Skip to main content
Erschienen in: BMC Infectious Diseases 1/2023

Open Access 01.12.2023 | Research

Identification of priority pathogens for aetiological diagnosis in adults with community-acquired pneumonia in China: a multicentre prospective study

verfasst von: Lulu Zhang, Yan Xiao, Guoliang Zhang, Hongru Li, Jianping Zhao, Mingwei Chen, Fuhui Chen, Ling Liu, Yalun Li, Liping Peng, Feng Zhao, Donghong Yang, Zhongmei Wen, Lei Wu, Shuo Wu, Yajiao Sun, Ying Wang, Lan Chen, Xinming Wang, Lihui Wang, Weimin Li, Haibo Qiu, Yusheng Chen, Zhancheng Gao, Lili Ren, Jianwei Wang

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2023

Abstract

Background

Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents.

Methods

A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated.

Results

Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06–92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP.

Conclusions

The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12879-023-08166-3.
Lulu Zhang, Yan Xiao, Guoliang Zhang, Hongru Li, Jianping Zhao, Mingwei Chen, Fuhui Chen, Ling Liu, Yalun Li, Liping Peng, Feng Zhao first authors contributed equally to this work.
Zhancheng Gao, Lili Ren and Jianwei Wang senior authors contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Community-acquired pneumonia (CAP) is a major public health challenge worldwide, with 2.6 million deaths in 2019 [14]. Multiple respiratory pathogens are known to cause CAP. Influenza virus (IFV), human parainfluenza viruses (HPIVs), respiratory syncytial virus (RSV), human enterovirus (EV)/rhinovirus (HRV), human adenonvirus (AdV), human coronavirus (HCoV) and human metapeumovirus (HMPV) are the major viruses in CAP; while Streptococcus pneumoniae (S. pneumoniae), Haemophilus influenzae (H. influenzae), Mycoplasma pneumoniae (M. pneumoniae), and Legionella pneumophila (L. pneumophila) are common respiratory bacteria in CAP [58]. Moreover, the aetiology of CAP varies geographically due to the impact of social, economic, environmental and demographic factors [79].
Due to the complexity of CAP aetiology, the implementation of multiplex molecular detection to figure out the incidence of major pathogens has significantly improved our understanding of CAP aetiology [3, 5, 6]. However, routine screening of respiratory viruses other than IFVs is only recommended in patients with severe CAP and immunodeficiency [10]. More sufficient laboratory-based aetiological evidence is essential to improve the understanding of the pathogenesis of CAP and to develop effective guidelines for aetiological diagnosis and anti-infective therapies to CAP.
The aetiology of CAP in adults and its association with adverse outcomes in patients in China, one of the most populous countries in the world that is undergoing rapid industrialization, urbanization and ageing, have not been well defined based on a large-scale comprehensive aetiological study of both viral and bacterial pathogens by multiplex detection. Here, we conducted a multicentre prospective study to determine the aetiology of CAP in adults in China. We also evaluated the association between respiratory pathogens and disease severity and identified priority pathogens for screening.

Methods

Study design and participants

From 1 to 2014 to 31 December 2019, hospitalized CAP patients aged ≥ 14 years were recruited from 10 hospitals in nine cities located in different geographical regions in mainland China. CAP was diagnosed according to the 2007 guidelines of the American Thoracic Society [11]. Detailed inclusion and exclusion criteria are provided in the supplementary materials (Additional file 1: Supplementary Methods). Demographic and clinical information were obtained from clinical records.

Specimen collection and respiratory pathogen detection

For each patient, sputum or bronchoalveolar lavage fluid (BALF) and whole blood samples were collected at enrolment. For a few patients, pleural effusion and endotracheal aspirate samples were collected. A total of 200 µl samples were used for nucleic acid extraction as previously reported by using easyMAG (bioMerieux, Marcy l’Etoile, France) [9, 12, 13]. Thirty-three respiratory pathogens were detected by using the multiplex real-time PCR method (Fast Track Diagnostic, Junglinster, Luxembourg), including IFVs (A, B and C) and the 2009 subtype of IFVA/H1N1, HPIV 1–4, HCoVs (NL63, 229E, OC43 and HKU1), HMPV A and B, EVs (including HRVs), RSV A and B, Adv, human parechovirus (HPeV), human bocavirus (HBoV), Pneumocystis jirovecii (P. jirovecii), M. pneumoniae, Chlamydophila pneumoniae (C. pneumoniae), S. pneumoniae, H. influenzae, H. influenzae type b (Hib), Staphylococcus aureus (S. aureus), Moraxella catarrhalis (M. catarrhalis), Bordetella spp. (except for Bordetella parapertussis), Klebsiella pneumoniae (K. pneumoniae), L. pneumophila and Salmonella spp. In addition, bacterial culture testing was performed on some specimens. Positive results were considered in further analysis.

