0)
3 (0.6)
0.497
Cyclosporine
0 (0.0)
0 (0.0)
0 (0.0)
-
Index FVC percent predicted, mean (SD)
80.2 (28.0)
88.5 (31.4)
78.9 (27.3)
0.006
FVC percent predicted, categorical, n (%)
    
≥ 80%
246 (43.5)
46 (61.3)
200 (40.7)
< 0.001
70- <80%
100 (17.7)
7 (9.3)
93 (18.9)
0.042
< 70%
220 (38.9)
22 (29.3)
198 (40.3)
0.069
BMI, n
383
48
335
 
Mean (SD)
33.6 (6.9)
34.0 (6.8)
33.6 (6.9)
0.675
Note. BMI = body mass index; COPD = chronic obstructive pulmonary disease; ED = emergency department; ERA = endothelin receptor antagonists; FVC = forced vital capacity; ILD = interstitial lung disease; IP = inpatient; PDE = phosphodiesterase; PH = pulmonary hypertension; PPI = proton pump inhibitors; SD = standard deviation; sGC = guanylate cyclase stimulators. *among those with an IP stay

Unadjusted analyses of HRU outcomes

Among the significant decline group, 37% of patients had an inpatient hospitalization, as compared with 30% of the marginal decline/stable FVC group (p = 0.21). In addition, no statistically significant differences were observed in ambulatory or ED visits between the two groups (Table 3).
Table 3
HRU Outcomes by FVC Decline Groups
 
Total
(N = 566)
Significant Decline
(N = 75)
Marginal Decline/
Stable FVC
(N = 491)
p-value
All-cause ambulatory visit, n (%)
All-cause ambulatory visit count, mean (SD)
564 (99.6)
4.9 (4.8)
75 (100.0)
4.7 (4.8)
489 (99.6)
5.0 (4.8)
0.580
0.619
All-cause ED visit, n (%)
95 (16.8)
14 (18.7)
81 (16.5)
0.640
All-cause IP hospitalization, n (%)
176 (31.1)
28 (37.3)
148 (30.1)
0.210
Note. ED = emergency department; FVC = forced vital capacity; HRU = healthcare resource utilization; IP = inpatient

Multivariable analyses of inpatient hospitalization

Logistic regression among patients with an index FVC < 80% showed that, after controlling for potential confounders, those with significant decline had greater odds of an inpatient hospitalization compared to those with marginal decline/stable FVC (OR 2.851, 95% confidence interval [CI] 1.172, 6.936, p = 0.021) (Fig. 3; see Appendix Table A3 for full results). Among patients with an index FVC% ≥80%, those with significant decline had similar odds of an inpatient hospitalization compared to those with marginal decline/stable FVC (OR 1.109, 95% CI 0.472, 2.607, p = 0.812). Other measures that were significantly (p < 0.05) associated with an increased odds of an inpatient hospitalization included index year 2017 vs. 2016, use of baseline oxygen therapy, and presence of diagnosis codes for diseases of the urinary system and upper GI disorders (Table A3). Increased age and evidence of immunomodulator use were associated with significantly (p < 0.05) reduced odds of an inpatient hospitalization (Table A3).
In a sensitivity analysis, stepwise logistic regression (final list of covariates listed in Appendix Table A4) demonstrated that among patients with an index FVC% <80%, those with significant decline had greater odds of an inpatient hospitalization compared to patients with marginal decline/stable FVC (OR 2.659, 95% CI 1.139, 6.205, p = 0.024). Among patients with an index FVC% ≥80%, those with significant decline had similar odds of an inpatient hospitalization compared to those with marginal decline/stable FVC (OR 1.247, 95% CI 0.558, 2.782, p = 0.591).

