Skip to main content
Erschienen in: Journal of Translational Medicine 1/2023

Open Access 01.12.2023 | Review

Ferroptosis in tumors and its relationship to other programmed cell death: role of non-coding RNAs

verfasst von: Qi Zhang, Xinfeng Fan, Xinyu Zhang, Shaoqing Ju

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2023

Abstract

Programmed cell death (PCD) plays an important role in many aspects of individual development, maintenance of body homeostasis and pathological processes. Ferroptosis is a novel form of PCD characterized by the accumulation of iron-dependent lipid peroxides resulting in lethal cell damage. It contributes to tumor progression in an apoptosis-independent manner. In recent years, an increasing number of non-coding RNAs (ncRNAs) have been demonstrated to mediate the biological process of ferroptosis, hence impacting carcinogenesis, progression, drug resistance, and prognosis. However, the clear regulatory mechanism for this phenomenon remains poorly understood. Moreover, ferroptosis does not usually exist independently. Its interaction with PCD, like apoptosis, necroptosis, autophagy, pyroptosis, and cuproptosis, to destroy cells appears to exist. Furthermore, ncRNA seems to be involved. Here, we review the mechanisms by which ferroptosis occurs, dissect its relationship with other forms of death, summarize the key regulatory roles played by ncRNAs, raise relevant questions and predict possible barriers to its application in the clinic, offering new ideas for targeted tumour therapy.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ncRNAs
Non-coding RNAs
PCD
Programmed cell death
GSH
Glutathione
Tf
Transferrin
LTF
Lactotransferrin
TfR
Transferrin receptor
STEAP3
Six transmembrane epithelial antigen of protein 3
SLC39A14/ZIP14
Solute carrier family 39 member 14
SLC39A8/ZIP8
Solute carrier family 39 member 8
NTBI
Non-transferrin-bound iron
PCBP1/2
Poly C-binding protein 1/2
FTL
Light chain
FTH1
Heavy chain 1
IRP1/2
Iron regulatory protein
HO-1
Heme oxygenase 1
Nrf2 / NFE2L2
Transcription factor nuclear factor E2-related factor 2
SLC40A1 / ferroportin1 / FPN
Iron efflux protein solute carrier family 40 member 1
ROS
Reactive oxygen species
PUFAs
Polyunsaturated fatty acids
AA
Arachidonic acid
AdA
Adrenoic acid
ACSL4
Acyl coenzyme A synthase long chain family member 4
LPCAT3
Lysophosphatidylcholine acyltransferase 3
AA / AdA-PE
AA/AdA-phosphatidylethanolamine
AA / AdA-OOH-PE
AA/AdA-hydroperoxide-PE
MDA
Malondialdehyde
4-HNEs
4-Hydroxynonenal
COX2
Cyclooxygenase-2
NOX2
Nicotinamide adenine dinucleotide phosphate oxidases 2
SLC7A11
Solute carrier family 7 member 11
SLC3A2
Solute carrier family 3 member 2
GPX4
Glutathione peroxidase 4
L-OOH
Peroxides
L-OH
Alcohols
NADPH
Nicotinamide adenosine dinucleotide hydrogen phosphate
RSL3
RAS selective lethal small molecule 3
DPP4
Dipeptidyl peptidase 4
CDKN1A/p21
Cell cycle protein-dependent kinase inhibitor 1A
AIFM2
Apoptosis-inducing factor mitochondrial-associated 2
FSP1
Iron death inhibitory protein 1
miRNA
MicroRNA
lncRNA
Long ncRNA
circRNA
Circular RNA
DDP, aka cisplatin
Cis-diamminedichloroplatinum II
MSA
Methylseleninic acid
ESCC
Oesophageal squamous cell
ALOX15
15-Lipoxygenase
CAFs
Cancer-associated fibroblasts
METTL3
Methyltransferase-like 3
m6A
Methyladenosine
CSCs
Cancer stem cells
SCD1
Stearoyl coenzyme A desaturase 1
GCSC
Gastric cancer stem cells
exo-lncFERO
Exosomal lncFERO
EMT
Epithelial mesenchymal transition
Daxx
Death structural domain-associated protein
CHOP C/EBP
Homogenic protein
TRAIL
Tumor necrosis factor-related apoptosis-inducing ligand
RIPK1 and RIPK3
Receptor-interacting kinases
MLKL
Mixed-spectrum kinase structural domain-like pseudokinases
DAMPs
Damage-associated molecular patterns
MPTP
Mitochondrial permeability transition pore
HSP90
Heat shock protein 90
CMA
Chaperone-mediated autophagy
LAMP2A
Lysosome-associated membrane protein 2A
PD
Parkinson’s disease
NCOA4
Nuclear receptor coactivator 4
HMGB1
High mobility group box-1 protein
HPCAL1
Hippocampal calmodulin-like 1
TAX1BP1
Tax1 (human T cell leukemia virus type I) binding protein 1
GSDMD
Gastrin d
TCA
Tricarboxylic acid
ES
Elesclomol
BAX
BCL2-related X
LSH
Lymphatic-specific decapping enzymes
VCR
Vincristine
SF
Sorafenib
LUAD
Lung adenocarcinoma
GNA
Gambogenic acid
piRNA
PIWI-interacting RNA
tsRNA
TRNA-derived small RNA
ER
Endoplasmic reticulum
COAD
Colorectal cancer
GBM
Glioblastoma
GC
Gastric cancer
OSCC
Oral squamous cell carcinomas
CRC
Colorectal cancer
OC
Ovarian cancer
CCRCC
Clear cell renal cell carcinoma
UGC
Upper gastrointestinal adenocarcinoma
TPC
Papillary thyroid cancer
PCa
Prostate cancer
NPC
Nasopharyngeal carcinoma
ALL
Acute lymphoblastic leukemia
AML
Acute myeloid leukemia

Introduction

Ferroptosis is a novel model of cell death, as defined in 2012 [1]. It is distinguished from other types of deaths by apoptosis, necroptosis, autophagy, pyroptosis, and cuproptosis [1, 2]. Its main morphological manifestations are shrinking mitochondria, increased membrane density, and fewer cristae. In recent years, research into ferroptosis has expanded tremendously. Numerous scientific breakthroughs have been gained in oncology, and targeting ferroptosis has become a potential cancer therapy.
Although each programmed cell death (PCD) has a unique mechanism of occurrence and cellular and biochemical properties, mixed types of cell death seem more prevalent than single types of death in most cells. Some of their components and factors are synergistic. Exploring how ferroptosis interacts with other PCDs at the molecular level and identifying and integrating shared pathways will open new areas for systematic research [3].
Ninety-eight percent of the human genome is transcribed into RNAs that do not encode proteins, known as non-coding RNAs (ncRNAs) [4]. Evidence suggests they are vital in basic biological processes like growth and development and almost every human disease, particularly cancer [5, 6]. At the same time, ncRNAs have been shown to be involved in the biology of ferroptosis and, in turn, influence tumour progression. This implies that ncRNA-based targeted iron death therapy is a promising novel anti-cancer therapy. However, the mechanisms by which ncRNAs regulate ferroptosis are still poorly understood. Furthermore, the role of ncRNAs in ferroptosis has not been fully defined.
In this review, we provide new ideas for targeting ncRNAs in ferroptosis-related therapeutic strategies by systematically summarizing ferroptosis mechanisms and the progress of ncRNA targeting of ferroptosis signaling pathways in tumors, paying particular attention to the interactions between ferroptosis and other PCDs.

Mechanism of ferroptosis

Ferroptosis is a novel form of cell death regulation that relies on iron ion-mediated oxidative damage. Ferroptosis may be triggered when intracellular iron ion-dependent reactive oxygen species (ROS) accumulate in excess and glutathione peroxidase 4 (GPX4) scavenging is diminished, resulting in an imbalance in the homeostasis of ROS production and degradation, i.e. a redox imbalance between intracellular oxidants and antioxidants [7]. Current molecular mechanisms of ferroptosis include glutathione (GSH) depletion, lipid peroxidation, and impaired iron metabolism (Fig. 1). The various molecules and signals involved in iron metabolism and lipid peroxidation will be discussed below.

The canonical system XC-/GSH/GPX4 pathway

Amino acid metabolism is an important part of the metabolic cycle of organisms, and abnormal amino acid metabolism is closely related to ferroptosis. Cystine/glutamic acid reverse transporter (system Xc-) plays an important role in maintaining the balance and distribution of amino acids and is a very important antioxidant system in cells. Its inactivation of the cellular antioxidant system by downregulation or inhibition of the Cystine/glutamic acid reverse transporter (system Xc-) is a major determinant of the suceptibility to ferroptosis. System XC- consists of the light chain xCT/solute carrier family 7 member 11 (SLC7A11) and the heavy chain 4F2hc/solute carrier family 3 member 2 (SLC3A2), and SLC3A2 is a chaperone that facilitates momemnt of SLS7A11 to the plasma surface and SLC7A11 forms the transport channel in its oxidated form [8]. Cystine is transported intracellularly by system XC- then transformed into cysteine. Cysteine is the rate-limiting amino acid for GSH (a vital intracellular antioxidant) production. Moreover, GPX4, a member of the selenium family containing GPXs, is a recognized negative regulator of ferroptosis. It is an enzyme for the reduction of toxic peroxides (L-OOH) to non-toxic lipid alcohols (L-OH) [9, 10]. It was shown that GSH is an essential cofactor of GPX4 and can influence the GPX4 function [11]. Therefore, system XC-mediated cysteine can also indirectly affect GPX4 activity. Furthermore, GSH synthesis requires the nicotinamide adenosine dinucleotide hydrogen phosphate (NADPH) cycle to supply ATP.

Lipid metabolism pathway

Lipids are important regulators of cell death, and the accumulation of lipid peroxides is thought to be an important driver of ferroptosis [12]. Although the exact source of lipid peroxides is unknown, polyunsaturated fatty acids (PUFAs) have been identified as an important source. PUFAs are an important component of cell membranes and they can perform many cellular functions by enhancing cell mobility. However, they contain unstable carbon–carbon double bonds that can generate lipid reactive oxygen species, which can cause ferroptosis when accumulated in excess [13]. Among PUFAs, arachidonic acid (AA) and adrenoic acid (ADA) are the 203 main substrates causing lipid peroxidation during ferroptosis [14]. In contrast, acyl-coenzyme A synthase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) are required for the biosynthesis and remodeling of AA/AdA derivatives. Both can catalyze the formation of AA/AdA-CoA derivatives and AA/AdA-phosphatidylethanolamine (AA/AdA-PE) from free AA/AdA. AA/AdA-PE then synthesizes lipid peroxides AA/AdA-hydroperoxide-PE (AA/AdA-OOH-PE) through enzymatic and non-enzymatic reactions [15]. Lipid peroxides themselves and their degradation products (malondialdehyde (MDA) and 4-hydroxynonenal (4-HNEs)) produce cytotoxicity and cause cell death [16]. Moreover, the degradation process involves cyclooxygenase-2 (COX2) and nicotinamide adenine dinucleotide phosphate oxidases 2 (NOX2), among others [17].

Iron metabolism pathway

Iron has a dual role in cell growth. Although iron is a trace element essential for cell proliferation, its excessive accumulation can cause cell damage and increase the risk of diseases such as tumors [7]. Iron ions are also an important component in the accumulation of lipid peroxides and the initiation of iron death. The key to iron metabolism is the regulation of iron pool capacity, which mainly includes iron uptake, storage and export.
(1)
Iron ions are transferred into the cytosol through multiple pathways. In one respect, transferrin (Tf) and lactotransferrin (LTF) store extracellular iron as Fe3+, which is then bound to the transferrin receptor (TfR) and another unknown receptor on the cell membrane, and Fe3+ is endocytosed to form endo nucleosomes [18, 19]. In the endosome, the metal reductase six transmembrane epithelial antigen of protein 3 (STEAP3) reduces Fe3+ to Fe2+. On the contrary, solute carrier family 39-member 14 (SLC39A14/ZIP14) and solute carrier family 39-member 8 (SLC39A8/ZIP8) transfer Fe2+ directly into the intracellular compartment by transporting non-transferrin-bound iron (NTBI) to the cell membrane [20].
 