Statistical analysis

The Wilcoxon rank sum test or t test was used to analyse continuous variables. The chi-square test or Fisher’s exact test was used to analyse categorical variables. Multivariate logistic regression was used to evaluate the association between aetiological factors and severe CAP adjusted by age, sex, season, duration of illness, previous antibiotic exposure (defined as antibiotic use within 5 days prior to admission) and underlying diseases. A two-sided p < 0.05 was considered statistically significant. All statistical analyses were conducted by using IBM SPSS (v.19.0; IBM Corp., Armonk, NY, USA) and the R package (version 3.6.1) [14].
The association of the detected pathogens with the risk of severe pneumonia was calculated using the adjusted odds ratio (OR). The aetiological estimation fraction was determined based on the detection rate of pathogens and their risk associations with severe pneumonia. The ten major pathogens were identified by the aetiological estimated fraction. The calculation form of the aetiological estimation fraction is as follows:
$$\begin{array}{c}{\rm{Aetiological}}\,{\rm{estimated}}\,{\rm{fraction}}\,(\% )\,{\rm{ = }}\,\\{\rm{Detection}}\_{\rm{rate}}\,(\%)\,\times\,{\rm{Severe}}\_{\rm{OR}}\end{array}$$

Results

Patient characteristics

A total of 3,403 hospitalized adults with CAP were enrolled in this study. Of which 462 (13.58%) had severe pneumonia, 317 (9.32%) required intensive care, and 66 (1.94%) died in the hospital (Table 1). The median age of the patients was 58 (interquartile range, 40–70) years. There were 954 (6.61%) patients with underlying diseases, and the most common clinical symptoms were cough (3,005, 88.30%), sputum (2,552, 74.99%), dyspnoea (442, 12.99%) and chest pain (437, 12.84%) (Table 1). The number of cases from each site ranged from 104 to 599 (Additional file 2: Table S1).
Table 1
Demographic and clinical characteristics of enrolled patients with community-acquired pneumonia requiring hospitalization
 
All cases
Virus positive
Bacterium positive
Negative detection
P-value (virus vs. bacterium)
P-value (virus vs. negative)
Total
3403
654a
948b
1349
  
Age group, no. (%)
-
     
 14–24 yrs
231 (6.79)
30 (4.59)
103 (10.86)
71 (5.26)
< 0.001
0.517
 25–44 yrs
795 (23.36)
129 (19.72)
282 (29.75)
265 (19.64)
< 0.001
0.966
 45–64 yrs
1161 (34.12)
228 (34.86)
261 (27.53)
523 (38.77)
0.002
0.090
 ≥ 65 yrs
1216 (35.73)
267 (40.83)
302 (31.86)
490 (36.32)
< 0.001
0.051
Sex (male/female)
2060/1343
397/257
547/401
 
0.23
0.421
Season, no. (%)
-
     
 Spring
799 (23.48)
165 (25.23)
214 (22.57)
326 (24.17)
0.219
0.604
 Summer
753 (22.13)
102 (15.60)
253 (26.69)
308 (22.83)
< 0.001
< 0.001
 Autumn
911 (26.77)
151 (23.09)
290 (30.59)
350 (25.95)
0.001
0.166
 Winter
940 (27.62)
236 (36.09)
191 (20.15)
365 (27.06)
< 0.001
< 0.001
Median duration of illness (days)
7 (4–11)
7 (4–10)
7 (3–10)
 
0.167
 
Died in hospital, no. (%)
66 (1.94)
16 (2.45)
22 (2.32)
17 (1.26)
0.871
0.050
Severe pneumonia, no. (%)
462 (13.58)
121 (18.50)
123 (12.97)
151 (11.19)
0.002
< 0.001
ICU admission, no. (%)
317 (9.32)
84 (12.84)
88 (9.28)
104 (7.71)
0.024
< 0.001
Sepsis, no. (%)
116 (3.41)
26 (3.98)
37 (3.90)
27 (2.00)
0.941
0.010
Noninvasive ventilation
374 (10.99)
94 (14.37)
90 (9.49)
138 (10.23)
0.003
0.007
Invasive ventilation
165 (4.85)
37 (5.66)
57 (6.01)
48 (3.56)
0.766
0.029
Underlying diseases, no. (%)
-
     
 Diabetes
238 (6.99)
46 (7.03)
64 (6.75)
94 (6.97)
0.826
0.957
 Congestive heart failure
226 (6.64)
61 (9.33)
48 (5.06)
84 (6.23)
0.001
0.012
 Cerebral vascular disease
164 (4.82)
34 (5.20)
45 (4.75)
67 (4.97)
0.681
0.824
 COPD
99 (2.91)
24 (3.67)
19 (2.00)
41 (3.04)
0.043
0.455
 Chronic liver disease
79 (2.32)
19 (2.91)
23 (2.43)
29 (2.15)
0.555
0.300
 Chronic kidney disease
56 (1.65)
13 (1.99)
16 (1.69)
17 (1.26)
0.658
0.209
 Bronchiectasis
37 (1.09)
9 (1.38)
13 (1.37)
12 (0.89)
0.993
0.316
Clinical symptoms, no. (%)
-
     