Discussion

We investigated the association between FVC% decline and HRU among patients with non-IPF chronic fibrosing ILD using EHR data. To our knowledge, our study is the first to examine the impact of FVC decline on likelihood of inpatient hospitalization in a real-world sample of patients with non-IPF chronic fibrosing ILD. We found that a relative decline in FVC of at least 10% over 6 months, was associated with significantly higher odds of inpatient hospitalization among patients starting at diminished FVC% values of < 80%. The association between decline in FVC and inpatient hospitalization was not statistically significant in patients with a baseline FVC value ≥ 80%. Our results underscore the importance of preventing further FVC decline in patients with non-IPF chronic fibrosing ILD, particularly in patients with already diminished FVC% values.
A previous study examined the relationship between declining lung function and HRU among patients with IPF. In that study, greater FVC decline was significantly associated with increased inpatient hospitalizations in the period after 6 months following IPF diagnosis [14]. In addition, decline in FVC was associated with risk of IPF progression, suspected acute exacerbations, and mortality. Our study provides additional evidence of the association between FVC decline and HRU, in a non-IPF chronic fibrosing ILD patient population. IPF is considered the prototypical chronic fibrosing ILD that is progressive [23], our study is a mix of progressive and non-progressive ILDs and FVC decline was still associated with inpatient hospitalization. Although the results were in the same direction for both studies, there are some notable differences in characteristics of the study population. Our study population was older (average age 64.7 years versus 61.1 years) and had a lower proportion of males (43.8% versus 68.4%). Most importantly, the baseline FVC% in our study was higher (80.2%), compared to a baseline FVC% of 60.4% in the Reichmann et al. study. However, it should be noted that the association between FVC decline and inpatient hospitalization was significant only among patients with baseline FVC < 80% in our study.
We found that 31% of the patients with non-IPF chronic fibrosing ILD had an inpatient hospitalization during a six-month follow-up period. This inpatient hospitalization rate was in line with another study that found the proportion to be 25% in IPF patients [24], and higher than in another study of IPF patients in which the rate was 15% [14]. However, the rate reported in the study by Reichmann et al. was for IPF-related inpatient hospitalizations and not for all-cause inpatient hospitalization as reported in our study. In addition to evaluating the relationship between inpatient hospitalization and FVC decline, studies within IPF and chronic fibrosing ILD have shown the relationship between FVC decline and other outcomes, including mortality and acute exacerbations [14, 2530]. Although these outcomes were not evaluated in our study, these studies provide additional evidence of the importance of maintaining FVC on health outcomes in patients with chronic fibrosing ILDs.
Inpatient hospitalization contributes significantly to the economic burden of the healthcare system within the United States. A claims-based study examining the burden of progression in patients with non-IPF chronic fibrosing ILD showed that inpatient hospitalization costs contributed to approximately 47% of the total medical costs [31]. Other studies similarly have shown the significant contribution of inpatient hospitalizations to the overall health care costs of patients with IPF [16] and non-IPF chronic fibrosing ILD [3]. Although the focus of our study was on the impact of lung function decline on inpatient hospitalizations, future studies could evaluate the impact of decline in FVC on medical costs in patients with non-IPF chronic fibrosing ILDs.
The findings of this study should be considered within the limitations of the data and study design. Only patients with sufficient clinical activity were included, and thus patients who did not maintain care with the same health care organization or who did not have an encounter during the study period were not included in the sample. It is possible that patients who have sufficient encounters for inclusion in the study may receive some care from another health care system not captured in the clinical database. We used FVC% decline of at least 10% to define lung function decline based on criteria used in the INBUILD clinical trial. However, the INBUILD trial also used other measures besides FVC% decline to define progression, measures that were not available to us in our data source. Thus, the marginal decline/stable FVC cohort may have included patients who were progressing based on INBUILD criteria. Nevertheless, our results still showed a significant relationship between FVC decline and (all-cause) inpatient hospitalization in patients with diminished lung function further demonstrating the importance of preserving lung function. FVC measures during the post-index period were only available for a subset of patients, and the extent of missing spirometry information is not distinguishable from the lack of an administered test. Other measures of lung function that may be examined by health care providers to identify lung function decline, e.g., diffusing capacity for carbon monoxide, were not available for a sufficiently large sample of patients and were not included in this study. In addition, FVC measured at index and at approximately 6 months may not reflect the actual trajectory of the decline in between the observed measures as NLP algorithms may not perfectly capture all FVC values and attribute them to the correct date. Despite these limitations, EHR data continue to be a powerful data source. These data allow for examination of HCRU patterns and detailed clinical data in a “real world” setting, outside the highly controlled environment of clinical trials.

