Skip to main content
Erschienen in: Italian Journal of Pediatrics 1/2022

Open Access 01.12.2022 | Case report

From Wolf-Hirschhorn syndrome to NSD2 haploinsufficiency: a shifting paradigm through the description of a new case and a review of the literature

verfasst von: Luisa Cortellazzo Wiel, Irene Bruno, Egidio Barbi, Fabio Sirchia

Erschienen in: Italian Journal of Pediatrics | Ausgabe 1/2022

Abstract

Background

Wolf-Hirschhorn syndrome (WHS) is a well-defined disorder, whose core phenotype encompasses growth restriction, facial gestalt, intellectual disability and seizures. Nevertheless, great phenotypic variability exists due to the variable extent of the responsible 4p deletion. In addition, exome sequencing analyses, recently identified two genes, namely NSD2 and NELFA, whose loss-of-function variants contribute to a clinical spectrum consistent with atypical or partial WHS.
The observation of patients exhibiting clinical features resembling WHS, with only mild developmental delay and without the typical dysmorphic features, carrying microdeletions sparing NSD2, has lead to the hypothesis that NSD2 is responsible for the intellectual disability and the facial gestalt of WHS. While presenting some of the typical findings of WHS (intellectual disability, facial gestalt, microcephaly, growth restriction and congenital heart defects), NSD2-deleted children tend to display a milder spectrum of skeletal abnormalities, usually consisting of clinodactyly, and do not exhibit seizures.
We describe the clinical picture of a child with WHS due to a de novo mutation of NSD2 and discuss the clinical and diagnostic implications.

Case presentation

A 6-year-old boy was evaluated for a history of intrauterine growth restriction, low birth weight, neonatal hypotonia, and psychomotor delay. No episodes of seizure were reported. At physical examination, he displayed marphanoid habitus, muscle hypotrophy and facial dysmorphisms consisting in high frontal hairline, upslanting palpebral fissures and full lips with bifid ugula. Cryptorchidism, shawl scrotum, mild clinodactyly of the right little finger and bilateral syndactyly of the II and III toes with sandal gap were also noted. The radiographic essay demonstrated delayed bone age and echocardiography showed mild mitral prolapse. Whole genome sequencing analysis revealed a heterozygous de novo variant of NSD2 (c.2523delG).

Conclusions

Full WHS phenotype likely arises from the cumulative effect of the combined haploinsufficiency of several causative genes mapping within the 4p16.3 region, as a contiguous genes syndrome, with slightly different phenotypes depending on the specific genes involved in the deletion.
When evaluating children with pictures resembling WHS, in absence of seizures, clinicians should consider this differential diagnosis.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
WHS
Wolf-Hirschhorn syndrome
WHSC1
Wolf-Hirschhorn syndrome candidate gene 1
NSD2
Nuclear receptor-binding Set Domain-protein 2
WHSC2
Wolf-Hirschhorn syndrome candidate gene 2
WHSCR
Wolf-Hirschhorn syndrome Critical Region
NELFA
Negative Elongation Factor Complex Member A
LETM1
Leucine zipper/EF-hand containing transmembrane

Background

Wolf-Hirschhorn syndrome (WHS) is a well-defined disorder due to variable size-deletions of the chromosomal region 4p16.3, characterized by a clinical picture encompassing growth restriction, developmental delay, microcephaly, congenital hypotonia and major malformations, including midline, heart, renal and skeletal defects, along with the typical facial gestalt, consisting of the so called “Greek warrior helmet” appearance (high forehead, continuing to a wide nasal bridge, with short philtrum, high arched eyebrows, hypertelorism, and micrognathia). Seizures occur in nearly all affected patients within the age of 3 years and complicate the management, acting as a significant prognostic factor for the final degree of intellectual disability.
In front of the great phenotypic variability of WHS, depending mostly on the extent of the 4p deletion, the core WHS phenotype is conventionally defined by the association of intellectual disability, growth delay, facial gestalt and seizures [1]. Thus, two minimal critical regions responsible for WHS (WHSCR) have been identified, corresponding to the smallest region, whose haploinsufficiency determines the core phenotype [24].
More recently, exome sequencing analyses identified two genes within the WHSCR, whose loss-of-function variants contribute to a clinical spectrum consistent with atypical or partial WHS: WHS candidate gene 1 (WHSC1), also known as Nuclear receptor-binding Set Domain-protein 2 (NSD2), contained only partly within the WHSCR [5], and WHS candidate gene 2 (WHSC2), also known as Negative Elongation Factor Complex Member A (NELFA), entirely contained within the WHSCR [6].
We describe a patient with a de novo variant of NSD2 and discuss the clinical implications.