(2)
Multiple mechanisms maintain the equilibrium of Fe2+ in the cytoplasm. Poly C-binding protein 1/2 (PCBP1/2) oxidizes most Fe2+ to Fe3+, which is stored in ferritin (composed of light chain (FTL) and heavy chain 1 (FTH1)), which itself can be degraded to increase free iron levels; iron regulatory protein (IRP1/2) promotes the free iron utilization in cells in multiple pathways; and heme oxygenase 1 (HO-1), regulated by the nuclear factor E2-related factor 2 (Nrf2 / NFE2L2) gene, catalyzes the degradation of heme to produce Fe2+ [21].
 
(3)
Iron efflux protein solute carrier family 40 member 1 (SLC40A1/ferroportin1/FPN) and ferritin transfer out protein Prominin2 can facilitate the export of intracellular ferric ions and ferritin [22]. When the intracellular iron metabolic pathway is abnormal, and an unstable iron pool is formed, Fe2+ then generates ROS through the Fenton reaction [1] or participates in the iron-containing lipoxygenase activation [23], triggering lipid peroxidation, leading to cell damage. This process is known as ferroptosis.
 
In conclusion, iron is crucial to the physiological functioning of cells. A lack of iron can cause cells to malfunction, whereas an abundance of iron can cause oxidative stress on cells and ferroptosis.

Other metabolic pathways

P53, the “star molecule” of oncology, is a double-edged sword in ferroptosis. P53 is a SLC7A11 transcriptional repressor, which increases cellular sensitivity to ferroptosis through SLC7A11 in a GPX4-dependent or non-dependent pathway [24]. Additionally, P53 negatively regulates ferroptosis by acting on dipeptidyl peptidase 4 (DPP4) or by inducing cell cycle protein-dependent kinase inhibitor 1A (CDKN1A/p21) [25].
The transcription factor Nrf2 is involved in antioxidant responses, and various iron and lipid metabolism factors are among its target genes [26]. Thus, Nrf2 can counteract ferroptosis by regulating intracellular iron ion content [27], GPX4 levels [28], and the NAPDH cycle [29].
The flavin protein apoptosis-inducing factor mitochondrial-associated 2 (AIFM2), subsequently renamed ferroptosis inhibitory protein 1 (FSP1) [30], regulates ferroptosis negatively. Interestingly, its function is independent of cellular GSH levels and GPX4 activity. FSP1 catalyzes CoQ10 regeneration with NAD(P)H and influences ferroptosis progression by an independent pathway FSP1-CoQ10-NAD(P)H [31].

Effect of ncRNA-mediated ferroptosis on tumor progression

ncRNAs are a unique class of RNAs transcribed from genes that do not encode proteins [32]. In addition to playing significant functions at the transcriptional and post-transcriptional levels, they can also govern the course of human disease through epigenetic alterations. The involvement of ncRNAs in regulating the progression of various cancer types has been well documented, and targeting ncRNAs has shown promising clinical therapeutic effects, which we will not repeat here. Recent studies have revealed that ncRNAs play an important role in regulating the progression of various cancer types through the iron death pathway, which can regulate iron death-related gene expression through epigenetic, transcriptional and translational modalities. They play a role in tumorigenesis, progression, treatment and prognosis. Although the role of ncRNAs in iron death is not yet fully defined, it has an invaluable role in the targeting of cancer therapy [33, 34]. The main relevant ncRNAs identified so far are microRNA (miRNA), long ncRNA (lncRNA) and circular RNA (circRNA).

miRNAs and ferroptosis

miRNAs exhibit function primarily by binding to and regulating the expression of the 3′-untranslated region of the target mRNA [35]. Since more than 60% of coding genes are potential targets of miRNAs [5], miRNAs among ncRNAs are the most widely studied. miRNAs can regulate ferroptosis key molecules in various cancer cells and participate in tumor progression in numerous ways, which we have sorted it out in detail (Table 1).
Table 1
miRNAs regulate ferroptosis in cancer progression
miRNA
Role in ferroptosis
Mechanism
Cancer
References
miR-670-3p
Inhibit
Downregulates ACSL4
GBM
[107]
miR-23a-3p
Inhibit
Downregulates ACSL4
HCC
[108]
miR-424-5p
Inhibit
Downregulates ACSL4
OC
[40]
miR-7-5p
Inhibit
Downregulates mitoferrin
OC, OSCC and HCC
[41]
miR-7-5p
Inhibit
Upregulates ferritin, downregulates ALOX12
Cervical cancer, OSCC
[41]
exo-miR-522
Inhibit
Downregulates ALOX15
GC
[44]
miR-18a
Inhibit
Downregulates ALOXE3
GBM
[109]
miR-214-3p
Promote
Downregulates ATF4
HCC
[110]
miR-3200-5p
Promote
Downregulates ATF4
HCC
[111]
miR-155
Promote
Downregulates Foxo3a
Pancreatic cancer
[112]
miR-4735-3p
Promote
Downregulates FPN
CCRCC
[113]
exo-miR-4443
Inhibit
Downregulates m6A, Upregulates FSP1
NSCLC
[45]
miR-1228
Inhibit
Upregulates FSP1
Breast cancer
[114]
miR-4715-3p
Promote
Downregulates AURKA and GPX4
UGC
[115]
miR-9
Inhibit
Downregulates GOT1
Melanoma
[116]
miR-15a-3p
Promote
Downregulates GPX4
CRC
[117]
miR-539
Promote
Downregulates GPX4
CRC
[118]
miR-324-3p
Promote
Downregulates GPX4
Breast cancer
[37]
miR-324-3p
Promote
Downregulates GPX4
NSCLC
[119]
miR-15a
Promote
Downregulates GPX4
PCa
[120]
miR-1287-5p
Promote
Downregulates GPX4
Osteosarcoma
[121]
miR-29b
Promote
Downregulates GPX7
glioma
[122]
miR-19a
Inhibit
Downregulates IREB2
CRC
[123]
miR-130b-3p
Inhibit
Downregulates DKK1, upregulates NRF2 and HO-1
Melanoma
[124]
miR-7
Inhibit
Downregulates Keap1, upregulates NRF2
Human neuroblastoma
[125]
miR-200a
Inhibit
Upregulates NRF2
Breast cancer
[38]
miR-200a
Inhibit
Upregulates Keap1 and NRF2
ESCC
[39]
miR-6077
Promote
Downregulates NRF2
LUAD
[126]
miR-450b-5p
Promote
Downregulates NRF2
NPC
[127]
miR-365a-3p
Promote
Downregulates NRF2
NSCLC
[128]
miR-137
Inhibit
Downregulates SLC1A5
Melanoma
[129]
miR-382-5p
Promote
Downregulates SLC7A11
Ovarian, breast cancer
[130]
miR-489-5p
Promote
Downregulates SLC7A11
GC
[131]
miR-125b-5p
Promote
Downregulates SLC7A11
OSCC
[132]
miR-34c-3p
Promote
Downregulates SLC7A11
OSCC
[133]
miR-1261
Promote
Downregulates SLC7A11
HCC
[134]
miR-25-3p
Promote
Downregulates SLC7A11
PCa
[134]
miR-27a
Promote
Downregulates SLC7A11
Bladder cancer
[135]
miR-375
Promote
Downregulates SLC7A11
GC
[136]
miR-5096
Promote
Downregulates SLC7A11
Breast cancer
[137]
miR-489-3p
Promote
Downregulates SLC7A11
GC
[131]
miR-139-5p
Promote
Downregulates SLC7A12
Pancreatic carcinoma
[138]
miR-27a-3p
Inhibit
Downregulates SLC7A11
NSCLC
[139]
miR-125b-5p
Promote
Downregulates STAT3
GC
[140]
miR-101-3p
Promote
Downregulates TBLR1
LC
[141]
miR-545
Inhibit
Downregulates TF
CRC
[142]
miR-21-3p
Promote
Downregulates TXNRD1
Melanoma
[143]
Previous studies have shown that a single miRNA can be involved in ferroptosis by regulating iron death-related genes in multiple cancers simultaneously, such as miR-324-3p, miR-200a and miR-7-5p. miR-324-3p was reported to be significantly downregulated in cis-diamminedichloroplatinum II (DDP, aka cisplatin)-resistant lung adenocarcinoma cells and increased the resistant cells' sensitivity to cisplatin by targeting GPX4 [36]. Meanwhile, metformin could promote ferroptosis by the miR-324-3p/GPX4 axis in breast cancer [37]. Additionally, the miR-200 family is known for its down-regulation in human tumor cells. By targeting important mRNAs involved in epithelial mesenchymal transition (EMT) (ZEB1 and ZEB2), -catenin/Wnt signaling (-catenin), EGFR inhibitor resistance (ERRFI-1), and chemoresistance to therapeutic drugs, it plays a critical role in reducing EMT, tumor cell adhesion, migration, invasion, and metastasis. As a ferroptosis regulator, NRF2 has antioxidant properties, and its levels are regulated by Keap1. It has been reported that miR-200a regulates the Keap1/Nrf2 pathway in the mammary epithelium [38], and methylseleninic acid (MSA) can act as a chemopreventive agent for oesophageal squamous cell carcinoma (ESCC) cells by the KLF4/miR-200a/Keap1/Nrf2 axis [39]. Although miR-200a can regulate essential ferroptosis components, its involvement in ferroptosis has not been experimentally confirmed. Moreover, miR-7-5p was highly expressed in radiation-resistant ovarian, oral squamous cell carcinoma, and hepatocellular carcinoma cell lines and affected ferroptosis by downregulating the mitochondrial iron transporter protein Mitoferrin and decreasing Fe2+ [40]; and later, Kazuo et al. demonstrated that miR-7-5p was upregulated in radiation-resistant cells of cervical cancer and was involved in the cellular regulation of ROS, mitochondrial membrane potential, and Fe2+ level regulation and affects the ALOX12 and HIF1α expression [41].
miRNA is an important exosome component, and it has been detected in exosomes of several cell types [42]. 15-lipoxygenase (ALOX15) is closely associated with the accumulation of lipid ROS in cancer cells [43]. Cisplatin and paclitaxel promote miR-522 secretion by cancer-associated fibroblasts (CAFs) through the USP522/hnRNPA7 axis, thereby downregulating ALOX15 and reducing ROS production in cancer cells, ultimately leading to chemoresistance [44]. This study confirms the occurrence of ferroptosis in tumor microenvironment-associated exosomes for the first time. Moreover, exosomal miR-4443 was highly expressed in cisplatin-resistant non-small cell lung cancer (NSCLC) cells. Further studies revealed that miR-4443 could target methyltransferase-like 3 (METTL3), thereby reducing the N6 methyladenosine (m6A) level in cells, while the FSP1 expression is regulated by m6A modifications. Overall, miR-4443 regulates the FSP1 expression by METTL3 in an m6A-like manner, which in turn is involved in ferroptosis and confers cisplatin resistance to NSCLC cells [45].
To summarize Table 1 we found that different miRNAs can regulate iron ion levels through different pathways, and an imbalance of iron ions can lead to uncontrolled miRNA expression. Also, miRNAs and NRF2 exist to regulate each other. In conclusion, miRNAs are involved in potential regulatory mechanisms of ferroptosis, including various pathways such as mitochondria-associated proteins, iron metabolism, glutathione metabolism and lipid peroxidation, and in turn, miRNAs and ROS can regulate each other in various pathways.