Conclusions

The patients in this real-world retrospective study existed along the variable spectrum of functional decline due to chronic fibrosing ILD. Patients with significant decline in FVC value started with higher lung function on average than those with marginal decline/stable FVC value. For patients starting with FVC% <80%, a decline of at least 10% in FVC value over 6 months was associated with significantly increased odds of an inpatient hospitalization, a significant contributor to health care costs and burden among patients with non-IPF fibrosing ILD. These findings support the importance of preserving lung function among patients with fibrosing ILD.

Acknowledgements

We acknowledge Caroline Jennermann, MS, an employee of Optum, for writing, editorial support, and formatting assistance under a contract between BIPI and Optum.

Declarations

Competing interests

The authors received no direct compensation related to the development of the manuscript. SS, and CC are employees of BIPI. DS was an employee of BIPI at the time of the study. AS, JJ, and BC are employees of Optum. EJB was a paid consultant for this study. Caroline Jennermann was an employee of Optum at the time of the study.
This study used only data which, as part of the Optum Research Database (ORD), has been fully de-identified in compliance with United States (US) 45 Code of Federal Regulations (CFR) 164.514(a)-(c) “Requirements Relating to Uses and Disclosures of Protected Health Information.” These data were originally obtained from Covered Entities that permitted de-identification of protected health information (PHI) for use in research studies conducted by Optum. In the US, research involving human subjects is governed by the US Department of Health and Human Services (DHHS) “Common Rule,” as codified at US 45 CFR Part 46, “Protection of Human Subjects.” This legislation explains requirements for IRB review to ensure adequate protections of those human subjects. However, in this case, the research has been conducted with PHI that was fully de-identified, in accordance with the DHHS Privacy Rule’s requirements codified at US 45 CFR § 164.514(b). Therefore, the research conducted for this project was neither subject to the Common Rule requirements, nor was an IRB review mandated or conducted. In addition, neither written nor verbal patient consent was required for this retrospective study. Throughout the process, patient privacy was preserved, and researchers complied strictly with all applicable Health Insurance Portability and Accountability Act (HIPAA, 1996) data management rules and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–e68.CrossRefPubMed Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–e68.CrossRefPubMed
2.
Zurück zum Zitat Puglisi S, Torrisi SE, Giuliano R, Vindigni V, Vancheri C. What we know about the pathogenesis of idiopathic pulmonary fibrosis. Semin Respir Crit Care Med. 2016;37:358–67.CrossRefPubMed Puglisi S, Torrisi SE, Giuliano R, Vindigni V, Vancheri C. What we know about the pathogenesis of idiopathic pulmonary fibrosis. Semin Respir Crit Care Med. 2016;37:358–67.CrossRefPubMed
3.