 Cough
3005 (88.30)
593 (90.67)
842 (88.82)
1153 (85.47)
0.233
0.001
 Sputum
2552 (74.99)
502 (76.76)
715 (75.42)
991 (73.46)
0.538
0.112
 Dyspnoea
442 (12.99)
99 (15.14)
98 (10.34)
174 (12.90)
0.004
0.171
 Chest pain
437 (12.84)
78 (11.93)
109 (11.50)
189 (14.01)
0.793
0.198
 Tachypnea
398 (11.70)
90 (13.76)
94 (9.92)
151 (11.19)
0.018
0.098
 Short breath
396 (11.64)
99 (15.14)
74 (7.81)
185 (13.71)
< 0.001
0.392
 Fatigue
238 (6.99)
43 (6.57)
62 (6.54)
97 (7.19)
0.978
0.612
 Chills
232 (6.82)
60 (9.17)
53 (5.59)
90 (6.67)
0.006
0.046
 Sore throat
220 (6.46)
37 (5.66)
85 (8.97)
55 (4.08)
0.014
0.113
 Headache
176 (5.17)
31 (4.74)
66 (6.96)
66 (4.89)
0.067
0.882
 Runny nose
149 (4.38)
34 (5.20)
48 (5.06)
37 (2.74)
0.904
0.005
 Haemoptysis
144 (4.23)
33 (5.05)
39 (4.11)
60 (4.45)
0.376
0.551
 Myalgia
130 (3.82)
29 (4.43)
32 (3.38)
50 (3.71)
0.276
0.433
 Nausea
90 (2.64)
21 (3.21)
27 (2.85)
32 (2.37)
0.675
0.273
 Diarrhoea
33 (0.97)
10 (1.53)
8 (0.84)
9 (0.67)
0.201
0.062
 Arthralgia
30 (0.88)
7 (1.07)
6 (0.63)
14 (1.04)
0.337
0.947
 Abdominal pain
27 (0.79)
6 (0.92)
9 (0.95)
8 (0.59)
0.948
0.405
 Oliguria
11 (0.32)
4 (0.61)
2 (0.21)
4 (0.30)
0.233
0.287
 Bleeding
9 (0.26)
3 (0.46)
2 (0.21)
3 (0.22)
0.404
0.399
Laboratory findings on admission, no. (%)
-
     
 Temperature ≥ 38·0 °C
1502 (44.14)
310 (47.40)
422 (44.51)
554 (41.07)
0.254
0.007
 Elevated WBC count (> 10 × 10^9/L)
846 (28.01)c
163 (27.30)d
243 (30.04)e
197 (14.60)
0.264
0.079
 ALT > 40, U/L
669 (22.17)f
135 (22.73)g
163 (20.10)h
318 (23.57)
0.234
0.596
 BUN > 7, mmol/L
623 (20.88)i
137 (23.26)j
163 (20.25)k
292 (21.65)
0.177
0.005
 PaO2/FiO2 < 300, mmHg
2745 (98.95)l
492 (90.61)m
671 (87.26)n
240 (17.79)
0.059
< 0.001
a Virus-positive patients are those with one or more positive detection results for viruses, not including those with co-detection of viruses and bacteria
b Bacterium-positive patients are those with one or more positive detection results for bacteria, not including those with co-detection of bacteria and viruses
c Information on WBC count was missing for 383 patients; therefore, the total number for this item was 3,020
d The total number for this item was 597
e The total number for this item was 809
f Information on ALT was missing for 386 patients; therefore, the total number for this item was 3,017
g The total number for this item was 594
h The total number for this item was 811
i Information on BUN was missing for 419 patients; therefore, the total number for this item was 2,984
j The total number for this item was 589
k The total number for this item was 805
l Information on PaO2/FiO2 was missing for 629 patients; therefore, the total number for this item was 2,774
m The total number for this item was 543
n The total number for this item was 769
ICU, intensive care unit; COPD, chronic obstructive pulmonary disease; WBC, white blood cell, elevated white blood cell (WBC) count was defined as greater than 10 × 109 cells per L for adults; ALT, alanine aminotransferase; BUN, blood urea nitrogen
Among the 3,123 patients with available antibiotic exposure data before admission, 720 (22.99%) patients had antibiotic exposure before admission. The most common antibiotics were β-lactams (351, 11.21%), followed by quinolones (232, 7.41%), macrolides (39, 1.25%) and other drugs (207, 6.61%). A higher proportion of antibiotic exposure before admission was found in patients with severe CAP than in those with non-severe CAP (37.12% vs. 20.94%, p < 0.001) (Additional file 3: Table S2).