lncRNA and ferroptosis

lncRNA has a longer sequence than miRNA. It mainly acts as a regulator of transcription factors in the nucleus or as a sponge for miRNAs in the cytoplasm [46].
Unlike miRNAs, lincRNAs can operate as miRNA sponges to indirectly regulate the cell death process and act directly on ferroptosis key genes and proteins. The most recent research on the role of lincRNAs in ferroptosis is described in Table 2.
Table 2
lncRNAs regulate ferroptosis in cancer progression
IncRNA
Role in ferroptosis
Mechanism
Cancer
References
NEAT1
Inhibit
Upregulates ACSL4
NSCLC
[144]
lncRNA ASMTL-AS1
Promote
Upregulates SAT1
LUAD
[145]
NEAT1
Promote
Sponges miR-362-3p to upregulate MIOX
HCC
[146]
NEAT1
Inhibit
Downregulate SLC7A11
Melanoma
[103]
LINC00551
Promote
Sponges miR-4328 to upregulate DDIT4
LUAD
[102]
H19
Inhibit
Inhibits production of lipid ROS and induces production of GSH
Breast cancer
[147]
H19
Inhibit
Sponges miR 19b-3p to upregulate FTH1
LC
[148]
TUG1
Promote
Downregulates FTH1
Glioma
[149]
Lnc GABPB1-AS1
Promote
Downregulates GABPB1 and PRDX5
HCC
[150]
lncRNA BBOX1-AS1
Inhibit
Sponges miR-513a-3p to downregulate SLC7A11
Esophageal squamous cell cancer
[151]
LINC00618
Promote
Interacts with LSH to downregulate SLC7A11
Leukemia
[152]
P53RRA (LINC00472)
Promote
Interacts with G3BP1 to downregulate SLC7A11
LC
[99]
OIP5-AS1
Inhibit
Sponges miR-128-3p to upregulate SLC7A11
Prostate cancer
[153]
lncRNA slc16a1-AS1
Inhibit
Sponges miR-143-3p to upregulate SLC7A11
Renal cell carcinoma
[154]
HEPVAL
Promote
Downregulate SLC7A11
HCC
[155]
lncFERO
Inhibit
Interacts with hnRNPA1 to upregulate SCD1
GC
[47]
lncBDNF-AS
Inhibit
Interacts with WDR5 and FBXW7 to upregulate VDAC3
GC
[156]
RP11-89
Inhibit
Sponges miR-129-5p to upregulate PROM2
Bladder cancer
[157]
lncLASTR
Inhibit
Upregulates GPX4
Stomach adenocarcinoma
[158]
lncPVT1
Inhibit
Sponges miR-214-3p to upregulate GPX4
HCC
[52]
HCG18
Inhibit
Sponges miR-450b-5p to upregulate GPX4
HCC
[159]
MEG8
Inhibit
Sponges miR-497-5p to upregulate NOTCH2
Benign hemangioma
[160]
lncRNA TMEM161B-AS1
Inhibit
Sponges mir-27a-3p to upregulate FANCD2 and CD44
Glioma
[161]
lncRNA MT1DP
Promote
Sponges miR-365a-3p to downregulate NRF2
NSCLC
[128]
LINC01606
Inhibit
Sponges miR-423-5p to upregulate SCD1
Colon cancer
[162]
LINC00336
Inhibit
Sponges miR6852 to upregulate CBS
LC
[163]
LINC01564
Inhibit
Upregulate NFE2L2
Glioma
[164]
Stearoyl coenzyme A desaturase 1 (SCD1) is a mechano reactive enzyme that reprograms lipid metabolism in gastric cancer stem cells (GCSC) and participates in ferroptosis. In contrast, exosomal lncFERO (exo-lncFERO) regulates SCD1 mRNA levels, causing PUFA dysregulation and subsequent ferroptosis inhibition. This enhances dryness and regulates chemosensitivity in the body [47].
lncPVT1 is upregulated in various cancers [4850]. It is involved in tumor cell proliferation, migration, autophagy, apoptosis, and EMT. It promotes the malignant progression of tumors through physiological or pathological mechanisms like hypoxia and exosomes [50, 51], which are potential therapeutic targets for human cancers. According to studies, the therapeutic anesthetic ketamine can limit hepatocarcinoma viability and induce ferroptosis. Moreover, lncPVT1 can interact with miR-214-3p and hinder it from acting as a sponge for GPX4, effectively responding to ketamine-induced ferroptosis [52].
Cancer genomic databases and bioinformatics analysis have identified many differentially expressed IncRNAs with prognostic value associated with ferroptosis [5355]. However, these IncRNAs still lack experimental confirmation of their potential as ferroptosis markers.
Overall, lncRNAs can affect ROS metabolism directly or indirectly through a variety of mechanisms including GPX4, ferric ions, SLC7A11 and, conversely, lncRNAs are regulated by them.

circRNA and ferroptosis

CircRNA is a single-stranded RNA molecule in a covalently closed loop. Therefore, it is nucleic acid exonuclease resistant and exhibits high stability in the body [56]. Simultaneously, its high abundance is tissue- and stage-specific [57]. This provides an advantage for circRNAs to act as biomarkers and targets for cancer therapy.
Several studies have revealed a relationship between circRNA and ferroptosis. circRNAs can mediate ferroptosis through multiple mechanisms in many tumor types (Table 3). Compared to the nucleus, circRNAs are more often found in the cytoplasm and act as sponges for miRNAs that regulate the target genes' expression [58].
Table 3
circRNAs regulate ferroptosis in cancer progression
circRNA
Role in ferroptosis
Mechanism
Cancer
References
Hsa_circ_0021087 (circLMO1)
Promote
Sponges miR-4291 to upregulate ACSL4
Cervical cancer
[165]
circGFRA1
Inhibit
Sponges miR‐1228 to upregulate AIFM2
Breast cancer
[114]
Circ clARS
Promote
Interacts with ALKBH5
HCC
[101]
CircABCB10
Inhibit
Sponges miR-326 to upregulate CCL5
Rectal cancer
[166]
Circ_0008035
Inhibit
Sponges miR-599 to upregulate EIF4A1
GC
[167]
circPVT1
Inhibit
Sponges miR-30a-5p to upregulate FZD3
Esophageal cancer
[168]
circ_0007142
Inhibit
Sponges miR-874-3p, upregulates GDPD5
CRC
[169]
circKIF4A
Inhibit
Sponges miR-1231 to upregulate GPX4
TPC
[66]
circDTL
Inhibit
Sponges miR-1287-5p to upregulate GPX4
NSCLC
[100]
CircIL4R
Inhibit
Sponges miR-541-3p to upregulate GPX4
HCC
[119]
Circ-TTBK2
Inhibit
Sponges miR-761 to upregulate ITGB8
Glioma
[170]
Circ_0000745
Inhibit
Sponges miR-494-3p to upregulate NET1
ALL
[62]
circCDK14
Inhibit
Sponges miR-3938 to upregulate PDGFRA
Glioma
[171]
circKDM4C
Promote
Sponges miRNA let-7b-5p to upregulate p53
AML
[172]
circ0097009
Inhibit
Sponges miR-1261 to upregulate SLC7A11
HCC
[134]
circEPSTI1
Inhibit
Sponges miR-375, miR-409-3p and miR-515-5p to upregulate SLC7A11
Cervical cancer
[173]
circFNDC3B
Inhibit
Sponges miR-520d-5p to upregulate SLC7A11
OSCC
[174]
circ_0067934
Inhibit
Sponges miR-545-3p to upregulate SLC7A11
Papillary and follicular thyroid cancers
[175]
circ-BGN
Inhibit
Upregulates OTUB1 and SLC7A11
Breast cancer
[59]
circFOXP3
Inhibit
Sponges miR-7a-11p to upregulate SLC520A5
LC
[176]
circRHOT1
Inhibit
Sponges miR-106a-5p to upregulate STAT3
Breast cancer
[177]
circ_0000190
Promote
Sponges miR-382-5p to upregulate ZNRF3
GC
[178]
Tumor resistance can significantly compromise clinical efficacy. circ-BGN was first found to be highly expressed in trastuzumab-resistant HER2-positive breast cancer. Further studies revealed that circ-BGN could act directly on SLC7A11, a core molecule of ferroptosis, and enhanced OTUB1-mediated deubiquitination of SLC7A11, thereby inhibiting ferroptosis. The conclusion was also confirmed by in vivo experiments [59]. hsa_circ_0000745 has the potential to act as a diagnostic marker for cervical cancer, gastric cancer, and other cancers [60, 61]. Yanbi et al. recently found that circ_0000745 involves cell cycle progression, glycolytic metabolism, apoptosis, and ferroptosis in acute lymphoblastic leukemia. Furthermore, this role is accomplished through the circ_0000745/miR-494-3p/NET1 axis [62]. It has been reported that circKIF4A can promote numerous tumor progressions and mediate glycolytic metabolism and drug resistance through competitive endogenous RNA mechanism mechanism [6365]. In papillary thyroid cancer, circKIF4A negatively regulates ferroptosis and promotes tumor proliferation in vitro and in vivo. In essence, circKIF4A can absorb miR-1231 to increase GPX4 levels [66].
In general, circRNAs could be potential therapeutic targets for the treatment of cancer through the ferroptosis pathway.
In this section, we systematically summarize the ncRNAs associated with ferroptosis in cancer to date and explore the regulatory role of ncRNAs in cancer progression and iron death, which implies that ncRNAs have great potential as anti-cancer therapeutic targets through regulation of ferroptosis. Moreover, ferroptosis-related ncRNAs are individually heterogeneous across tumors, which has significant implications for personalised tumor therapy.
Despite the full potential of ferroptosis-related ncRNAs, there are still many unanswered questions. Although a clear regulatory role for ncRNAs in the development of ferroptosis in tumors has been identified, little is still known about the in-depth mechanisms underlying this component. This makes the clinical application of ncRNA-dependent approaches to ferroptosis a major obstacle. Furthermore, to translate basic research into clinical trials, the construction of additional animal models to validate the role of ncRNAs in ferroptosis is a must. In addition, given the shortcomings of conventional treatment options for tumors, research on the application of biomaterials such as molecular nanomaterials for targeted tumor ferroptosis therapy is urgently needed. Besides, due to the diversity of ncRNA biological functions, targeting ncRNA therapy is likely to cause some complications and cause damage to non-tumor organs. For example, miR-375-3p and miR-214-3p, which have the potential to both promote ferroptosis in tumor cells of cervical cancer and HCC, may also cause fibrosis of cardiomyocytes and acute renal impairment[67, 68]. It is therefore important to achieve tumor-targeted metastasis of ncRNAs, and multidisciplinary cross-fertilisation will facilitate this process.

Relationship between ferroptosis and other PCDs

Abnormal cell death regulation is an important feature of cancer. PCDs are highly involved in tumor development, including apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and cuproptosis. Therefore, exploring the mechanisms of different types of cell death is of great importance in cancer. Researchers have discovered that ferroptosis is independent and connected to other types of cell death and that its essential regulators are also involved in regulating other types of cell death [69]. These death types usually share a common pathway [70]. Consequently, further investigation of the inter regulation of ferroptosis with other types of programmed cell death and developing strategies that can trigger numerous planned cell deaths are extremely promising cancer treatment strategies.

Apoptosis and ferroptosis

Apoptosis is a form of cellular suicide induced by the activation of intracellular death programs and was initially thought to be the only way of PCD. It is an intrinsic tumor suppressor mechanism that physically displays cellular crumpling, chromatin aggregation, and the production of apoptotic vesicles followed by phagocytosis [2]. Mechanistically, apoptosis consists of three main aspects: oxidative damage, imbalance of calcium homeostasis and mitochondrial damage. Apoptosis can be initiated by ncRNAs through regulation of the relevant receptors or as cerRNAs.
Death structural domain-associated protein (Daxx) mediates apoptosis through the Fas-Daxx-ASK1-JNK1 axis, while the ferritin FTH1 inhibits the action of Daxx [71]. Ferroptosis inducer erastin activates the C/EBP homogenic protein (CHOP) signal pathway, affecting the expression of p53 non-dependent PUMA and increasing sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced cell death [72]. Furthermore, apoptosis may be directly transformed into ferroptosis [73].