Zurück zum Zitat Olson AL, Hartmann N, Patnak P, Wallace L, Schlenker-Herceg R, Nasser M, et al. Estimation of the prevalence of progressive fibrosing interstitial lung diseases: systematic literature review and data from a physician survey. Adv Ther. 2020;38:854–67.CrossRefPubMedPubMedCentral Olson AL, Hartmann N, Patnak P, Wallace L, Schlenker-Herceg R, Nasser M, et al. Estimation of the prevalence of progressive fibrosing interstitial lung diseases: systematic literature review and data from a physician survey. Adv Ther. 2020;38:854–67.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Wijsenbeek M, Kreuter M, Olson A, Fischer A, Bendstrup E, Wells CD, et al. Progressive fibrosing interstitial lung diseases: current practice in diagnosis and management. Curr Med Res Opin. 2019;35:2015–24.CrossRefPubMed Wijsenbeek M, Kreuter M, Olson A, Fischer A, Bendstrup E, Wells CD, et al. Progressive fibrosing interstitial lung diseases: current practice in diagnosis and management. Curr Med Res Opin. 2019;35:2015–24.CrossRefPubMed
5.
Zurück zum Zitat Brown KK, Martinez FJ, Walsh SLF, Thannickal VJ, Prasse A, Schlenker-Herceg R, et al. The natural history of progressive fibrosing interstitial lung diseases. Eur Respir J. 2020;55(6):2000085.CrossRefPubMedPubMedCentral Brown KK, Martinez FJ, Walsh SLF, Thannickal VJ, Prasse A, Schlenker-Herceg R, et al. The natural history of progressive fibrosing interstitial lung diseases. Eur Respir J. 2020;55(6):2000085.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Inoue Y, Kaner RJ, Guiot J, Maher TM, Tomassetti S, Brown KK, et al. Diagnostic and prognostic biomarkers for chronic fibrosing interstitial lung diseases with a progressive phenotype. Chest. 2020;158(2):646–59.CrossRefPubMed Inoue Y, Kaner RJ, Guiot J, Maher TM, Tomassetti S, Brown KK, et al. Diagnostic and prognostic biomarkers for chronic fibrosing interstitial lung diseases with a progressive phenotype. Chest. 2020;158(2):646–59.CrossRefPubMed
7.
Zurück zum Zitat Nasser M, Larrieu S, Si-Mohamed S, Ahmad K, Boussel L, Brevet M, et al. Progressive fibrosing interstitial lung disease: a clinical cohort (the PROGRESS study). Eur Respir J. 2021;57:2002718.CrossRefPubMedPubMedCentral Nasser M, Larrieu S, Si-Mohamed S, Ahmad K, Boussel L, Brevet M, et al. Progressive fibrosing interstitial lung disease: a clinical cohort (the PROGRESS study). Eur Respir J. 2021;57:2002718.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Cottin V, Hirani NA, Hotchkin DL, Nambiar AM, Ogura T, Otaola M, et al. Presentation, diagnosis, and clinical course of the spectrum of progressive-fibrosing interstitial lung disease. Eur Respir Rev. 2018;27(150):180076.CrossRefPubMedPubMedCentral Cottin V, Hirani NA, Hotchkin DL, Nambiar AM, Ogura T, Otaola M, et al. Presentation, diagnosis, and clinical course of the spectrum of progressive-fibrosing interstitial lung disease. Eur Respir Rev. 2018;27(150):180076.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, et al. Nintedanib in progressive fibrosing interstitial lung diseases. New Engl J Med. 2019;381:1718–27.CrossRefPubMed Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, et al. Nintedanib in progressive fibrosing interstitial lung diseases. New Engl J Med. 2019;381:1718–27.CrossRefPubMed
10.
Zurück zum Zitat Kreuter M, Olson A, Fischer A, Bendstrup E, Mounir B, Zouad-Lejour L, et al. Current treatment of patients with non-IPF progressive fibrosing interstitial lung disease. Am J Respir Crit Care Med. 2018;197:A4273. Kreuter M, Olson A, Fischer A, Bendstrup E, Mounir B, Zouad-Lejour L, et al. Current treatment of patients with non-IPF progressive fibrosing interstitial lung disease. Am J Respir Crit Care Med. 2018;197:A4273.
11.
Zurück zum Zitat Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.CrossRefPubMed Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.CrossRefPubMed
12.
Zurück zum Zitat King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.CrossRefPubMed King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.CrossRefPubMed
13.