Detection of respiratory pathogens

A total of 3,213 eligible sputum, 190 BALF, 656 blood, 13 pleural effusion and 12 endotracheal aspirate samples were collected in the study. Molecular test results were available for all 3,403 respiratory specimens. In parallel, bacterial culture testing was performed on 1,001 (54, 5.39%) sputum, 63 (2, 3.17%) BALF, 260 (9, 3.46%) blood, 11 (0, 0%) pleural effusion and 9 (2, 22.22%) endotracheal aspirate samples. All positive results were included in further aetiological evaluation. At least one pathogen was detected in 2,054 (60.36%) patients; specifically, a single pathogen was detected in 1,329 (39.05%) patients, and multiple pathogens were detected in 725 (21.30%) patients.
M. pneumoniae (376, 11.05%), H. influenzae (363, 10.67%), K. pneumoniae (355, 10.43%), IFVA (323, 9.49%), HRVs (307, 9.02%), S. pneumoniae (253, 7.43%), S. aureus (153, 4.50%) and Adv (100, 2.94%) were the most frequently detected pathogens, accounting for more than 80% of all positive results (Fig. 1, Additional file 4: Table S3). The detection rate of remnant respiratory pathogens was less than 3.00%. Regardless of the viral subtype, IFVs (A, B and C) (398, 11.70%) were the most frequently detected pathogens (Additional file 5: Figure S1). The overall pathogen detection rate varied from 37.23 to 79.09% among the nine sites during the study period (Additional file 6: Table S4).
Compared with bacterium-positive patients (n = 948) and pathogen-negative patients (n = 1,349), virus-positive patients (n = 654) had a higher rate of chills (p = 0.006, p = 0.046), severe CAP (p = 0.002, p < 0.001), ICU admission (p = 0.024, p < 0.001), and noninvasive ventilation (p = 0.003, p = 0.007). When underlying disease was taken into account, virus-positive patients had a higher rate of congestive heart failure than patients positive for bacteria and those with negative detection results (p = 0.001, p = 0.012, respectively) (Table 1).

Age distribution of patients with respiratory infections

To identify the age distribution of patients with infections, we categorized four age groups as 14–24, 25–44, 45–64 and ≥ 65 years to compare the frequency of positive detection. The highest positive rates of detection of total pathogens (69.26%) and bacteria (56.28%) were found in the 14–24 age group (chi-square test, p < 0.001). While the virus-positive rate was highest in the elderly aged ≥ 65 years old (34.87%, chi-square test, p = 0.017) (Fig. 2A). For each pathogen, higher frequencies of M. pneumoniae and C. pneumoniae were found in the 14–24 year-old group (p < 0.001), IFVA (p = 0.005) and RSV (p = 0.034) in the 45–64 year-old group, and HPIV3 (p = 0.044) and K. pneumoniae (p < 0.001) in the ≥ 65 year-old group (chi-square test) (Fig. 2B and C, Additional file 7: Table S5). The detection rate of the remaining screened pathogens showed no significant difference among age groups.

Temporal distribution of respiratory pathogens

The pathogen detection rates varied during the study period, with the highest rate in 2014 (72.48%) and the lowest in 2016 (45.53%) (Additional file 8: Table S6). Although the detection rate of each pathogen fluctuated slightly, the most commonly detected pathogens were relatively consistent, with eight pathogens ranking in the top 10 every year. Seasonality was analysed based on the peak detection rate of each pathogen, and 10 viruses and 4 bacteria were found to have significant seasonality, for example, K. pneumoniae peaks in summer (June to August), while IFVA and RSV in winter (December to February) (Fig. 3, Additional file 9: Table S7).

Co-detection of respiratory pathogens

Two or more (termed “multiple” hereafter) pathogens were co-detected in 725 (21.30%) patients, namely, multiple viruses in 78 (2.29%) patients, multiple bacteria in 195 (5.73%), and viruses with bacteria in 452 (13.28%) patients (Additional file 4: Table S3). Two pathogens were found in 542 (74.76%) patients, three in 145 (19.28%), and four or more in 38 (5.24%). The most common co-detected pathogens were IFVA with H. influenzae (n = 53), S. pneumoniae with H. influenzae (n = 51) and K. pneumoniae with H. influenzae (n = 42) (Additional file 10: Figure S2).