Necroptosis and ferroptosis

Necroptosis is an alternate cell death mechanism triggered when apoptosis is blocked and is a degenerative pathology caused by damaging factors. Morphological features include cell swelling, membrane rupture, release of cytoplasmic contents and chromosome condensation. The basic molecular mechanism consists of receptor-interacting kinases (RIPK1 and RIPK3) and mixed-spectrum kinase structural domain-like pseudokinases (MLKL). The RIPK1/RIPK3 complex recruits and phosphorylates MLKL translocates to the plasma membrane, and forms channels, releasing damage-associated molecular patterns (DAMPs), permeabilization of the plasma membrane, and release of contents [74].
By activating the mitochondrial permeability transition pore (MPTP) and phosphorylating RIPK1, iron excess induces necrotic apoptosis in ischemic stroke. Heat shock protein 90 (HSP90) is an evolutionarily conserved and commonly expressed molecular chaperone. It intensifies RIPK1 phosphorylation, inhibits GPX4 activity, and can induce necroptosis and ferroptosis [75]. Thus, HSP90 acts as a co-regulatory node for necroptosis and iron sagging. ferroptosis and necroptosis are known to be positively regulated by ACSL4 and MLKL, respectively. In a mouse model of renal ischemia–reperfusion injury, ACSL4 and MLKL knockdown modulate the sensitivity of necroptosis and ferroptosis, respectively [76]. This led us to wonder if ferroptosis and necroptosis have complementing processes reasonably. Therefore, it is essential to continue to explore the relationship between ferroptosis and necroptosis.

Autophagy and ferroptosis

Autophagy is a process by which cells ‘self-feed’. Under physiological conditions, basal autophagy is a cellular self-protection mechanism, while induced autophagy under stressful conditions may cause cell death. Morphologically, it is characterised by the accumulation of autophagic vesicles and cytoplasmic vesiculation without chromatin condensation [77]. There are three main forms of autophagy: microautophagy, macroautophagy, and chaperone-mediated autophagy (CMA). Autophagy begins mechanistically with pre-autophagic structures in the cytoplasm, which create autophagosomes after phagocytosis of damaged organelles and denatured macromolecules. Subsequently, autophagosomes combine with lysosomes to generate autolysosomes, which destroy the contents of autophagosomes [77].
In exploring the relationship between autophagy and ferroptosis, we once again identified HSP90. HSP90 increases the protein stability of CMA receptor lysosome-associated membrane protein 2A (LAMP2A) to accelerate GPX4 degradation and enhance ferroptosis [78]. Zili et al. found that increased BECN1 mRNA stability with the involvement of ELAVL1 caused ferritin phagocytosis and subsequent ferroptosis [79]. While in Parkinson's disease (PD), FTH1 overexpression inhibits ferritin phagocytosis and, ultimately, ferroptosis [80]. We, therefore, hypothesize that ferritin phagocytosis (a sort of selective autophagy) may have a good connection with ferroptosis. Nuclear receptor coactivator 4 (NCOA4) has been reported to be involved in autophagy-dependent ferritin degradation [81], and NCOA4 overexpression can contribute to ferritin degradation and promote increased free iron and subsequent ferroptosis [82]. Interestingly, intracellular free iron regulates NCOA4 levels [81]. Moreover, RAB7A and SQSTM1 are regulators of lipophagy and clockophagy, respectively, and their downregulation prevents lipid peroxidation-dependent ferroptosis [83, 84]. High mobility group box-1 protein (HMGB1) is a DAMP, and its relationship with autophagy and ferroptosis is more complex. On one side, autophagy-dependent ferroptosis can increase the HMGB1 release [85], whereas HMGB1 can be engaged in the advancement of autophagy and ferroptosis [86, 87]. Recent studies have revealed that hippocampal calmodulin-like 1 (HPCAL1) is an autophagy receptor that affects membrane tension by regulating CDH2, which further affects lipid peroxidation and ultimately inhibits ferroptosis in vitro and in vivo [88]. Another autophagy receptor, Tax1 (human T cell leukemia virus type I) binding protein 1 (TAX1BP1), promotes GPX4 degradation and subsequent ferroptosis in response to copper stress [89]. The above studies suggest a close association between autophagy and ferroptosis.

Pyroptosis and ferroptosis

Programmed cell death induced by inflammatory vesicles mediated by gasdermins is known as cell scorch death and can amplify local or systemic inflammatory effects [90]. Unique to cell death by scorch is the formation of many bubble-like protrusions, known as scorch vesicles, within the cell. Mechanistically, inflammatory vesicles sense danger and recruit and activate caspase 1, which stimulates inflammatory proteins that cleave gastrin D (GSDMD), causing it to attach to the cell membrane and generate pores, which is the conventional mechanism of scorch death. The non-classical pathway of scorch death is mainly mediated by cystatase-4, caspase-5, and caspase-11 [91].
We found that there are multiple co-stimulatory factors for scorch death and ferroptosis. Transcription factor P53 is an important regulatory molecule of ferroptosis. Moreover, in NSCLC, P53 can directly increase scorch death and inhibit tumor growth [92]. In a myocardial fibrosis model, MLK3 regulates ferroptosis and scorch death through the JNK/p53 pathway and the NF-κB/NLRP3 pathway, while miR-351 can inhibit MLK3 expression [93]. Additionally, elevated ferric ions and ROS levels can induce scorch death and ferroptosis. Rui et al. found synergistic effects of scorch death and ferroptosis using dual-induced nano drugs [94]. Furthermore, iron-activated ROS can induce scorch death in melanoma through the Tom20-Bax-caspase-GSDME axis [95]. Another study found that in macrophages, GPX4, a core regulatory protein of ferroptosis, can block GSDMD activity and trigger scorch death by reducing lipid peroxidation. Interestingly, HMGB1 levels were thus altered, eventually leading to sepsis [96]. In conclusion, the regulatory relationship between scorch death and ferroptosis should be explored in depth.

Cuproptosis and ferroptosis

Copper is a key factor in cell signaling, and cell death induced by copper overload was found to be a new form of cell death called cuproptosis. The main targets of copper death are the mitochondria, which are morphologically characterised by mitochondrial wrinkling and mitochondrial membrane rupture. Both copper ion carrier induction and dysregulation of copper homeostasis lead to copper death. Copper binds to lipases in the tricarboxylic acid (TCA) cycle, leading to protein aggregation, proteotoxic stress, and cell death [97].
Elesclomol (ES) is a copper ion carrier. In CRC cells, ES allows copper ions to be retained in mitochondria, leading to ROS accumulation, promoting SLC7A11 degradation, and increasing susceptibility to ferroptosis [98]. Given the novelty of cuproptosis, its relationship with ferroptosis has not been extensively studied.
Based on the initial investigation, we have generated Fig. 2, in which molecules such as HSP90, HMGB1, and P53 show multiple times. Thus, are there shared regulatory proteins and signaling pathways between ferroptosis and other PCDs? Is this sharing related to the positive correlation between ferroptosis and other forms of death? Can we suppress multiple death pathways through this sharing? Hopefully, these questions can be addressed in subsequent studies. Although many of the study subjects are non-tumor disorders, this suggests the complexity of the relationships between ferroptosis and other PCDs, hence pointing the way for future tumor-related research.

Role of ncRNA in crosstalk between ferroptosis and other PCDs in tumors

ncRNAs are important regulators of eukaryotic gene expression, and many ncRNAs have been found to mediate PCD to influence tumor malignant progression. The data above demonstrate the relationship and similarities between ferroptosis and numerous forms of cell death. Without a doubt, ncRNAs participate in regulating crosstalk between these PCDs. This section provides a summary of relevant studies (Table 4).
Table 4
Role of ncRNAs in crosstalk between ferroptosis and other models of cell death in tumors
ncRNA
Role in PCDs
Mechanism
Cancer
References
lncRNA NEAT1
Promote ferroptosis and apoptosis
Sponges miR-362-3p to upregulate MIOX
HCC
[146]
lncRNA P53RRA (LINC00472)
Promote ferroptosis and apoptosis
Interacts with G3BP1 to downregulate SLC7A11
LC
[99]
lncRNA OIP5-AS1
Inhibit ferroptosis and apoptosis
Sponges miR-128-3p to upregulate SLC7A11
PCa
[153]
lncRNA HCG18
Inhibit ferroptosis and apoptosis
Sponges miR-450b-5p to upregulate GPX4
HCC
[159]
lncRNA TMEM161B-AS1
Inhibit ferroptosis and apoptosis
Sponges mir-27a-3p to upregulate FANCD2 and CD44
Glioma
[161]
LINC01564
Inhibit ferroptosis and apoptosis
Upregulate NFE2L2
Glioma
[164]
CircABCB10
Inhibit ferroptosis and apoptosis
Sponges miR-326 to upregulate CCL5
Rectal cancer
[166]
circDTL
Inhibit ferroptosis and apoptosis
Sponges miR-1287-5p to upregulate GPX4
NSCLC
[100]
Circ_0000745
Inhibit ferroptosis and apoptosis
Sponges miR-494-3p to upregulate NET1
ALL
[62]
circRHOT1
Inhibit ferroptosis and apoptosis
Sponges miR-106a-5p to upregulate STAT3
Breast cancer
[177]
circ_0007142
Inhibit ferroptosis and apoptosis
Sponges miR-874-3p, upregulates GDPD5
CRC
[169]
Hsa_circ_0021087 (circLMO1)
Promote ferroptosis and apoptosis
Sponges miR-4291 to upregulate ACSL4
Cervical Cancer
[165]
LINC00618
Promote ferroptosis in a manner dependent upon apoptosis
Interacts with LSH to downregulate SLC7A11
leukemia
[152]
NEAT1
Inhibit ferroptosis and autophagy
upregulate SLC7A11
melanoma
[103]
LINC00551
Promote ferroptosis in a manner dependent upon autophagy
Sponges miR-4328 to upregulate DDIT4
LUAD
[102]
lncRNA H19
Inhibit autophagy-mediated ferroptosis
Inhibits production of lipid ROS and induces production of GSH
Breast cancer
[147]
Circ clARS
Promote autophagy-mediated ferroptosis
Interacts with ALKBH5
HCC
[101]
Zuli et al. found that LINC00618 promotes apoptosis by increasing BCL2-related X (BAX) levels and cleaved caspase-3 and by repressing SLC7A11 transcription through lymphatic-specific decapping enzymes (LSH) to promote ferroptosis. However, ferroptosis initiated by LINC00618 depends on vincristine (VCR)-triggered apoptosis. Thus, LINC00618 promotes ferroptosis in an apoptosis-dependent manner [99]. Additionally, many ncRNAs are involved in cancer progression by simultaneously regulating apoptosis and ferroptosis. For example, the methylation-modified lncRNA P53RRA is down-regulated in lung cancer and promotes nucleoplasmic translocation of p53 by interacting with G3BP1, ultimately leading to cell cycle arrest, apoptosis, and ferroptosis [99]. Another study found that the oncogenic factor circDTL upregulates GPX4 by acting as a ceRNA competing for binding with miR-1287-5p, ultimately inhibiting ferroptosis and apoptosis [100].
The link between ferroptosis and autophagy appears to be closer. ALKBH5 is a negative regulator of autophagic flux, and cIARS decreases ferroptosis via inhibiting ALKBH5-mediated autophagy, which increases sorafenib (SF) resistance in HCC cells [101]. Oncology studies have shown that LINC00551 inhibits cell viability in lung adenocarcinoma (LUAD). Mechanistically, LINC00551 inhibits mTOR activity through the miR-4/DDIT4 signaling pathway, upregulates autophagy levels, and then promotes ferroptosis in an autophagy-dependent manner [102]. Recent studies have found that lincRNA NEAT1 is involved in ferroptosis and autophagy induced by gambogenic acid (GNA), a natural anticancer compound, through SLC7A11 / GPX4 and AMPK / mTOR axis in melanoma [103].
With the preceding data, we hypothesize that ferroptosis, apoptosis, and autophagy have synergistic effects. However, there are few reports on the ncRNAs regulation in tumors in the crosstalk between ferroptosis and other PCDs, and the corresponding regulatory relationships still need further study.