Case presentation

The proband was a 6-year-old boy, born at 34 weeks of gestation by cesarean section from healthy, non-consanguineous parents. Gestation was complicated by intrauterine growth restriction (IUGR) and the baby displayed low birth weight. The neonatal period was characterized by hypotonia, followed by psychomotor delay. No episodes of seizure were reported.
At physical examination, he displayed marphanoid habitus, muscle hypotrophy and facial dysmorphisms consisting in high frontal hairline, upslanting palpebral fissures and full lips with bifid ugula (Fig. 1). Cryptorchidism, shawl scrotum, mild clinodactyly of the right little finger, bilateral syndactyly of the II and III toes with sandal gap and a small café-au-lait spot on dorsum were also noted. The radiographic essay demonstrated delayed bone age and echocardiography showed mild mitral prolapse.
Both single nucleotide polymorphism-arrays and next-generation intellectual disability gene panel proved negative. Whole genome sequencing analysis revealed a heterozygous de novo variant of NSD2 (c.2523delG).

Discussion and conclusions

NSD2 acts as a histone methyltransferase, responsible for the methylation of HEK36, thus explaining the occurrence of developmental delay in carriers of NSD2 variants, in light of the crucial role of histones modification in brain development. Of note, the description of two patients with intact NSD2, exhibiting clinical features resembling WHS but only mild developmental delay [7], has lead to the assumption that the haploinsufficiency of NSD2 is responsible for the developmental delay, typically observed in WHS patients; this hypothesis has been further supported by the documentation of a higher degree of developmental delay in patients with disrupted NSD2, compared with those with the intact gene [8, 9]. Autism spectrum disorder has been reported in eight NSD2-haploinsufficient children [10, 11]. Moreover, deletions of NSD2 are considered responsible for the facial gestalt of WHS, in light of the observation of non-specific findings consistent with WHS (growth and developmental delay) but without the typical dysmorphic features, in several patients with microdeletions sparing NSD2 [12, 13].
Hence, the clinical spectrum of NSD2 deletion encompasses: prenatal and postnatal growth restriction [14], microcephaly, developmental delay [15], congenital heart defects and several phenotypic traits, including hypertelorism, upward-slanting palpebral fissures, prominent nasal bridge, abnormal teething and micrognathia. Cleft palate has been described in fourteen patients [1621]. Compared to WHS patients, NSD2-deleted children tend to display a milder spectrum of skeletal abnormalities, usually consisting of clinodactyly [22]. Table 1 summarizes the previously reported cases of NSD2 haploinsufficiency. Remarkably, seizures are not usually part of the clinical spectrum of NSD2 variants.
Table 1
Summary of previous published cases of NSD2 haploinsufficiency
 
Zollino et al.,
Rauch et al.,
Zollino et al.,
Van Buggenhout et al.,
Rodrìguez et al.,
Maas et al.,
Izumi et al.,
Okamoto et al.,
Andersen et al.,
Am J Med Genet 2000
Am J Med Genet 2001
Am J Hum Genet 2003
J Med Genet 2004
Am J Med Genet 2005
J Med Genet 2008
Am J Med Genet 2010
Am J Med Genet 2013
Eur J Med Gen 2014
   
5 patients
    
3 patients
Age at last observation (years)
 
5
1
5.6 to 13.3
4
 
2.8
2
2 to 11
Genetic finding
12 patients with > 5 Mb deletion and 3 patient s with < 5 Mb deletion
191.5 kb deletion
1.9 Mb deletion
> 2 Mb deletion
1.9 Mb deletion
8 patients with > 5 Mb deletion and 13 patients with ≤5 Mb deletion
1.3 Mb deletion
109 kb deletion
60 to 377 kb deletion
IUGR
13/15
+
3/5
+
18/21
+
+
2/3
SGA
13/15
3/5
+
15/20
+
+
2/3
Postnatal growth retardation
15/15
+
+
5/5
+
16/21
+
+
1/3
Microcephaly
14/15
2/5
19/20
+
0/3
Craniofacial
15/15
+
+
5/5
+
20/21
+
+
3/3
High/broad forehead
N/A
+
+
1/5
17/18
+
3/3
Frontal bossing
N/A
+
0/5
+
0/21
 