Associations of pathogens with severe CAP

The overall positive detection rate was significantly higher in patients with severe (67.32%) versus non-severe CAP (59.27%) (chi-square test, p = 0.001). K. pneumoniae (OR 1.599, 95% confidence interval [CI] 1.099–2.327, p = 0.014), S. aureus (OR 1.883, 95% CI 1.032–3.434, p = 0.039), L. pneumophila (OR 4.086, 95% CI 1.946–8.582, p < 0.001), IFVA (OR 2.771, 95% CI 1.954–3.930, p < 0.001) and RSV (OR 2.315, 95% CI 1.343–3.992, p = 0.003) were related to severe CAP after adjusting for the confounding factors of age, sex, season, days post illness onset, prior antibiotic exposure and underlying diseases (Fig. 4A). We also found that the co-detection of IFVA with S. aureus was more frequent in patients with severe CAP than single S. aureus detection (chi-square test, p = 0.015) and that co-detection of K. pneumoniae with S. aureus was more frequent in patients with severe CAP than single K. pneumoniae detection (chi-square test, p = 0.048) (Fig. 4B). Such findings further indicate the important role of pathogens, for example, IFVA and S. aureus, in severe CAP.
Considering the overall positive detection rate and the associations with severe infections, we proposed that the ten major pathogens according to the aetiological estimation fraction, including the top eight most frequently detected pathogens, RSV and L. pneumophila, accounting for 76.06–92.52% of all positive detection results across sites, should be given priority in screening (Fig. 5, Additional file 11: Table S8).

Discussion

In this study, we identified the respiratory pathogens spectra in adults with CAP in China via a multicentre prospective study. Our data showed that the pathogen spectra were consistent across different geographical regions over years. We further demonstrated that 10 major pathogens account for 76.06–92.52% of all positive detections across sites. K. pneumoniae, S. aureus, IFVA and RSV were risk factors related to severe CAP. These findings update our understanding of the aetiology of CAP in China, which may largely inform the development clinical pathogen diagnosis, anti-infective intervention, and even vaccination.
Molecular testing method has been shown to improve pathogen diagnosis efficiency and feasibility according to several large-scale studies on the aetiology of CAP [5, 1518]. By using the RT‒PCR method, the overall positive detection rate of common respiratory pathogens in our study was 60.36%, which is comparable with previous reports, for example, in Africa (59.6%), Europe and the United States (60.6%) [16, 17], demonstrating the reliability of molecular test methods. IFVs, S. pneumoniae, H. influenzae, M. pneumoniae and HRVs were considered the major detected CAP pathogens [8, 9, 1720]. According to our results, the viral spectrum was similar to that in previous studies, but the dominant nonviral agents varied compared with the data from other countries. For example, S. pneumoniae and M. pneumoniae were found at high frequencies in adults with CAP in USA, Finland and Australia, and S. pneumoniae and H. influenzae were the most frequently detected bacteria in adults with CAP in Sweden, Japan and Chile [5, 1923], while M. pneumoniae and K. pneumoniae were found at high frequencies in our study. In addition, K. pneumoniae was also identified as the fourth most commonly detected pathogen in patients with acute respiratory infection in China [24], reflecting the regional distribution of the pathogens. The frequency of detected pathogens may be affected by multiple factors, including medical, social, economic, environmental, geographical, and demographic factors. The difference in the implementation of national immunization programs and the use of antibiotics may also influence the aetiology of respiratory infections.
Elucidating the roles of different pathogens in severe CAP is critical for identifying the risk factors for severe infections to improve disease management. However, confounding factors might influence this determination [25]. In this study, after adjusting for confounding factors, including age, sex, season, days post symptom onset, underlying diseases, and antibiotic exposure before admission, IFVA, K. pneumoniae, S. aureus, and RSV were found to be strongly associated with severe infections, suggesting the important aetiological roles of these pathogens in severe CAP. K. pneumonia was found to be correlated with adverse outcomes and had a high detection rate in our study. These results indicated that K. pneumoniae should be seriously considered as a priority screening pathogen in adults with CAP. Further investigations should be performed to determine the pathogenicity and virulence characteristics of K. pneumoniae.
Aetiological studies on respiratory infections have defined a broad range of pathogens. However, the prevalence of these dozens of pathogens including viruses, bacteria, fungi and parasites varies largely, indicating the differential role of the pathogens play in respiratory infections. It is hard and unnecessary to cover all the respiratory pathogens in clinic panel for pathogen diagnosis for benefit/cost and technical reasons. Therefore, precise definition is required to design a panel which can cover the majority of respiratory pathogens with appropriate cost based on studies on respiratory pathogen prevalence. Our data showed that the ten major pathogens in CAP, including M. pneumoniae (376, 11.05%), H. influenzae (363, 10.67%), K. pneumoniae (355, 10.43%), IFVA (323, 9.49%), HRVs (307, 9.02%), S. pneumoniae (253, 7.43%), S. aureus (153, 4.50%), Adv (100, 2.94%), RSV (80, 2.35%), and L. pneumophila (35, 1.03%), account for 76.06–92.52% of all positive detection results across sampling sites. These findings can inform the design of priority pathogen screening in China, which may increase the efficacy of common pathogen screening and decrease the unnecessary expenditure for aetiological diagnosis. Our data showed that S. pneumoniae and H. influenzae are among the top 10 aetiological agents detected in adults with CAP in our study. As the two vaccines have not been included in the national immunization program in China, our data strongly indicate the necessity to prioritize the inclusion of pneumococcal conjugate vaccines (PCVs) and Hib vaccines to mitigate the burden of the corresponding infections [26, 27].
Normally, the detection of P. jirovecii is mainly reported in immunocompromised hosts. However, serological tests support the possibility of subclinical infection, exposure, or fixation [28]. We detected P. jirovecii by using a molecular method, which might increase the positive detection rate. Nearly 60% (32 of 54) of patients were positive for multiple pathogens. We considered the positive detection of P. jirovecii to be reliable, while the clinical significance of the positive detection of P. jirovecii needs intensive investigation.
Our study had several limitations. Firstly, although the presence of pathogens determined by molecular testing method has been accepted, more comparative studies involving bacterial culture and other traditional methods used in the clinic are still needed to improve the strategies used for pathogen detection [29]. Especially, some respiratory samples were found to be positive on L. pneumophila in our study, but the clinical significance of the results still needs to be investigated intensively. However, very limited cases were tested by using urinary antigen detection for L. pneumophila in clinic. Secondly, the process for sampling sputum or BALF might introduce commensal bacterial contamination from the upper respiratory tract, which might influence the detection results. In addition, self-administration of antibiotics before admission was an unavoidable confounding factor in aetiology studies. Finally, our study was designed and performed before the COVID-19 pandemic, and our findings should be further compared with the aetiology of CAP post COVID-19.