Conclusion

Recently, there has been considerable interest in developing cancer drugs targeting the PCD pathway. Besides, ferroptosis has attracted much attention as a newly discovered form of cell death. Although ferroptosis research has surged in recent years, many questions remain unresolved. To address the direction of this review, the following questions and perspectives are presented.
First and foremost, the ultimate triggering cause for ferroptosis is unknown. Although iron and lipid peroxide accumulation are critical stages, not all lipid peroxidation damage leads to cellular ferroptosis. Then, it remains to be investigated whether lipid peroxidation reaches a certain threshold to cause plasma membrane rupture directly; or needs to be activated by some unknown molecule to cause the final effect phase.
Although a growing number of ncRNAs have been linked to the regulation of ferroptosis, the regulatory mechanisms remain poorly understood. Furthermore, there is still a lack of ferroptosis-specific markers for clinical diagnosis. Notably, novel small ncRNAs such as PIWI-interacting RNA (piRNA) and tRNA-derived small RNA (tsRNA) have been shown to have biological functions in cancer. What role do they play in ferroptosis?
Endoplasmic reticulum (ER) stress, redox stress, and mitochondrial dysfunction appear to be common pathways for multiple death types [104]. Investigating the biological relevance of ferroptosis to other PCDs is of great interest. Nevertheless, the findings discussed in Part V indicate the complexity of this relationship. Furthermore, there are limited investigations on the role of ncRNAs in the crosstalk between ferroptosis and other forms of crosstalk. Future research may reveal if we may adversely regulate many death pathways through a single target.
The advantages of ncRNA as tumour prevention, monitoring treatment response and prognosis have been illustrated in the literature and have yielded some promising results in the clinic [105]. However, the clinical application of ferroptosis and thus tumour suppression through an ncRNA-dependent approach faces significant obstacles. On the one hand, the lack of understanding of specific mechanisms has led to limited application of ncRNA modifying agents in ferroptosis. On the other hand, although promoting cellular ferroptosis can inhibit tumour progression, will it be accompanied by damage to other non-tumour organs or fibrosis? In addition, ncRNA-based therapies inherently have many limitations, such as instability and tolerability [106]. Due to the instability of ncRNAs, the mode of transport has a significant impact on the efficiency of transport. Currently, nanoparticle-based, phage-based and other delivery methods are being optimized. Also, ncRNAs, being RNAs, are likely to be recognized and cleared by the immune system. It is hoped that the next generation of ncRNA therapies will overcome these drawbacks and allow for real clinical applications.

Acknowledgements

Not applicable.