N/A
Bitemporal narrowing
N/A
+
0/5
0/21
2/3
Prominent glabella
N/A
+
+
0/5
14/19
+
1/3
High arched eyebrows
N/A
+
0/5
0/21
+
1/3
Hypertelorism
N/A
+
+
0/5
16/19
+
3/3
Epicanthus
N/A
+
0/5
+
7/17
+
2/3
Prominent eyes
N/A
+
+
1/5
0/21
+
2/3
Downslanting palpebral fissures
N/A
1/5
0/21
+
+
0/3
Abnormal ears
N/A
+
+
1/5
+
17/20
+
2/3
Broad nasal bridge
N/A
+
4/5
+
13/19
+
+
3/3
Short philtrum
N/A
+
1/5
+
16/19
+
+
2/3
Downturned corners of the mouth
N/A
+
+
0/5
14/19
+
0/3
Micrognathia
N/A
+
0/5
15/20
+
+
3/3
Cleft lip/cleft palate
6/15
1/5
3/19
0/3
Hypotonia
15/15
+
0/5
+
13/19
+
2/3
Feeding difficulties
N/A
+
1/5
N/A
+
3/3
Seizures
14/15
+
2/5
+
15/21
+
0/3
Developmental delay
15/15
+
5/5
+
21/21
+
+
3/3
Abnormal behaviour
N/A
ADHD
N/A
N/A
N/A
N/A
ADHD, aggressiveness
ADHD 1/3
CNS structural abnormalities
N/A
N/A
Sacral dimple 4/4; delayed myelinisation 1/1
Sacral dimple
Sacral dimple 15/17
N/A
Distal ventral chordae 1/1
Hearing loss
N/A
+
 
N/A
N/A
N/A
N/A
 
Ophtalmological abnormalities
Iris coloboma 1/15
N/A
N/A
N/A
N/A
N/A
N/A
0/1
Cardiac features
9/15
N/A
ASD 2/19; AVSD 1/19; VSD 1/11; pulmonary stenosis 1/11
N/A
Left aortic arch, retroesophageal subclavian artery 1/3
Urinary tract malformations
Renal hypoplasia 3/15; hydronephrosis 3/15; renal fusion 1/15; hypospadias 5/15
Hypospadias 1/1; inguinal hernia 1/1
Bilateral pyelectasia
Left kidney duplication 1/18; VUR 8/18; hypospadias 8/18; right cryptorchidism 1/18; clitoridomegaly 1/18; ventrally spaced anus 1/8
N/A
VUR 1/3; left pyelectasia, cryptorchidism 1/3
Congenital diaphragmatic hernia
0/15
1/5
0/21
0/3
Skeletal abnormalities
N/A
Clinodactyly of V fingers, cutaneous syndactyly of I and III toes
Hyperkyphosis 2/5; small hands and feet 1/1
Scoliosis/hyperkyphosis 7/19; club feet 3/17
Small nails
0/3
 
Yang et al.,
Lozier et al.,
Callaway et al.,
Derar et al.,
Bernardini et al.,
Boczek et al.,
Barrie et al.,
Jiang et al.,
Hu et al.,
Zanoni et al.,
Chinese Medical Journal 2016
Hum Genet 2018
J Pediatr Genet 2018
Genet in Med 2018
Am J Med Genet 2018
Am J Med Genet 2018
Cold Spring Harb Mol Case Stud 2019
BMC Med Genet 2019
BMC Med Genom 2020
Genet in Med 2021
   
2 patients
3 patients
 
3 patients
   
Age at last observation (years)
 