Zurück zum Zitat Wells AU, Flaherty KR, Brown KK, Inoue Y, Devaraj A, Richeldi L, et al. Nintedanib in patients with progressive fibrosing interstitial lung disease diagnosis in the INBUILD trial: a randomized, double-blinded, placebo-controlled, parallel-group trial. Lancet Respir Med. 2020;8(5):453–60.CrossRefPubMed Wells AU, Flaherty KR, Brown KK, Inoue Y, Devaraj A, Richeldi L, et al. Nintedanib in patients with progressive fibrosing interstitial lung disease diagnosis in the INBUILD trial: a randomized, double-blinded, placebo-controlled, parallel-group trial. Lancet Respir Med. 2020;8(5):453–60.CrossRefPubMed
14.
Zurück zum Zitat Reichmann WM, Yu YF, Macaulay D, Wu EQ, Nathan SD. Change in forced vital capacity and associated subsequent outcomes in patients with newly diagnosed idiopathic pulmonary fibrosis. BMC Pulmonary Med. 2015;15:167.CrossRef Reichmann WM, Yu YF, Macaulay D, Wu EQ, Nathan SD. Change in forced vital capacity and associated subsequent outcomes in patients with newly diagnosed idiopathic pulmonary fibrosis. BMC Pulmonary Med. 2015;15:167.CrossRef
15.
Zurück zum Zitat Farrand E, Iribarran C, Vittinghoff E, Levine-Hall T, Ley B, Minowada G, et al. Impact of idiopathic pulmonary fibrosis on longitudinal health-care utilization in a community-based cohort of patients. Chest. 2021;159(1):219–27.CrossRefPubMed Farrand E, Iribarran C, Vittinghoff E, Levine-Hall T, Ley B, Minowada G, et al. Impact of idiopathic pulmonary fibrosis on longitudinal health-care utilization in a community-based cohort of patients. Chest. 2021;159(1):219–27.CrossRefPubMed
16.
Zurück zum Zitat Yu YF, Wu N, Chuang C-C, Wang R, Pan X, Benjamin NN, et al. Patterns and economic burden of hospitalizations and exacerbations among patients diagnosed with idiopathic pulmonary fibrosis. J Manag Care Spec Pharm. 2016;22(4):414–23.PubMed Yu YF, Wu N, Chuang C-C, Wang R, Pan X, Benjamin NN, et al. Patterns and economic burden of hospitalizations and exacerbations among patients diagnosed with idiopathic pulmonary fibrosis. J Manag Care Spec Pharm. 2016;22(4):414–23.PubMed
18.
Zurück zum Zitat Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676–82.CrossRefPubMed Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676–82.CrossRefPubMed
19.
20.
Zurück zum Zitat Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Care Med. 1999;159:179–87.CrossRef Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Care Med. 1999;159:179–87.CrossRef
21.
Zurück zum Zitat Hankinson JL, Kawut SM, Shahar E, Smith LJ, Stukovsky KH, Barr RG. Performance of american thoracic society-recommended spirometry reference values in a multiethnic sample of adults: the multi-ethnic study of atherosclerosis (MESA) Lung study. Chest. 2010;137(1):138–45.CrossRefPubMed Hankinson JL, Kawut SM, Shahar E, Smith LJ, Stukovsky KH, Barr RG. Performance of american thoracic society-recommended spirometry reference values in a multiethnic sample of adults: the multi-ethnic study of atherosclerosis (MESA) Lung study. Chest. 2010;137(1):138–45.CrossRefPubMed
22.
Zurück zum Zitat Barreiro TJ, Perillo I. An approach to interpreting spirometry. Am Fam Physician. 2004;69(5):1107–15.PubMed Barreiro TJ, Perillo I. An approach to interpreting spirometry. Am Fam Physician. 2004;69(5):1107–15.PubMed
24.
Zurück zum Zitat Brown AW, Fischer CP, Shlobin OA, Buhr RG, Ahmad S, Weir NA, et al. Outcomes after hospitalization in idiopathic pulmonary fibrosis: a cohort study. Chest. 2015;147:173–9.CrossRefPubMed Brown AW, Fischer CP, Shlobin OA, Buhr RG, Ahmad S, Weir NA, et al. Outcomes after hospitalization in idiopathic pulmonary fibrosis: a cohort study. Chest. 2015;147:173–9.CrossRefPubMed