Declarations

Not applicable.
All authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.PubMedPubMedCentralCrossRef Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541.PubMedPubMedCentralCrossRef Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.PubMedPubMedCentralCrossRef Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.PubMedPubMedCentralCrossRef Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Lin CH, Lin PP, Lin CY, Lin CH, Huang CH, Huang YJ, Lane HY. Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J Psychiatr Res. 2016;72:58–63.PubMedCrossRef Lin CH, Lin PP, Lin CY, Lin CH, Huang CH, Huang YJ, Lane HY. Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J Psychiatr Res. 2016;72:58–63.PubMedCrossRef
9.
Zurück zum Zitat Qin D, Wang J, Le A, Wang TJ, Chen X, Wang J. Traumatic brain injury: ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown. Cells. 2021;10:1009.PubMedPubMedCentralCrossRef Qin D, Wang J, Le A, Wang TJ, Chen X, Wang J. Traumatic brain injury: ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown. Cells. 2021;10:1009.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 2018;29:61–74.PubMedCrossRef Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 2018;29:61–74.PubMedCrossRef
12.
Zurück zum Zitat Rishi G, Huang G, Subramaniam VN. Cancer: the role of iron and ferroptosis. Int J Biochem Cell Biol. 2021;141: 106094.PubMedCrossRef Rishi G, Huang G, Subramaniam VN. Cancer: the role of iron and ferroptosis. Int J Biochem Cell Biol. 2021;141: 106094.PubMedCrossRef
13.
Zurück zum Zitat Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10:1604–9.PubMedPubMedCentralCrossRef Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10:1604–9.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.PubMedCrossRef Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.PubMedCrossRef
15.
Zurück zum Zitat Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72.PubMedCrossRef Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72.PubMedCrossRef
17.
Zurück zum Zitat Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014: 360438.PubMedPubMedCentralCrossRef Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014: 360438.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234–45.PubMedPubMedCentralCrossRef Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234–45.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wang Y, Liu Y, Liu J, Kang R, Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 2020;531:581–7.PubMedCrossRef Wang Y, Liu Y, Liu J, Kang R, Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 2020;531:581–7.PubMedCrossRef
21.
Zurück zum Zitat Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett. 2018;416:124–37.PubMedCrossRef Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett. 2018;416:124–37.PubMedCrossRef
22.
Zurück zum Zitat Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51:575-586.e574.PubMedPubMedCentralCrossRef Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51:575-586.e574.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113:E4966-4975.PubMedPubMedCentralCrossRef Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113:E4966-4975.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.PubMedPubMedCentralCrossRef Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.PubMedCrossRef Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.PubMedCrossRef
26.
Zurück zum Zitat Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.PubMedCrossRef Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.PubMedCrossRef
27.
Zurück zum Zitat Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, Kensler TW. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat. 2012;132:175–87.PubMedCrossRef Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, Kensler TW. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat. 2012;132:175–87.PubMedCrossRef
28.
Zurück zum Zitat Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.PubMedCrossRef Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.PubMedCrossRef
29.
Zurück zum Zitat Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci. 2018;12:466.PubMedPubMedCentralCrossRef Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci. 2018;12:466.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, da Xavier Silva TN, Panzilius E, Scheel CH, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8.PubMedCrossRef Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, da Xavier Silva TN, Panzilius E, Scheel CH, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8.PubMedCrossRef
31.
Zurück zum Zitat Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.PubMedPubMedCentralCrossRef Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zhang J, Liu X, Li X, Cai Y, Zhou Y, Wang Q, Xu Z, Xia P, Yang P, Jun L, et al. The emerging role of noncoding RNA regulation of the ferroptosis in cardiovascular diseases. Oxid Med Cell Longev. 2022;2022:3595745.PubMedPubMedCentral Zhang J, Liu X, Li X, Cai Y, Zhou Y, Wang Q, Xu Z, Xia P, Yang P, Jun L, et al. The emerging role of noncoding RNA regulation of the ferroptosis in cardiovascular diseases. Oxid Med Cell Longev. 2022;2022:3595745.PubMedPubMedCentral
34.
Zurück zum Zitat Kim HK, Yeom JH, Kay MA. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther. 2020;28:2340–57.PubMedPubMedCentralCrossRef Kim HK, Yeom JH, Kay MA. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther. 2020;28:2340–57.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett. 2018;15:2735–42.PubMed Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett. 2018;15:2735–42.PubMed
36.
Zurück zum Zitat Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R, Xu Y. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 2021;549:54–60.PubMedCrossRef Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R, Xu Y. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 2021;549:54–60.PubMedCrossRef
37.
Zurück zum Zitat Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin. 2021;53:333–41.PubMedCrossRef Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin. 2021;53:333–41.PubMedCrossRef
38.
Zurück zum Zitat Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 2011;286:40725–33.PubMedPubMedCentralCrossRef Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem. 2011;286:40725–33.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Tomita K, Fukumoto M, Itoh K, Kuwahara Y, Igarashi K, Nagasawa T, Suzuki M, Kurimasa A, Sato T. MiR-7-5p is a key factor that controls radioresistance via intracellular Fe(2+) content in clinically relevant radioresistant cells. Biochem Biophys Res Commun. 2019;518:712–8.PubMedCrossRef Tomita K, Fukumoto M, Itoh K, Kuwahara Y, Igarashi K, Nagasawa T, Suzuki M, Kurimasa A, Sato T. MiR-7-5p is a key factor that controls radioresistance via intracellular Fe(2+) content in clinically relevant radioresistant cells. Biochem Biophys Res Commun. 2019;518:712–8.PubMedCrossRef
41.
Zurück zum Zitat Tomita K, Nagasawa T, Kuwahara Y, Torii S, Igarashi K, Roudkenar MH, Roushandeh AM, Kurimasa A, Sato T. MiR-7–5p is involved in ferroptosis signaling and radioresistance Thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int J Mol Sci. 2021;22:830.CrossRef Tomita K, Nagasawa T, Kuwahara Y, Torii S, Igarashi K, Roudkenar MH, Roushandeh AM, Kurimasa A, Sato T. MiR-7–5p is involved in ferroptosis signaling and radioresistance Thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int J Mol Sci. 2021;22:830.CrossRef
42.
Zurück zum Zitat O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21:585–606.PubMedPubMedCentralCrossRef O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21:585–606.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8:237–48.PubMedCrossRef Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Rådmark O, Wurst W, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8:237–48.PubMedCrossRef
44.
Zurück zum Zitat Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.PubMedPubMedCentralCrossRef Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021;276: 119399.PubMedCrossRef Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021;276: 119399.PubMedCrossRef
46.
Zurück zum Zitat Wu ZY, Trenner M, Boon RA, Spin JM, Maegdefessel L. Long noncoding RNAs in key cellular processes involved in aortic aneurysms. Atherosclerosis. 2020;292:112–8.PubMedPubMedCentralCrossRef Wu ZY, Trenner M, Boon RA, Spin JM, Maegdefessel L. Long noncoding RNAs in key cellular processes involved in aortic aneurysms. Atherosclerosis. 2020;292:112–8.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Zhang H, Wang M, He Y, Deng T, Liu R, Wang W, Zhu K, Bai M, Ning T, Yang H, et al. Chemotoxicity-induced exosomal lncFERO regulates ferroptosis and stemness in gastric cancer stem cells. Cell Death Dis. 2021;12:1116.PubMedPubMedCentralCrossRef Zhang H, Wang M, He Y, Deng T, Liu R, Wang W, Zhu K, Bai M, Ning T, Yang H, et al. Chemotoxicity-induced exosomal lncFERO regulates ferroptosis and stemness in gastric cancer stem cells. Cell Death Dis. 2021;12:1116.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S, Segura MF. Long non-coding RNA PVT1 as a prognostic and therapeutic target in pediatric cancer. Front Oncol. 2019;9:1173.PubMedPubMedCentralCrossRef Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S, Segura MF. Long non-coding RNA PVT1 as a prognostic and therapeutic target in pediatric cancer. Front Oncol. 2019;9:1173.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Ghafouri-Fard S, Omrani MD, Taheri M. Long noncoding RNA PVT1: a highly dysregulated gene in malignancy. J Cell Physiol. 2020;235:818–35.PubMedCrossRef Ghafouri-Fard S, Omrani MD, Taheri M. Long noncoding RNA PVT1: a highly dysregulated gene in malignancy. J Cell Physiol. 2020;235:818–35.PubMedCrossRef
50.
Zurück zum Zitat Wu BQ, Jiang Y, Zhu F, Sun DL, He XZ. Long noncoding RNA PVT1 promotes EMT and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. Technol Cancer Res Treat. 2017;16:819–27.PubMedPubMedCentralCrossRef Wu BQ, Jiang Y, Zhu F, Sun DL, He XZ. Long noncoding RNA PVT1 promotes EMT and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. Technol Cancer Res Treat. 2017;16:819–27.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Lai SW, Chen MY, Bamodu OA, Hsieh MS, Huang TY, Yeh CT, Lee WH, Cherng YG. Exosomal lncRNA PVT1/VEGFA axis promotes colon cancer metastasis and stemness by downregulation of tumor suppressor miR-152-3p. Oxid Med Cell Longev. 2021;2021:9959807.PubMedPubMedCentralCrossRef Lai SW, Chen MY, Bamodu OA, Hsieh MS, Huang TY, Yeh CT, Lee WH, Cherng YG. Exosomal lncRNA PVT1/VEGFA axis promotes colon cancer metastasis and stemness by downregulation of tumor suppressor miR-152-3p. Oxid Med Cell Longev. 2021;2021:9959807.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 2021;15:3965–78.PubMedPubMedCentralCrossRef He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 2021;15:3965–78.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Xiao S, Liu X, Yuan L, Wang F. A ferroptosis-related lncRNAs signature predicts prognosis and therapeutic response of gastric cancer. Front Cell Dev Biol. 2021;9: 736682.PubMedPubMedCentralCrossRef Xiao S, Liu X, Yuan L, Wang F. A ferroptosis-related lncRNAs signature predicts prognosis and therapeutic response of gastric cancer. Front Cell Dev Biol. 2021;9: 736682.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Zheng Z, Zhang Q, Wu W, Xue Y, Liu S, Chen Q, Lin D. Identification and validation of a ferroptosis-related long non-coding RNA signature for predicting the outcome of lung adenocarcinoma. Front Genet. 2021;12: 690509.PubMedPubMedCentralCrossRef Zheng Z, Zhang Q, Wu W, Xue Y, Liu S, Chen Q, Lin D. Identification and validation of a ferroptosis-related long non-coding RNA signature for predicting the outcome of lung adenocarcinoma. Front Genet. 2021;12: 690509.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zheng Z, Wu W, Lin Z, Liu S, Chen Q, Jiang X, Xue Y, Lin D. Identification of seven novel ferroptosis-related long non-coding RNA signatures as a diagnostic biomarker for acute myeloid leukemia. BMC Med Genomics. 2021;14:236.PubMedPubMedCentralCrossRef Zheng Z, Wu W, Lin Z, Liu S, Chen Q, Jiang X, Xue Y, Lin D. Identification of seven novel ferroptosis-related long non-coding RNA signatures as a diagnostic biomarker for acute myeloid leukemia. BMC Med Genomics. 2021;14:236.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.PubMedPubMedCentralCrossRef Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Guria A, Sharma P, Natesan S, Pandi G. Circular RNAs-the road less traveled. Front Mol Biosci. 2019;6:146.PubMedCrossRef Guria A, Sharma P, Natesan S, Pandi G. Circular RNAs-the road less traveled. Front Mol Biosci. 2019;6:146.PubMedCrossRef
59.
Zurück zum Zitat Wang S, Wang Y, Li Q, Li X, Feng X. A novel circular RNA confers trastuzumab resistance in human epidermal growth factor receptor 2-positive breast cancer through regulating ferroptosis. Environ Toxicol. 2022;37:1597–607.PubMedCrossRef Wang S, Wang Y, Li Q, Li X, Feng X. A novel circular RNA confers trastuzumab resistance in human epidermal growth factor receptor 2-positive breast cancer through regulating ferroptosis. Environ Toxicol. 2022;37:1597–607.PubMedCrossRef
60.
Zurück zum Zitat Wang YW, Xu Y, Wang YY, Zhu J, Gao HD, Ma R, Zhang K. Elevated circRNAs circ_0000745, circ_0001531 and circ_0001640 in human whole blood: potential novel diagnostic biomarkers for breast cancer. Exp Mol Pathol. 2021;121: 104661.PubMedCrossRef Wang YW, Xu Y, Wang YY, Zhu J, Gao HD, Ma R, Zhang K. Elevated circRNAs circ_0000745, circ_0001531 and circ_0001640 in human whole blood: potential novel diagnostic biomarkers for breast cancer. Exp Mol Pathol. 2021;121: 104661.PubMedCrossRef
61.
Zurück zum Zitat Huang M, He YR, Liang LC, Huang Q, Zhu ZQ. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23:6330–8.PubMedPubMedCentralCrossRef Huang M, He YR, Liang LC, Huang Q, Zhu ZQ. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol. 2017;23:6330–8.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Yang X, Li Y, Zhang Y, Liu J. Circ_0000745 promotes acute lymphoblastic leukemia progression through mediating miR-494-3p/NET1 axis. Hematology. 2022;27:11–22.PubMedCrossRef Yang X, Li Y, Zhang Y, Liu J. Circ_0000745 promotes acute lymphoblastic leukemia progression through mediating miR-494-3p/NET1 axis. Hematology. 2022;27:11–22.PubMedCrossRef
63.
Zurück zum Zitat Luo K, Liu A, Wu H, Liu Q, Dai J, Liu Y, Wang Z. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis. 2022;13:740.PubMedPubMedCentralCrossRef Luo K, Liu A, Wu H, Liu Q, Dai J, Liu Y, Wang Z. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis. 2022;13:740.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Huang J, Deng X, Chen X, Chang Z, Lu Q, Tang A, Liu P. Circular RNA KIF4A promotes liver metastasis of breast cancer by reprogramming glucose metabolism. J Oncol. 2022;2022:8035083.PubMedPubMedCentralCrossRef Huang J, Deng X, Chen X, Chang Z, Lu Q, Tang A, Liu P. Circular RNA KIF4A promotes liver metastasis of breast cancer by reprogramming glucose metabolism. J Oncol. 2022;2022:8035083.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Shi YR, Wu Z, Xiong K, Liao QJ, Ye X, Yang P, Zu XB. Circular RNA circKIF4A sponges miR-375/1231 to promote bladder cancer progression by upregulating NOTCH2 expression. Front Pharmacol. 2020;11:605.PubMedPubMedCentralCrossRef Shi YR, Wu Z, Xiong K, Liao QJ, Ye X, Yang P, Zu XB. Circular RNA circKIF4A sponges miR-375/1231 to promote bladder cancer progression by upregulating NOTCH2 expression. Front Pharmacol. 2020;11:605.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Chen W, Fu J, Chen Y, Li Y, Ning L, Huang D, Yan S, Zhang Q. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging. 2021;13:16500–12.PubMedPubMedCentralCrossRef Chen W, Fu J, Chen Y, Li Y, Ning L, Huang D, Yan S, Zhang Q. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer. Aging. 2021;13:16500–12.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Zhuang Y, Yang D, Shi S, Wang L, Yu M, Meng X, Fan Y, Zhou R, Wang F. MiR-375-3p promotes cardiac fibrosis by regulating the ferroptosis mediated by GPX4. Comput Intell Neurosci. 2022;2022:9629158.PubMedPubMedCentralCrossRef Zhuang Y, Yang D, Shi S, Wang L, Yu M, Meng X, Fan Y, Zhou R, Wang F. MiR-375-3p promotes cardiac fibrosis by regulating the ferroptosis mediated by GPX4. Comput Intell Neurosci. 2022;2022:9629158.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Zhou J, Xiao C, Zheng S, Wang Q, Zhu H, Zhang Y, Wang R. MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell Stress Chaperones. 2022;27:325–36.PubMedPubMedCentralCrossRef Zhou J, Xiao C, Zheng S, Wang Q, Zhu H, Zhang Y, Wang R. MicroRNA-214-3p aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell Stress Chaperones. 2022;27:325–36.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, et al. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 2022;13:544.PubMedPubMedCentralCrossRef Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, et al. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 2022;13:544.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.PubMedCrossRef Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.PubMedCrossRef