1.3
Stillborn
2.8 to 5
3 to 7.2
3
2.2 to 5
12
10.5
 
Genetic finding
10 patients with > 2 Mb deletion
Pathogenic SNV
19 Mb deletion
Pathogenic SNV
68 to 166 kb deletion
Pathogenic SNV
Pathogenic SNV
Pathogenic SNV
Pathogenic SNV
18 patients with pathogenic SNV
IUGR
5/10
+
2/2
2/3
+
3/3
+
+
7/17
SGA
5/10
N/A
N/A
3/3
+
2/2
+
+
1/18
Postnatal growth retardation
10/10
+
N/A
2/2
3/3
+
2/3
+
+
16/17
Microcephaly
0/10
+
N/A
2/2
0/3
+
2/3
+
1/18
Craniofacial
10/10
+
N/A
2/2
3/3
+
3/3
+
+
17/17
High/broad forehead
10/10
+
N/A
0/2
3/3
1/3
8/17
Frontal bossing
0/10
N/A
0/2
N/A
0/3
2/17
Bitemporal narrowing
0/10
N/A
0/2
2/3
0/3
0/18
Prominent glabella
10/10
N/A
0/2
0/3
0/3
+
0/18
High arched eyebrows
10/10
N/A
1/2
3/3
+
0/3
+
+
2/17
Hypertelorism
10/10
+
N/A
1/2
2/3
+
0/3
+
+
6/17
Epicanthus
0/10
+
N/A
0/2
3/3
0/3
+
+
2/17
Prominent eyes
9/10
N/A
0/2
3/3
0/3
0/18
Downslanting palpebral fissures
0/10
N/A
0/2
0/3
0/3
0/18
Abnormal ears
2/10
+
N/A
2/2
2/3
+
1/3
+
8/17
Broad nasal bridge
10/10
+
N/A
2/2
2/3
+
1/3
+
4/17
Short philtrum
9/10
N/A
2/2
2/3
0/3
+
2/17
Downturned corners of the mouth
5/10
N/A
2/2
2/3
0/3
+
0/18
Micrognathia
4/10
N/A
2/2
1/3
0/3
+
+
3/17
Cleft lip/cleft palate
2/0
+
0/2
1/3
0/3
0/18
Hypotonia
9/10
+
N/A
2/2
2/3
+
3/3
+
12/17
Feeding difficulties
3/10
N/A
2/2
1/3
0/3
+
9/18
Seizures
8/10
N/A
0/2
0/3
0/3
2/17
Developmental delay
10/10
+
N/A
2/2
3/3
+
3/3
+
+
13/17
Abnormal behaviour
N/A
N/A
N/A
0/2
ADHD 1/3
Anxiety, hyperactivity, aggressiveness
Autism 1/1
N/A
N/A
Autism 7/17; ADHD 6/17; Aggressiveness 2/17; Anxiety 2/17
CNS structural abnormalities
N/A
N/A
N/A
0/2
Subependymal and intarathalamic hyperechogenic spots 1/3
Sacral dimple
Isolated 4 mm subependymal gray matter heterotopia 1/2
N/A
T2 hyperintensity and volume loss of the periatrial white matter 1/10; 8 mm pineal cyst, non-specific mild diffuse T2/FLAIR signal hyperintensity in the bilateral parietal and occipital white matter, small thoracic spinal cord syrinx 1/10; few small areas of gliosis in the frontal and periatrial area 1/10; thin corpus callosum, white matter lesions 1/10
Hearing loss
N/A
N/A
N/A
  