Conclusions

In conclusion, we clarified the pathogen spectrum in adults with CAP in China and characterized the pathogens associated with severe infection. On this basis, we propose to include 10 major pathogens as priorities for clinical pathogen screening in adults with CAP.

Acknowledgements

We thank the clinicians help to collect samples.

Competing interests

Conflict of interest

The authors declare no competing interest.
The ethic was approved by Ethics Committee of the Institute of Pathogenic Biology, Chinese Academy of Medical Sciences (IPB-2014-07, IPB-2018-3). Informed consent was obtained from each enrolled patient. The data collected for this research will not be used for any other purposes. All methods were performed in accordance with the relevant guidelines and regulations.
Not applicable.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Wunderink R, Waterer G. Advances in the causes and management of community acquired pneumonia in adults. BMJ. 2017;358:j2471.CrossRefPubMed Wunderink R, Waterer G. Advances in the causes and management of community acquired pneumonia in adults. BMJ. 2017;358:j2471.CrossRefPubMed
3.
Zurück zum Zitat Zhou F, Wang Y, Liu Y, Liu X, Gu L, Zhang X et al. Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicentre prospective registry study from the CAP-China Network. Eur Respir J. 2019; 54(2). Zhou F, Wang Y, Liu Y, Liu X, Gu L, Zhang X et al. Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicentre prospective registry study from the CAP-China Network. Eur Respir J. 2019; 54(2).
4.
Zurück zum Zitat GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2018;392:1736–88.CrossRef GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017. Lancet. 2018;392:1736–88.CrossRef
5.
Zurück zum Zitat Jain S, Self W, Wunderink R, Fakhran S, Balk R, Bramley A, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med. 2015;373(5):415–27.CrossRefPubMedPubMedCentral Jain S, Self W, Wunderink R, Fakhran S, Balk R, Bramley A, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med. 2015;373(5):415–27.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Olson G, Davis A. Diagnosis and treatment of adults with community-acquired pneumonia. JAMA. 2020;323(9):885–6.CrossRefPubMed Olson G, Davis A. Diagnosis and treatment of adults with community-acquired pneumonia. JAMA. 2020;323(9):885–6.CrossRefPubMed
7.
Zurück zum Zitat Jain S, Self W, Wunderink R, CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization. N Engl J Med. 2015;373(24):2382.PubMedPubMedCentral Jain S, Self W, Wunderink R, CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization. N Engl J Med. 2015;373(24):2382.PubMedPubMedCentral
8.
Zurück zum Zitat Torres A, Cilloniz C, Niederman M, Menéndez R, Chalmers J, Wunderink R, et al. Pneumonia Nat Rev Dis Primers. 2021;7(1):25.CrossRefPubMed Torres A, Cilloniz C, Niederman M, Menéndez R, Chalmers J, Wunderink R, et al. Pneumonia Nat Rev Dis Primers. 2021;7(1):25.CrossRefPubMed
9.
Zurück zum Zitat Ren L, Gonzalez R, Wang Z, Xiang Z, Wang Y, Zhou H, et al. Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005–2007. Clin Microbiol Infect. 2009;15(12):1146–53.CrossRefPubMedPubMedCentral Ren L, Gonzalez R, Wang Z, Xiang Z, Wang Y, Zhou H, et al. Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005–2007. Clin Microbiol Infect. 2009;15(12):1146–53.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Evans S, Jennerich A, Azar M, Cao B, Crothers K, Dickson R, et al. Nucleic acid-based testing for noninfluenza viral pathogens in adults with suspected community-acquired pneumonia. An official american thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2021;203(9):1070–87.CrossRefPubMedPubMedCentral Evans S, Jennerich A, Azar M, Cao B, Crothers K, Dickson R, et al. Nucleic acid-based testing for noninfluenza viral pathogens in adults with suspected community-acquired pneumonia. An official american thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2021;203(9):1070–87.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Mandell L, Wunderink R, An Z, Bartlett J, Campbell G, Dean N, et al. Infectious Diseases Society of America/American thoracic society consensus guidelines on the management of community acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):2772. Mandell L, Wunderink R, An Z, Bartlett J, Campbell G, Dean N, et al. Infectious Diseases Society of America/American thoracic society consensus guidelines on the management of community acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):2772.