71.
Zurück zum Zitat Liu F, Du ZY, He JL, Liu XQ, Yu QB, Wang YX. FTH1 binds to Daxx and inhibits Daxx-mediated cell apoptosis. Mol Biol Rep. 2012;39:873–9.PubMedCrossRef Liu F, Du ZY, He JL, Liu XQ, Yu QB, Wang YX. FTH1 binds to Daxx and inhibits Daxx-mediated cell apoptosis. Mol Biol Rep. 2012;39:873–9.PubMedCrossRef
72.
Zurück zum Zitat Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT, Choudry HA, Bartlett DL, Lee YJ. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget. 2017;8:115164–78.PubMedPubMedCentralCrossRef Hong SH, Lee DH, Lee YS, Jo MJ, Jeong YA, Kwon WT, Choudry HA, Bartlett DL, Lee YJ. Molecular crosstalk between ferroptosis and apoptosis: emerging role of ER stress-induced p53-independent PUMA expression. Oncotarget. 2017;8:115164–78.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, Xu Z, Cheng SX, Zhang XZ. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett. 2017;17:284–91.PubMedCrossRef Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, Xu Z, Cheng SX, Zhang XZ. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett. 2017;17:284–91.PubMedCrossRef
74.
Zurück zum Zitat Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA. 2012;109:5322–7.PubMedPubMedCentralCrossRef Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA. 2012;109:5322–7.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021;2021:9991001.PubMedPubMedCentralCrossRef Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021;2021:9991001.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U, Krautwald S. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45.PubMedPubMedCentralCrossRef Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U, Krautwald S. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 2019;116:2996–3005.PubMedPubMedCentralCrossRef Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 2019;116:2996–3005.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14:2083–103.PubMedPubMedCentralCrossRef Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14:2083–103.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C, Kuang W, Chen D, Zhu M. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of parkinson’s disease. Neurotherapeutics. 2020;17:1796–812.PubMedPubMedCentralCrossRef Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C, Kuang W, Chen D, Zhu M. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of parkinson’s disease. Neurotherapeutics. 2020;17:1796–812.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9.PubMedPubMedCentralCrossRef Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8.PubMedPubMedCentralCrossRef Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, Kang R, Wang X, Tang D, Dai E. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508:997–1003.PubMedCrossRef Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, Kang R, Wang X, Tang D, Dai E. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508:997–1003.PubMedCrossRef
84.
Zurück zum Zitat Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, Lotze MT, Zeh HJ, Kang R, Tang D. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238.PubMedPubMedCentralCrossRef Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, Lotze MT, Zeh HJ, Kang R, Tang D. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510:278–83.PubMedCrossRef Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510:278–83.PubMedCrossRef
86.
Zurück zum Zitat Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92.PubMedPubMedCentralCrossRef Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L, Yang L. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res. 2019;9:730–9.PubMedPubMedCentral Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L, Yang L. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res. 2019;9:730–9.PubMedPubMedCentral
88.
Zurück zum Zitat Chen X, Song X, Li J, Zhang R, Yu C, Zhou Z, Liu J, Liao S, Klionsky DJ, Kroemer G, et al. Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy. 2023;19:54–74.PubMedCrossRef Chen X, Song X, Li J, Zhang R, Yu C, Zhou Z, Liu J, Liao S, Klionsky DJ, Kroemer G, et al. Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy. 2023;19:54–74.PubMedCrossRef
89.
Zurück zum Zitat Tang W, Zhu S, Liang X, Liu C, Song L. The crosstalk between long non-coding RNAs and various types of death in cancer cells. Technol Cancer Res Treat. 2021;20:15330338211033044.PubMedPubMedCentralCrossRef Tang W, Zhu S, Liang X, Liu C, Song L. The crosstalk between long non-coding RNAs and various types of death in cancer cells. Technol Cancer Res Treat. 2021;20:15330338211033044.PubMedPubMedCentralCrossRef
91.
92.
Zurück zum Zitat Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang T, Xu G. Transcription factor p53 suppresses tumor growth by prompting pyroptosis in non-small-cell lung cancer. Oxid Med Cell Longev. 2019;2019:8746895.PubMedPubMedCentralCrossRef Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang T, Xu G. Transcription factor p53 suppresses tumor growth by prompting pyroptosis in non-small-cell lung cancer. Oxid Med Cell Longev. 2019;2019:8746895.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis. 2020;11:574.PubMedPubMedCentralCrossRef Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis. 2020;11:574.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Xu R, Yang J, Qian Y, Deng H, Wang Z, Ma S, Wei Y, Yang N, Shen Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz. 2021;6:348–56.PubMedCrossRef Xu R, Yang J, Qian Y, Deng H, Wang Z, Ma S, Wei Y, Yang N, Shen Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz. 2021;6:348–56.PubMedCrossRef
95.
Zurück zum Zitat Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, Han J, Wu Q. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 2018;28:1171–85.PubMedPubMedCentralCrossRef Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, Han J, Wu Q. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 2018;28:1171–85.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, Cao L, Xie M, Ran Q, Kroemer G, et al. Lipid peroxidation drives gasdermin d-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24:97-108.e104.PubMedPubMedCentralCrossRef Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, Cao L, Xie M, Ran Q, Kroemer G, et al. Lipid peroxidation drives gasdermin d-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 2018;24:97-108.e104.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.PubMedPubMedCentralCrossRef Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;15:3527–44.PubMedPubMedCentralCrossRef Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol. 2021;15:3527–44.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96.PubMedPubMedCentralCrossRef Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Shanshan W, Hongying M, Jingjing F, Yiming Y, Yu R, Rui Y. CircDTL functions as an oncogene and regulates both apoptosis and ferroptosis in non-small cell lung cancer cells. Front Genet. 2021;12: 743505.PubMedPubMedCentralCrossRef Shanshan W, Hongying M, Jingjing F, Yiming Y, Yu R, Rui Y. CircDTL functions as an oncogene and regulates both apoptosis and ferroptosis in non-small cell lung cancer cells. Front Genet. 2021;12: 743505.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Liu Z, Wang Q, Wang X, Xu Z, Wei X, Li J. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 2020;6:72.PubMedPubMedCentralCrossRef Liu Z, Wang Q, Wang X, Xu Z, Wei X, Li J. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 2020;6:72.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Peng X, Yang R, Peng W, Zhao Z, Tu G, He B, Cai Q, Shi S, Yin W, Yu F, et al. Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328. PeerJ. 2022;10: e14180.PubMedPubMedCentralCrossRef Peng X, Yang R, Peng W, Zhao Z, Tu G, He B, Cai Q, Shi S, Yin W, Yu F, et al. Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328. PeerJ. 2022;10: e14180.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Wang M, Cheng H, Wu H, Liu C, Li S, Li B, Su J, Luo S, Li Q. Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomed Pharmacother. 2022;154: 113636.PubMedCrossRef Wang M, Cheng H, Wu H, Liu C, Li S, Li B, Su J, Luo S, Li Q. Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomed Pharmacother. 2022;154: 113636.PubMedCrossRef
104.
Zurück zum Zitat Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.PubMedCrossRef Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.PubMedCrossRef
105.
Zurück zum Zitat Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.PubMedPubMedCentralCrossRef Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ, Pichler M. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ. 2022;29:1094–106.PubMedPubMedCentralCrossRef Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ, Pichler M. Non-coding RNAs and ferroptosis: potential implications for cancer therapy. Cell Death Differ. 2022;29:1094–106.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res. 2021;55:853–64.PubMedCrossRef Bao C, Zhang J, Xian SY, Chen F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic Res. 2021;55:853–64.PubMedCrossRef
108.
Zurück zum Zitat Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N, Feng Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:3.PubMedPubMedCentralCrossRef Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N, Feng Y. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:3.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Yang X, Liu J, Wang C, Cheng KK, Xu H, Li Q, Hua T, Jiang X, Sheng L, Mao J, Liu Z. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis. 2021;10:15.PubMedPubMedCentralCrossRef Yang X, Liu J, Wang C, Cheng KK, Xu H, Li Q, Hua T, Jiang X, Sheng L, Mao J, Liu Z. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis. 2021;10:15.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol. 2020;235:5637–48.PubMedCrossRef Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol. 2020;235:5637–48.PubMedCrossRef
111.
Zurück zum Zitat Guan L, Wang F, Wang M, Han S, Cui Z, Xi S, Xu H, Li S. Downregulation of HULC induces ferroptosis in hepatocellular carcinoma via targeting of the miR-3200-5p/ATF4 Axis. Oxid Med Cell Longev. 2022;2022:9613095.PubMedPubMedCentralCrossRef Guan L, Wang F, Wang M, Han S, Cui Z, Xi S, Xu H, Li S. Downregulation of HULC induces ferroptosis in hepatocellular carcinoma via targeting of the miR-3200-5p/ATF4 Axis. Oxid Med Cell Longev. 2022;2022:9613095.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Wang P, Zhu CF, Ma MZ, Chen G, Song M, Zeng ZL, Lu WH, Yang J, Wen S, Chiao PJ, et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget. 2015;6:21148–58.PubMedPubMedCentralCrossRef Wang P, Zhu CF, Ma MZ, Chen G, Song M, Zeng ZL, Lu WH, Yang J, Wen S, Chiao PJ, et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget. 2015;6:21148–58.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Zhu C, Song Z, Chen Z, Lin T, Lin H, Xu Z, Ai F, Zheng S. MicroRNA-4735-3p facilitates ferroptosis in clear cell renal cell carcinoma by targeting SLC40A1. Anal Cell Pathol. 2022;2022:4213401.CrossRef Zhu C, Song Z, Chen Z, Lin T, Lin H, Xu Z, Ai F, Zheng S. MicroRNA-4735-3p facilitates ferroptosis in clear cell renal cell carcinoma by targeting SLC40A1. Anal Cell Pathol. 2022;2022:4213401.CrossRef
114.
Zurück zum Zitat Bazhabayi M, Qiu X, Li X, Yang A, Wen W, Zhang X, Xiao X, He R, Liu P. CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression. J Cell Mol Med. 2021;25:10248–56.PubMedPubMedCentralCrossRef Bazhabayi M, Qiu X, Li X, Yang A, Wen W, Zhang X, Xiao X, He R, Liu P. CircGFRA1 facilitates the malignant progression of HER-2-positive breast cancer via acting as a sponge of miR-1228 and enhancing AIFM2 expression. J Cell Mol Med. 2021;25:10248–56.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Gomaa A, Peng D, Chen Z, Soutto M, Abouelezz K, Corvalan A, El-Rifai W. Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep. 2019;9:16970.PubMedPubMedCentralCrossRef Gomaa A, Peng D, Chen Z, Soutto M, Abouelezz K, Corvalan A, El-Rifai W. Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep. 2019;9:16970.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Zhang K, Wu L, Zhang P, Luo M, Du J, Gao T, O’Connell D, Wang G, Wang H, Yang Y. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog. 2018;57:1566–76.PubMedCrossRef Zhang K, Wu L, Zhang P, Luo M, Du J, Gao T, O’Connell D, Wang G, Wang H, Yang Y. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog. 2018;57:1566–76.PubMedCrossRef
117.
Zurück zum Zitat Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, Wu G, Zhou G, He S. MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog. 2022;61:301–10.PubMedCrossRef Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, Wu G, Zhou G, He S. MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog. 2022;61:301–10.PubMedCrossRef
118.
Zurück zum Zitat Yang Y, Lin Z, Han Z, Wu Z, Hua J, Zhong R, Zhao R, Ran H, Qu K, Huang H, et al. miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE. Cell Death Discov. 2021;7:272.PubMedPubMedCentralCrossRef Yang Y, Lin Z, Han Z, Wu Z, Hua J, Zhong R, Zhao R, Ran H, Qu K, Huang H, et al. miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE. Cell Death Discov. 2021;7:272.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, Zhang L. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int. 2020;44:2344–56.PubMedCrossRef Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, Zhang L. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int. 2020;44:2344–56.PubMedCrossRef
120.
Zurück zum Zitat Xu P, Wang Y, Deng Z, Tan Z, Pei X. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression. Oncol Lett. 2022;23:67.PubMedPubMedCentralCrossRef Xu P, Wang Y, Deng Z, Tan Z, Pei X. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression. Oncol Lett. 2022;23:67.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Xu Z, Chen L, Wang C, Zhang L, Xu W. MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4. Free Radic Res. 2021;55:1119–29.PubMedCrossRef Xu Z, Chen L, Wang C, Zhang L, Xu W. MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4. Free Radic Res. 2021;55:1119–29.PubMedCrossRef
122.
Zurück zum Zitat Zhou Y, Wu H, Wang F, Xu L, Yan Y, Tong X, Yan H. GPX7 Is targeted by miR-29b and GPX7 knockdown enhances ferroptosis induced by erastin in glioma. Front Oncol. 2021;11: 802124.PubMedCrossRef Zhou Y, Wu H, Wang F, Xu L, Yan Y, Tong X, Yan H. GPX7 Is targeted by miR-29b and GPX7 knockdown enhances ferroptosis induced by erastin in glioma. Front Oncol. 2021;11: 802124.PubMedCrossRef
123.
Zurück zum Zitat Fan H, Ai R, Mu S, Niu X, Guo Z, Liu L. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered. 2022;13:12021–9.PubMedPubMedCentralCrossRef Fan H, Ai R, Mu S, Niu X, Guo Z, Liu L. MiR-19a suppresses ferroptosis of colorectal cancer cells by targeting IREB2. Bioengineered. 2022;13:12021–9.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Liao Y, Jia X, Ren Y, Deji Z, Gesang Y, Ning N, Feng H, Yu H, Wei A. Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation. Hum Cell. 2021;34:1532–44.PubMedCrossRef Liao Y, Jia X, Ren Y, Deji Z, Gesang Y, Ning N, Feng H, Yu H, Wei A. Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation. Hum Cell. 2021;34:1532–44.PubMedCrossRef
125.