N/A
 
N/A
N/A
0/16
Ophtalmological abnormalities
N/A
N/A
N/A
0/2
Myopia 1/1
N/A
Myopia 1/1
N/A
N/A
Refraction defects 4/18; strabismus 2/18; bilateral keratoconus, retinitis pigmentosa, optic atrophy, corneal transplant 1/18
Cardiac features
ASD 3/8; pulmonary stenosis 2/8
N/A
N/A
0/2
Partial AVCD 1/2; mitral valve prolapse 1/2
N/A
N/A
Mild pulmonary artery stenosis 1/18; small PFO 1/18; interrupted aortic arch, VSD 1/18
Urinary tract malformations
1/10
Rotation of right kidney
N/A
0/2
0/3
N/A
Bilateral renal hypoplasia, CKD 1/2
N/A
Left renal agenesis 1/18; left hydronephrosis and hypospadias 1/18; bilateral cryptorchidism 1/18; congenital bilateral inguinal hernia 1/18
Congenital diaphragmatic hernia
0/10
+
0/2
0/3
0/3
0/18
Skeletal abnormalities
1/10
Clinodactyly of V fingers
N/A
0/2
Mild scoliosis, bilateral pes cavus, syndaktyly II-III toes 1/3
0/3
Clinodactyly of V fingers
8/18 (pectus excavatum, scapulae alatae, mild scoliosis, prominent knees, flat feet, broad forefeet, bilateral clinodactyly of the V toe 1/18; 11 ossified ribs and 6 non rib-bearing lumbar vertebrae 1/18; severe arthrosis of wrist and knee 1/18; clinodactyly of V fingers 3/18; bilateral cutaneous incomplete syndactyly of II and III toes 2/18; pes planus 2/18)
Abbreviations: SNV single nucleotide variant, IUGR intrauterine growth restriction, SGA small for gestational age, CNS central nervous system, N/A not assessed, ADHD attention deficit and hyperactivity disorder, ASD atrial septum defect, AVSD atrioventricular septum defect, VSD ventricular septum defect, AVCD atrioventricular canal defect, PFO patent foramen ovale, VUR vescicoureteral reflux, CKD chronic kidney disease
LETM1 (Leucine zipper/EF-hand containing transmembrane), involved in calcium signaling and mapping within the WHSCR, had been previously identified as responsible for seizures. However, this assumption has recently been questioned by the observation of the occurrence of seizures in children carrying terminal 4p deletions sparing LETM1, and of the lack of seizure in individuals with interstitial deletions including LETM1, but preserving a relatively large terminal 4p segment [23]: these observations suggest that the haploinsufficiency of LETM1 alone may not be sufficient in causing seizures, which would rather result from the effect of additional candidate genes [24].
Remarkably, the recurrence risk of NSD2 variants is 50% and must be taken into account when counseling families of affected individuals.
In conclusion, full WHS phenotype probably arises from the cumulative effect of the combined haploinsufficiency of several causative genes mapping into the 4p16.3 region, as a contiguous genes syndrome, with slightly different phenotypes depending on the specific genes involved in the deletion [25].
NSD2 haploinsufficiency is responsible of a distinctive entity, with clinical findings falling to some extent within the WHS phenotype, but not sufficient to allow a conclusive diagnosis of WHS.
When evaluating children with pictures resembling WHS, clinicians should bear this condition in mind as a possible differential diagnosis.

Acknowledgments

Not applicable.