12.
Zurück zum Zitat Kenmoe S, Tcharnenwa C, Monamele G, Kengne C, Ripa M, Whitaker B, et al. Comparison of FTD® respiratory pathogens 33 and a singleplex CDC assay for the detection of respiratory viruses: a study from Cameroon. Diagn Microbiol Infect Dis. 2019;94:236–42.CrossRefPubMedPubMedCentral Kenmoe S, Tcharnenwa C, Monamele G, Kengne C, Ripa M, Whitaker B, et al. Comparison of FTD® respiratory pathogens 33 and a singleplex CDC assay for the detection of respiratory viruses: a study from Cameroon. Diagn Microbiol Infect Dis. 2019;94:236–42.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Vilivong K, Phommachan S, Syladeth C, Lai J, Lim R, Morpeth M, et al. Acute respiratory infections in hospitalized children in Vientiane, Lao PDR - the importance of respiratory Syncytial Virus. Sci Rep. 2017;7:9318.CrossRefPubMedPubMedCentral Vilivong K, Phommachan S, Syladeth C, Lai J, Lim R, Morpeth M, et al. Acute respiratory infections in hospitalized children in Vientiane, Lao PDR - the importance of respiratory Syncytial Virus. Sci Rep. 2017;7:9318.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Core Team R. R: A Language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. Core Team R. R: A Language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
15.
Zurück zum Zitat Jain S, Williams D, Arnold S, Ampofo K, Bramley A, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835–45.CrossRefPubMedPubMedCentral Jain S, Williams D, Arnold S, Ampofo K, Bramley A, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835–45.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Arancibia F, Cortes C, Valdés M, Cerda J, Hernández A, Soto L, et al. Importance of Legionella pneumophila in the aetiology of severe community-acquired pneumonia in Santiago, Chile. Chest. 2014;145(2):290–6.CrossRefPubMed Arancibia F, Cortes C, Valdés M, Cerda J, Hernández A, Soto L, et al. Importance of Legionella pneumophila in the aetiology of severe community-acquired pneumonia in Santiago, Chile. Chest. 2014;145(2):290–6.CrossRefPubMed
17.
Zurück zum Zitat Aston S, Ho A, Jary H, Huwa J, Mitchell T, Ibitoye S, et al. Aetiology and risk factors for mortality in an adult community-acquired pneumonia cohort in Malawi. Am J Respir Crit Care Med. 2019;200(3):359–69.CrossRefPubMedPubMedCentral Aston S, Ho A, Jary H, Huwa J, Mitchell T, Ibitoye S, et al. Aetiology and risk factors for mortality in an adult community-acquired pneumonia cohort in Malawi. Am J Respir Crit Care Med. 2019;200(3):359–69.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Luna C, Famiglietti A, Absi R, Videla A, Nogueira F, Fuenzalida A, et al. Community-acquired pneumonia: aetiology, epidemiology, and outcome at a teaching hospital in Argentina. Chest. 2000;118(5):1344–54.CrossRefPubMed Luna C, Famiglietti A, Absi R, Videla A, Nogueira F, Fuenzalida A, et al. Community-acquired pneumonia: aetiology, epidemiology, and outcome at a teaching hospital in Argentina. Chest. 2000;118(5):1344–54.CrossRefPubMed
19.
Zurück zum Zitat Miyashita N, Fukano H, Niki Y, Matsushima T, Okimoto N. Aetiology of community-acquired pneumonia requiring hospitalization in Japan. Chest. 2001;119(4):1295–6.CrossRefPubMed Miyashita N, Fukano H, Niki Y, Matsushima T, Okimoto N. Aetiology of community-acquired pneumonia requiring hospitalization in Japan. Chest. 2001;119(4):1295–6.CrossRefPubMed
20.
Zurück zum Zitat Lagerström F, Bader M, Foldevi M, Fredlund H, Nordin-Olsson I, Holmberg H. Microbiological aetiology in clinically diagnosed community-acquired pneumonia in primary care in Orebro, Sweden. Clin Microbiol Infect. 2003;9(7):645–52.CrossRefPubMed Lagerström F, Bader M, Foldevi M, Fredlund H, Nordin-Olsson I, Holmberg H. Microbiological aetiology in clinically diagnosed community-acquired pneumonia in primary care in Orebro, Sweden. Clin Microbiol Infect. 2003;9(7):645–52.CrossRefPubMed