25.
Zurück zum Zitat Maher TM, Bendstrup E, Kreuter M, Martinez FJ, Sime PJ, Stowasser S, et al. Decline in forced vital capacity as a surrogate for mortality in patients with fibrosing interstitial lung diseases. Presented at american thoracic society 2021. Am J Resp Crit Care Med. 2021;203:A1851. Maher TM, Bendstrup E, Kreuter M, Martinez FJ, Sime PJ, Stowasser S, et al. Decline in forced vital capacity as a surrogate for mortality in patients with fibrosing interstitial lung diseases. Presented at american thoracic society 2021. Am J Resp Crit Care Med. 2021;203:A1851.
26.
Zurück zum Zitat Richeldi L, Ryerson CJ, Lee JS, Wolters PJ, Koth LL, Ley B, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67:407–11.CrossRefPubMed Richeldi L, Ryerson CJ, Lee JS, Wolters PJ, Koth LL, Ley B, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67:407–11.CrossRefPubMed
27.
Zurück zum Zitat Paterniti MO, Bi Y, Rekic D, Wang Y, Karimi-Shah BA, Chowdhury BA. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14(9):1395–402.CrossRefPubMed Paterniti MO, Bi Y, Rekic D, Wang Y, Karimi-Shah BA, Chowdhury BA. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14(9):1395–402.CrossRefPubMed
28.
Zurück zum Zitat Zappala CJ, Latsi PI, Nicholson AG, Colby TV, Cramer D, Renzoni EA, et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:830–36.CrossRefPubMed Zappala CJ, Latsi PI, Nicholson AG, Colby TV, Cramer D, Renzoni EA, et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:830–36.CrossRefPubMed
29.
Zurück zum Zitat Salisbury ML, Xia M, Zhou Y, Murray S, Tayob N, Brown KK, et al. Idiopathic pulmonary fibrosis: gender-age-physiology Index Stage for Predicting Future lung function decline. Chest. 2016;149(2):491–8.CrossRefPubMedPubMedCentral Salisbury ML, Xia M, Zhou Y, Murray S, Tayob N, Brown KK, et al. Idiopathic pulmonary fibrosis: gender-age-physiology Index Stage for Predicting Future lung function decline. Chest. 2016;149(2):491–8.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kondoh Y, Taniguchi H, Katsuta T, Kataoka K, Kimura T, Nishiyama O, et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis: off J WASOG. 2010;27:103–10. Kondoh Y, Taniguchi H, Katsuta T, Kataoka K, Kimura T, Nishiyama O, et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis: off J WASOG. 2010;27:103–10.
31.
Zurück zum Zitat Singer D, Bengtson LGS, Conoscenti CS, Anderson AJ, Brekke L, Shetty SS, et al. Incremental healthcare utilization and cost burden associated with chronic fibrosing interstitial lung disease (ILD) with a progressive phenotype. Poster presented at the american thoracic Society International Conference. Am J Respir Crit Care Med. 2021;203:A1551. Singer D, Bengtson LGS, Conoscenti CS, Anderson AJ, Brekke L, Shetty SS, et al. Incremental healthcare utilization and cost burden associated with chronic fibrosing interstitial lung disease (ILD) with a progressive phenotype. Poster presented at the american thoracic Society International Conference. Am J Respir Crit Care Med. 2021;203:A1551.
Metadaten
Titel
Impact of chronic fibrosing interstitial lung disease on healthcare use: association between fvc decline and inpatient hospitalization
verfasst von
David Singer
Benjamin Chastek
Andrew Sargent
Jonathan C. Johnson
Sharash Shetty
Craig Conoscenti
Elana J. Bernstein
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2023
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-023-02637-8

Weitere Artikel der Ausgabe 1/2023

BMC Pulmonary Medicine 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.