Declarations

Not applicable.
The patient’s guardians gave their written consent for publication of this article.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Zollino M, Murdolo M, Marangi G, Pecile V, Galasso C, Mazzanti L, et al. On the nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review. Am J Med Genet C: Semin Med Genet. 2008;148C(4):257–69.CrossRef Zollino M, Murdolo M, Marangi G, Pecile V, Galasso C, Mazzanti L, et al. On the nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review. Am J Med Genet C: Semin Med Genet. 2008;148C(4):257–69.CrossRef
2.
Zurück zum Zitat Rauch A, Schellmoser S, Kraus C, Dörr HG, Trautmann U, Altherr MR, et al. First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. Am J Med Genet. 2001;99(4):338–42.CrossRef Rauch A, Schellmoser S, Kraus C, Dörr HG, Trautmann U, Altherr MR, et al. First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype-phenotype correlation. Am J Med Genet. 2001;99(4):338–42.CrossRef
3.
Zurück zum Zitat Zollino M, Lecce R, Fischetto R, Murdolo M, Faravelli F, Selicorni A, et al. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Am J Hum Genet. 2003;72(3):590–7.CrossRef Zollino M, Lecce R, Fischetto R, Murdolo M, Faravelli F, Selicorni A, et al. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Am J Hum Genet. 2003;72(3):590–7.CrossRef
4.
Zurück zum Zitat Rodríguez L, Zollino M, Climent S, Mansilla E, López-Grondona F, Martínez-Fernández ML, et al. The new Wolf-Hirschhorn syndrome critical region (WHSCR-2): a description of a second case. Am J Med Genet A. 2005;136(2):175–8.CrossRef Rodríguez L, Zollino M, Climent S, Mansilla E, López-Grondona F, Martínez-Fernández ML, et al. The new Wolf-Hirschhorn syndrome critical region (WHSCR-2): a description of a second case. Am J Med Genet A. 2005;136(2):175–8.CrossRef
5.
Zurück zum Zitat Derar N, Al-Hassnan ZN, Al-Owain M, Monies D, Abouelhoda M, Meyer BF, et al. De Novo Truncating Variants in WHSC1 Recapitulate the Wolf-Hirschhorn (4p16.3 Microdeletion) Syndrome Phenotype. Genet Med. 2019;21(1):185–8.CrossRef Derar N, Al-Hassnan ZN, Al-Owain M, Monies D, Abouelhoda M, Meyer BF, et al. De Novo Truncating Variants in WHSC1 Recapitulate the Wolf-Hirschhorn (4p16.3 Microdeletion) Syndrome Phenotype. Genet Med. 2019;21(1):185–8.CrossRef
6.
Zurück zum Zitat Cyr AB, Nimmakayalu M, Longmuir SQ, Patil SR, Keppler-Noreuil K, Shchelochkov OA. A novel 4p16.3 microduplication distal to WHSC1 and WHSC2 characterized by oligonucleotide array with new phenotypic features. Am J Med Genet Part A. 2011;155:2224–8.CrossRef Cyr AB, Nimmakayalu M, Longmuir SQ, Patil SR, Keppler-Noreuil K, Shchelochkov OA. A novel 4p16.3 microduplication distal to WHSC1 and WHSC2 characterized by oligonucleotide array with new phenotypic features. Am J Med Genet Part A. 2011;155:2224–8.CrossRef
7.
Zurück zum Zitat South ST, Hannes F, Fisch GS, Vermeesch JR, Zollino M. Pathogenic significance of deletions distal to the currently described Wolf-Hirschhorn syndrome critical regions on 4p16.3. Am J Med Genet Part C. 2008;148C:270–4.CrossRef South ST, Hannes F, Fisch GS, Vermeesch JR, Zollino M. Pathogenic significance of deletions distal to the currently described Wolf-Hirschhorn syndrome critical regions on 4p16.3. Am J Med Genet Part C. 2008;148C:270–4.CrossRef
8.
Zurück zum Zitat Izumi K, Okuno H, Maeyama K, Sato S, Yamamoto T, Torii C, et al. Interstitial microdeletion of 4p16.3: Contribution of WHSC1 haploinsufficiency to the pathogenesis of developmental delay in Wolf–Hirschhorn syndrome. Am J Med Genet Part A. 2010;152A:1028–32.CrossRef Izumi K, Okuno H, Maeyama K, Sato S, Yamamoto T, Torii C, et al. Interstitial microdeletion of 4p16.3: Contribution of WHSC1 haploinsufficiency to the pathogenesis of developmental delay in Wolf–Hirschhorn syndrome. Am J Med Genet Part A. 2010;152A:1028–32.CrossRef
9.
Zurück zum Zitat Okamoto N, Ohmachi K, Shimada S, Shimojima K, Yamamoto T. 109 kb deletion of chromosome 4p16.3 in a patient with mild phenotype of Wolf-Hirschhorn syndrome. Am J Med Genet A. 2013;161A(6):1465–9.CrossRef Okamoto N, Ohmachi K, Shimada S, Shimojima K, Yamamoto T. 109 kb deletion of chromosome 4p16.3 in a patient with mild phenotype of Wolf-Hirschhorn syndrome. Am J Med Genet A. 2013;161A(6):1465–9.CrossRef