21.
Zurück zum Zitat Jokinen C, Heiskanen L, Juvonen H, Kallinen S, Kleemola M, Koskela M, et al. Microbial etiology of community-acquired pneumonia in the adult population of 4 municipalities in eastern finland. Clin Infect Dis. 2001;32(8):1141–54.CrossRefPubMed Jokinen C, Heiskanen L, Juvonen H, Kallinen S, Kleemola M, Koskela M, et al. Microbial etiology of community-acquired pneumonia in the adult population of 4 municipalities in eastern finland. Clin Infect Dis. 2001;32(8):1141–54.CrossRefPubMed
22.
Zurück zum Zitat Charles P, Whitby M, Fuller A, Stirling R, Wright A, Korman T, et al. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin Infect Dis. 2008;46(10):1513–21.CrossRefPubMed Charles P, Whitby M, Fuller A, Stirling R, Wright A, Korman T, et al. The etiology of community-acquired pneumonia in Australia: why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin Infect Dis. 2008;46(10):1513–21.CrossRefPubMed
23.
Zurück zum Zitat Díaz A, Barria P, Niederman M, Restrepo M, Dreyse J, Fuentes G, et al. Aetiology of community-acquired pneumonia in hospitalized patients in Chile: the increasing prevalence of respiratory viruses among classic pathogens. Chest. 2007;131(3):779–87.CrossRefPubMed Díaz A, Barria P, Niederman M, Restrepo M, Dreyse J, Fuentes G, et al. Aetiology of community-acquired pneumonia in hospitalized patients in Chile: the increasing prevalence of respiratory viruses among classic pathogens. Chest. 2007;131(3):779–87.CrossRefPubMed
24.
Zurück zum Zitat Li Z, Zhang H, Ren L, Lu Q, Ren X, Zhang C, et al. Etiological and epidemiological features of acute respiratory infections in China. Nat Commun. 2021;12(1):5026.CrossRefPubMedPubMedCentral Li Z, Zhang H, Ren L, Lu Q, Ren X, Zhang C, et al. Etiological and epidemiological features of acute respiratory infections in China. Nat Commun. 2021;12(1):5026.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Di P, Sotgiu G, Gramegna A, Radovanovic D, Terraneo S, Reyes L, et al. Prevalence and etiology of community-acquired pneumonia in immunocompromised patients. Clin Infect Dis. 2019;68(9):1482–93.CrossRef Di P, Sotgiu G, Gramegna A, Radovanovic D, Terraneo S, Reyes L, et al. Prevalence and etiology of community-acquired pneumonia in immunocompromised patients. Clin Infect Dis. 2019;68(9):1482–93.CrossRef
27.
Zurück zum Zitat Zhang H, Garcia C, Yu W, Knoll M, Lai X, Xu T, et al. National and provincial impact and cost-effectiveness of Haemophilus influenzae type b conjugate vaccine in China: a modeling analysis. BMC Med. 2021;19(1):181.CrossRefPubMedPubMedCentral Zhang H, Garcia C, Yu W, Knoll M, Lai X, Xu T, et al. National and provincial impact and cost-effectiveness of Haemophilus influenzae type b conjugate vaccine in China: a modeling analysis. BMC Med. 2021;19(1):181.CrossRefPubMedPubMedCentral
28.
29.
Zurück zum Zitat Templeton K, Scheltinga S, van dE, Graffelman A, van dB, Claas E. Improved diagnosis of the aetiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005;41(3):345–51.CrossRefPubMed Templeton K, Scheltinga S, van dE, Graffelman A, van dB, Claas E. Improved diagnosis of the aetiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis. 2005;41(3):345–51.CrossRefPubMed
Metadaten
Titel
Identification of priority pathogens for aetiological diagnosis in adults with community-acquired pneumonia in China: a multicentre prospective study
verfasst von
Lulu Zhang
Yan Xiao
Guoliang Zhang
Hongru Li
Jianping Zhao
Mingwei Chen
Fuhui Chen
Ling Liu
Yalun Li
Liping Peng
Feng Zhao
Donghong Yang
Zhongmei Wen
Lei Wu
Shuo Wu
Yajiao Sun
Ying Wang
Lan Chen
Xinming Wang
Lihui Wang
Weimin Li
Haibo Qiu
Yusheng Chen
Zhancheng Gao
Lili Ren
Jianwei Wang
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2023
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-023-08166-3

Weitere Artikel der Ausgabe 1/2023

BMC Infectious Diseases 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.