10.
Zurück zum Zitat Barrie ES, Alfaro MP, Pfau RB, Goff MJ, McBride KL, Manickam K, et al. De Novo Loss-Of-Function Variants in NSD2 (WHSC1) Associate With a Subset of Wolf-Hirschhorn Syndrome. Cold Spring Harb Mol Case Stud. 2019;5(4):a004044.CrossRef Barrie ES, Alfaro MP, Pfau RB, Goff MJ, McBride KL, Manickam K, et al. De Novo Loss-Of-Function Variants in NSD2 (WHSC1) Associate With a Subset of Wolf-Hirschhorn Syndrome. Cold Spring Harb Mol Case Stud. 2019;5(4):a004044.CrossRef
11.
Zurück zum Zitat Zanoni P, Steindl K, Sengupta D, Joset P, Bahr A, Sticht H, et al. Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genet Med. 2021;23(8):1474–83.CrossRef Zanoni P, Steindl K, Sengupta D, Joset P, Bahr A, Sticht H, et al. Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genet Med. 2021;23(8):1474–83.CrossRef
12.
Zurück zum Zitat South ST, Bleyl SB, Carey JC. Two unique patients with novel microdeletions in 4p16.3 that exclude the WHS critical regions: Implications for critical region designation. Am J Med Genet Part A. 2007;143A:2137–42.CrossRef South ST, Bleyl SB, Carey JC. Two unique patients with novel microdeletions in 4p16.3 that exclude the WHS critical regions: Implications for critical region designation. Am J Med Genet Part A. 2007;143A:2137–42.CrossRef
13.
Zurück zum Zitat Engbers H, van der Smagt JJ, van’t Slot R, Vermeesch JR, Hochstenbach R, Poot M. Wolf-Hirschhorn Syndrome Facial Dysmorphic Features in a Patient With a Terminal 4p16.3 Deletion Telomeric to the WHSCR and WHSCR 2 Regions. Eur J Hum Genet. 2009;17(1):129–32.CrossRef Engbers H, van der Smagt JJ, van’t Slot R, Vermeesch JR, Hochstenbach R, Poot M. Wolf-Hirschhorn Syndrome Facial Dysmorphic Features in a Patient With a Terminal 4p16.3 Deletion Telomeric to the WHSCR and WHSCR 2 Regions. Eur J Hum Genet. 2009;17(1):129–32.CrossRef
14.
Zurück zum Zitat Hu X, Wu D, Li Y, Wei L, Li X, Qin M, et al. The first familial NSD2 cases with a novel variant in a Chinese father and daughter with atypical WHS facial features and a 7.5-year follow-up of growth hormone therapy. BMC Med Genet. 2020;13(1):181. Hu X, Wu D, Li Y, Wei L, Li X, Qin M, et al. The first familial NSD2 cases with a novel variant in a Chinese father and daughter with atypical WHS facial features and a 7.5-year follow-up of growth hormone therapy. BMC Med Genet. 2020;13(1):181.
15.
Zurück zum Zitat Lozier ER, Konovalov FA, Kanivets IV, Pyankov DV, Koshkin PA, Baleva LS, et al. De Novo Nonsense Mutation in WHSC1 (NSD2) in Patient With Intellectual Disability and Dysmorphic Features. J Hum Genet. 2018;63(8):919–22.CrossRef Lozier ER, Konovalov FA, Kanivets IV, Pyankov DV, Koshkin PA, Baleva LS, et al. De Novo Nonsense Mutation in WHSC1 (NSD2) in Patient With Intellectual Disability and Dysmorphic Features. J Hum Genet. 2018;63(8):919–22.CrossRef
16.
Zurück zum Zitat Zollino M, Di Stefano C, Zampino G, Mastroiacovo P, Wright TJ, Sorge G, et al. Genotype-phenotype correlations and clinical diagnostic criteria in Wolf-Hirschhorn syndrome. Am J Med Genet. 2000;94(3):254–61.CrossRef Zollino M, Di Stefano C, Zampino G, Mastroiacovo P, Wright TJ, Sorge G, et al. Genotype-phenotype correlations and clinical diagnostic criteria in Wolf-Hirschhorn syndrome. Am J Med Genet. 2000;94(3):254–61.CrossRef
17.
Zurück zum Zitat Van Buggenhout G, Melotte C, Dutta B, Froyen G, Van Hummelen P, Marynen P, et al. Mild Wolf-Hirschhorn syndrome: micro-array CGH analysis of atypical 4p16.3 deletions enables refinement of the genotype-phenotype map. J Med Genet. 2004;41(9):691–8.CrossRef Van Buggenhout G, Melotte C, Dutta B, Froyen G, Van Hummelen P, Marynen P, et al. Mild Wolf-Hirschhorn syndrome: micro-array CGH analysis of atypical 4p16.3 deletions enables refinement of the genotype-phenotype map. J Med Genet. 2004;41(9):691–8.CrossRef
18.
Zurück zum Zitat Maas NMC, Van Buggenhout G, Hannes F, Thienpont B, Sanlaville D, Kok K, et al. Genotype-phenotype correlation in 21 patients with Wolf-Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH). J Med Genet. 2008;45(2):71–80.CrossRef Maas NMC, Van Buggenhout G, Hannes F, Thienpont B, Sanlaville D, Kok K, et al. Genotype-phenotype correlation in 21 patients with Wolf-Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH). J Med Genet. 2008;45(2):71–80.CrossRef
19.
Zurück zum Zitat Yang WX, Pan H, Li L, Wu HR, Wang ST, Bao XH, et al. Analyses of Genotypes and Phenotypes of Ten Chinese Patients with Wolf-Hirschhorn Syndrome by Multiplex Ligation-dependent Probe Amplification and Array Comparative Genomic Hybridization. Chin Med J. 2016;129(6):672–8.CrossRef Yang WX, Pan H, Li L, Wu HR, Wang ST, Bao XH, et al. Analyses of Genotypes and Phenotypes of Ten Chinese Patients with Wolf-Hirschhorn Syndrome by Multiplex Ligation-dependent Probe Amplification and Array Comparative Genomic Hybridization. Chin Med J. 2016;129(6):672–8.CrossRef
20.
Zurück zum Zitat Callaway DA, Campbell IM, Stover SR, Hernandez-Garcia A, Jhangiani SN, Punetha J, et al. Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm. J Pediatr Genet. 2018;7(4):164–73.CrossRef Callaway DA, Campbell IM, Stover SR, Hernandez-Garcia A, Jhangiani SN, Punetha J, et al. Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm. J Pediatr Genet. 2018;7(4):164–73.CrossRef
21.
Zurück zum Zitat Bernardini L, Radio FC, Acquaviva F, Gorgone C, Postorivo D, Torres B, et al. Small 4p16.3 deletions: three additional patients and review of the literature. Am J Med Genet A. 2018;176(11):2501–8. Bernardini L, Radio FC, Acquaviva F, Gorgone C, Postorivo D, Torres B, et al. Small 4p16.3 deletions: three additional patients and review of the literature. Am J Med Genet A. 2018;176(11):2501–8.
22.
Zurück zum Zitat Jiang Y, Sun H, Lin Q, Wang Z, Wang G, Wang J, et al. De novo truncating variant in NSD2gene leading to atypical Wolf-Hirschhorn syndrome phenotype. BMC Med Genet. 2019;20(1):134.CrossRef Jiang Y, Sun H, Lin Q, Wang Z, Wang G, Wang J, et al. De novo truncating variant in NSD2gene leading to atypical Wolf-Hirschhorn syndrome phenotype. BMC Med Genet. 2019;20(1):134.CrossRef
23.
Zurück zum Zitat Andersen EF, Carey JC, Earl DL, Corzo D, Suttie M, Hammond P, et al. Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome. Eur J Hum Genet. 2014;22(4):464–70.CrossRef Andersen EF, Carey JC, Earl DL, Corzo D, Suttie M, Hammond P, et al. Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome. Eur J Hum Genet. 2014;22(4):464–70.CrossRef
24.
Zurück zum Zitat Zollino M, Orteschi D, Ruiter M, Pfundt R, Steindl K, Cafiero C, et al. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome–associated seizures disorder. Epilepsia. 2014;55(6):849–57.CrossRef Zollino M, Orteschi D, Ruiter M, Pfundt R, Steindl K, Cafiero C, et al. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome–associated seizures disorder. Epilepsia. 2014;55(6):849–57.CrossRef
25.
Zurück zum Zitat Boczek NJ, Lahner CA, Nguyen TM, Ferber MJ, Hasadsri L, Thorland EC, et al. Developmental delay and failure to thrive associated with a loss-of-function variant in WHSC1 (NSD2). Am J Med Genet A. 2018;176(12):2798–802.CrossRef Boczek NJ, Lahner CA, Nguyen TM, Ferber MJ, Hasadsri L, Thorland EC, et al. Developmental delay and failure to thrive associated with a loss-of-function variant in WHSC1 (NSD2). Am J Med Genet A. 2018;176(12):2798–802.CrossRef
Metadaten
Titel
From Wolf-Hirschhorn syndrome to NSD2 haploinsufficiency: a shifting paradigm through the description of a new case and a review of the literature
verfasst von
Luisa Cortellazzo Wiel
Irene Bruno
Egidio Barbi
Fabio Sirchia
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Italian Journal of Pediatrics / Ausgabe 1/2022
Elektronische ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-022-01267-w

Weitere Artikel der Ausgabe 1/2022

Italian Journal of Pediatrics 1/2022 Zur Ausgabe

Ähnliche Überlebensraten nach Reanimation während des Transports bzw. vor Ort

29.05.2024 Reanimation im Kindesalter Nachrichten

Laut einer Studie aus den USA und Kanada scheint es bei der Reanimation von Kindern außerhalb einer Klinik keinen Unterschied für das Überleben zu machen, ob die Wiederbelebungsmaßnahmen während des Transports in die Klinik stattfinden oder vor Ort ausgeführt werden. Jedoch gibt es dabei einige Einschränkungen und eine wichtige Ausnahme.

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.