Zurück zum Zitat Kabaria S, Choi DC, Chaudhuri AD, Jain MR, Li H, Junn E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic Biol Med. 2015;89:548–56.PubMedPubMedCentralCrossRef Kabaria S, Choi DC, Chaudhuri AD, Jain MR, Li H, Junn E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic Biol Med. 2015;89:548–56.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Bi G, Liang J, Zhao M, Zhang H, Jin X, Lu T, Zheng Y, Bian Y, Chen Z, Huang Y, et al. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 2022;28:366–86.PubMedPubMedCentralCrossRef Bi G, Liang J, Zhao M, Zhang H, Jin X, Lu T, Zheng Y, Bian Y, Chen Z, Huang Y, et al. miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 2022;28:366–86.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Huang W, Shi G, Yong Z, Li J, Qiu J, Cao Y, Zhao Y, Yuan L. Downregulation of RKIP promotes radioresistance of nasopharyngeal carcinoma by activating NRF2/NQO1 axis via downregulating miR-450b-5p. Cell Death Dis. 2020;11:504.PubMedPubMedCentralCrossRef Huang W, Shi G, Yong Z, Li J, Qiu J, Cao Y, Zhao Y, Yuan L. Downregulation of RKIP promotes radioresistance of nasopharyngeal carcinoma by activating NRF2/NQO1 axis via downregulating miR-450b-5p. Cell Death Dis. 2020;11:504.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang W, Lv S, Li W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11:751.PubMedPubMedCentralCrossRef Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang W, Lv S, Li W. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11:751.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 2018;25:1457–72.PubMedPubMedCentralCrossRef Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 2018;25:1457–72.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Sun D, Li YC, Zhang XY. Lidocaine promoted ferroptosis by targeting miR-382-5p /SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. 2021;12: 681223.PubMedPubMedCentralCrossRef Sun D, Li YC, Zhang XY. Lidocaine promoted ferroptosis by targeting miR-382-5p /SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. 2021;12: 681223.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Mao SH, Zhu CH, Nie Y, Yu J, Wang L. Levobupivacaine induces ferroptosis by miR-489-3p/SLC7A11 signaling in gastric cancer. Front Pharmacol. 2021;12: 681338.PubMedPubMedCentralCrossRef Mao SH, Zhu CH, Nie Y, Yu J, Wang L. Levobupivacaine induces ferroptosis by miR-489-3p/SLC7A11 signaling in gastric cancer. Front Pharmacol. 2021;12: 681338.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC. Oral Dis. 2023;29:880–91.PubMedCrossRef Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC. Oral Dis. 2023;29:880–91.PubMedCrossRef
133.
Zurück zum Zitat Sun K, Ren W, Li S, Zheng J, Huang Y, Zhi K, Gao L. MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11. Pathol Res Pract. 2022;231: 153778.PubMedCrossRef Sun K, Ren W, Li S, Zheng J, Huang Y, Zhi K, Gao L. MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11. Pathol Res Pract. 2022;231: 153778.PubMedCrossRef
134.
Zurück zum Zitat Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, Bai Y, Tang H, Wang X, Zhao M. Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 2021;9:675.PubMedPubMedCentralCrossRef Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S, Bai Y, Tang H, Wang X, Zhao M. Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med. 2021;9:675.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, Catto JW. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014;20:1990–2000.PubMedPubMedCentralCrossRef Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, Catto JW. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014;20:1990–2000.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, Xi T, Xing Y, Zheng L. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 2021;12:325.PubMedPubMedCentralCrossRef Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, Xi T, Xing Y, Zheng L. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 2021;12:325.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 2021;522:211–24.PubMedCrossRef Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 2021;522:211–24.PubMedCrossRef
138.
Zurück zum Zitat Zhu JH, De Mello RA, Yan QL, Wang JW, Chen Y, Ye QH, Wang ZJ, Tang HJ, Huang T. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165747.PubMedCrossRef Zhu JH, De Mello RA, Yan QL, Wang JW, Chen Y, Ye QH, Wang ZJ, Tang HJ, Huang T. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165747.PubMedCrossRef
139.
Zurück zum Zitat Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front Oncol. 2021;11: 759346.PubMedPubMedCentralCrossRef Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front Oncol. 2021;11: 759346.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Liu YP, Qiu ZZ, Li XH, Li EY. Propofol induces ferroptosis and inhibits malignant phenotypes of gastric cancer cells by regulating miR-125b-5p/STAT3 axis. World J Gastrointest Oncol. 2021;13:2114–28.PubMedPubMedCentralCrossRef Liu YP, Qiu ZZ, Li XH, Li EY. Propofol induces ferroptosis and inhibits malignant phenotypes of gastric cancer cells by regulating miR-125b-5p/STAT3 axis. World J Gastrointest Oncol. 2021;13:2114–28.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, Yang J, Li B, Peng Y, Liang Y, et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol. 2021;42: 101908.PubMedPubMedCentralCrossRef Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, Yang J, Li B, Peng Y, Liang Y, et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol. 2021;42: 101908.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Zheng S, Hu L, Song Q, Shan Y, Yin G, Zhu H, Kong W, Zhou C. miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging. 2021;13:26137–47.PubMedPubMedCentralCrossRef Zheng S, Hu L, Song Q, Shan Y, Yin G, Zhu H, Kong W, Zhou C. miR-545 promotes colorectal cancer by inhibiting transferring in the non-normal ferroptosis signaling. Aging. 2021;13:26137–47.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Wu H, Liu A. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res. 2021;49:300060521996183.PubMed Wu H, Liu A. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res. 2021;49:300060521996183.PubMed
145.
Zurück zum Zitat Sui X, Hu N, Zhang Z, Wang Y, Wang P, Xiu G. ASMTL-AS1 impedes the malignant progression of lung adenocarcinoma by regulating SAT1 to promote ferroptosis. Pathol Int. 2021;71:741–51.PubMedCrossRef Sui X, Hu N, Zhang Z, Wang Y, Wang P, Xiu G. ASMTL-AS1 impedes the malignant progression of lung adenocarcinoma by regulating SAT1 to promote ferroptosis. Pathol Int. 2021;71:741–51.PubMedCrossRef
146.
Zurück zum Zitat Zhang Y, Luo M, Cui X, O’Connell D, Yang Y. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ. 2022;29:1850–63.PubMedPubMedCentralCrossRef Zhang Y, Luo M, Cui X, O’Connell D, Yang Y. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ. 2022;29:1850–63.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Chen J, Qin C, Zhou Y, Chen Y, Mao M, Yang J. Metformin may induce ferroptosis by inhibiting autophagy via lncRNA H19 in breast cancer. FEBS Open Bio. 2022;12:146–53.PubMedCrossRef Chen J, Qin C, Zhou Y, Chen Y, Mao M, Yang J. Metformin may induce ferroptosis by inhibiting autophagy via lncRNA H19 in breast cancer. FEBS Open Bio. 2022;12:146–53.PubMedCrossRef
148.
Zurück zum Zitat Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huang X, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater. 2022;13:23–36.PubMedCrossRef Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huang X, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater. 2022;13:23–36.PubMedCrossRef
149.
Zurück zum Zitat Gong H, Gao M, Lin Y, Liu J, Hu Z, Liu J. TUG1/MAZ/FTH1 axis attenuates the antiglioma effect of dihydroartemisinin by inhibiting ferroptosis. Oxid Med Cell Longev. 2022;2022:7843863.PubMedPubMedCentralCrossRef Gong H, Gao M, Lin Y, Liu J, Hu Z, Liu J. TUG1/MAZ/FTH1 axis attenuates the antiglioma effect of dihydroartemisinin by inhibiting ferroptosis. Oxid Med Cell Longev. 2022;2022:7843863.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C, Xu S. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 2019;9:16185.PubMedPubMedCentralCrossRef Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C, Xu S. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 2019;9:16185.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Pan C, Chen G, Zhao X, Xu X, Liu J. lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis. Eur J Pharmacol. 2022;934: 175317.PubMedCrossRef Pan C, Chen G, Zhao X, Xu X, Liu J. lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis. Eur J Pharmacol. 2022;934: 175317.PubMedCrossRef
152.
Zurück zum Zitat Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, Tam S, Xiao D, Liu S, Wen F, Tao Y. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol Ther. 2021;29:263–74.PubMedCrossRef Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, Tam S, Xiao D, Liu S, Wen F, Tao Y. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol Ther. 2021;29:263–74.PubMedCrossRef
153.
Zurück zum Zitat Zhang Y, Guo S, Wang S, Li X, Hou D, Li H, Wang L, Xu Y, Ma B, Wang H, Jiang X. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf. 2021;220:112376.PubMedCrossRef Zhang Y, Guo S, Wang S, Li X, Hou D, Li H, Wang L, Xu Y, Ma B, Wang H, Jiang X. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf. 2021;220:112376.PubMedCrossRef
154.
Zurück zum Zitat Li YZ, Zhu HC, Du Y, Zhao HC, Wang L. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 2022;21:15330338221077804.PubMedPubMedCentralCrossRef Li YZ, Zhu HC, Du Y, Zhao HC, Wang L. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 2022;21:15330338221077804.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J, Shi Z, Zhang T, Chen Z, Wang L, et al. LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis. 2022;13:734.PubMedPubMedCentralCrossRef Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J, Shi Z, Zhang T, Chen Z, Wang L, et al. LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis. 2022;13:734.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Huang G, Xiang Z, Wu H, He Q, Dou R, Lin Z, Yang C, Huang S, Song J, Di Z, et al. The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination. Int J Biol Sci. 2022;18:1415–33.PubMedPubMedCentralCrossRef Huang G, Xiang Z, Wu H, He Q, Dou R, Lin Z, Yang C, Huang S, Song J, Di Z, et al. The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination. Int J Biol Sci. 2022;18:1415–33.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Luo W, Wang J, Xu W, Ma C, Wan F, Huang Y, Yao M, Zhang H, Qu Y, Ye D, Zhu Y. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis. 2021;12:1043.PubMedPubMedCentralCrossRef Luo W, Wang J, Xu W, Ma C, Wan F, Huang Y, Yao M, Zhang H, Qu Y, Ye D, Zhu Y. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis. 2021;12:1043.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Li X, Li Y, Lian P, Lv Q, Liu F. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum Exp Toxicol. 2023;42:9603271221142818.PubMedCrossRef Li X, Li Y, Lian P, Lv Q, Liu F. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum Exp Toxicol. 2023;42:9603271221142818.PubMedCrossRef
160.
Zurück zum Zitat Ma Q, Dai X, Lu W, Qu X, Liu N, Zhu C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem Biophys Res Commun. 2021;556:72–8.PubMedCrossRef Ma Q, Dai X, Lu W, Qu X, Liu N, Zhu C. Silencing long non-coding RNA MEG8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating miR-497-5p/NOTCH2 axis. Biochem Biophys Res Commun. 2021;556:72–8.PubMedCrossRef
161.
Zurück zum Zitat Chen Q, Wang W, Wu Z, Chen S, Chen X, Zhuang S, Song G, Lv Y, Lin Y. Over-expression of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma cells and the resistance to temozolomide via up-regulating the expression of multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death Discov. 2021;7:311.PubMedPubMedCentralCrossRef Chen Q, Wang W, Wu Z, Chen S, Chen X, Zhuang S, Song G, Lv Y, Lin Y. Over-expression of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma cells and the resistance to temozolomide via up-regulating the expression of multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death Discov. 2021;7:311.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Luo Y, Huang S, Wei J, Zhou H, Wang W, Yang J, Deng Q, Wang H, Fu Z. Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1-Wnt/β-catenin-TFE3 feedback loop signalling. Clin Transl Med. 2022;12:e752.PubMedPubMedCentralCrossRef Luo Y, Huang S, Wei J, Zhou H, Wang W, Yang J, Deng Q, Wang H, Fu Z. Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1-Wnt/β-catenin-TFE3 feedback loop signalling. Clin Transl Med. 2022;12:e752.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019;26:2329–43.PubMedPubMedCentralCrossRef Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019;26:2329–43.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Luo C, Nie C, Zeng Y, Qian K, Li X, Wang X. LINC01564 promotes the TMZ resistance of glioma cells by upregulating NFE2L2 expression to inhibit ferroptosis. Mol Neurobiol. 2022;59:3829–44.PubMedCrossRef Luo C, Nie C, Zeng Y, Qian K, Li X, Wang X. LINC01564 promotes the TMZ resistance of glioma cells by upregulating NFE2L2 expression to inhibit ferroptosis. Mol Neurobiol. 2022;59:3829–44.PubMedCrossRef
165.
Zurück zum Zitat Ou R, Lu S, Wang L, Wang Y, Lv M, Li T, Xu Y, Lu J, Ge RS. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front Oncol. 2022;12: 858598.PubMedPubMedCentralCrossRef Ou R, Lu S, Wang L, Wang Y, Lv M, Li T, Xu Y, Lu J, Ge RS. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front Oncol. 2022;12: 858598.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Xian ZY, Hu B, Wang T, Cai JL, Zeng JY, Zou Q, Zhu PX. CircABCB10 silencing inhibits the cell ferroptosis and apoptosis by regulating the miR-326/CCL5 axis in rectal cancer. Neoplasma. 2020;67:1063–73.PubMedCrossRef Xian ZY, Hu B, Wang T, Cai JL, Zeng JY, Zou Q, Zhu PX. CircABCB10 silencing inhibits the cell ferroptosis and apoptosis by regulating the miR-326/CCL5 axis in rectal cancer. Neoplasma. 2020;67:1063–73.PubMedCrossRef
167.
Zurück zum Zitat Li C, Tian Y, Liang Y, Li Q. Circ_0008035 contributes to cell proliferation and inhibits apoptosis and ferroptosis in gastric cancer via miR-599/EIF4A1 axis. Cancer Cell Int. 2020;20:84.PubMedPubMedCentralCrossRef Li C, Tian Y, Liang Y, Li Q. Circ_0008035 contributes to cell proliferation and inhibits apoptosis and ferroptosis in gastric cancer via miR-599/EIF4A1 axis. Cancer Cell Int. 2020;20:84.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Yao W, Wang J, Meng F, Zhu Z, Jia X, Xu L, Zhang Q, Wei L. Circular RNA CircPVT1 inhibits 5-fluorouracil chemosensitivity by regulating ferroptosis through MiR-30a-5p/FZD3 axis in esophageal cancer cells. Front Oncol. 2021;11: 780938.PubMedPubMedCentralCrossRef Yao W, Wang J, Meng F, Zhu Z, Jia X, Xu L, Zhang Q, Wei L. Circular RNA CircPVT1 inhibits 5-fluorouracil chemosensitivity by regulating ferroptosis through MiR-30a-5p/FZD3 axis in esophageal cancer cells. Front Oncol. 2021;11: 780938.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Wang Y, Chen H, Wei X. Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur J Clin Invest. 2021;51: e13541.PubMedCrossRef Wang Y, Chen H, Wei X. Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur J Clin Invest. 2021;51: e13541.PubMedCrossRef
170.
Zurück zum Zitat Zhang HY, Zhang BW, Zhang ZB, Deng QJ. Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. Eur Rev Med Pharmacol Sci. 2020;24:2585–600.PubMed Zhang HY, Zhang BW, Zhang ZB, Deng QJ. Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. Eur Rev Med Pharmacol Sci. 2020;24:2585–600.PubMed
171.
Zurück zum Zitat Chen S, Zhang Z, Zhang B, Huang Q, Liu Y, Qiu Y, Long X, Wu M, Zhang Z. CircCDK14 promotes tumor progression and resists ferroptosis in glioma by regulating PDGFRA. Int J Biol Sci. 2022;18:841–57.PubMedPubMedCentralCrossRef Chen S, Zhang Z, Zhang B, Huang Q, Liu Y, Qiu Y, Long X, Wu M, Zhang Z. CircCDK14 promotes tumor progression and resists ferroptosis in glioma by regulating PDGFRA. Int J Biol Sci. 2022;18:841–57.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Dong LH, Huang JJ, Zu P, Liu J, Gao X, Du JW, Li YF. CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia. Environ Toxicol. 2021;36:1288–302.PubMedCrossRef Dong LH, Huang JJ, Zu P, Liu J, Gao X, Du JW, Li YF. CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia. Environ Toxicol. 2021;36:1288–302.PubMedCrossRef
173.
Zurück zum Zitat Wu P, Li C, Ye DM, Yu K, Li Y, Tang H, Xu G, Yi S, Zhang Z. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging. 2021;13:4663–73.PubMedPubMedCentralCrossRef Wu P, Li C, Ye DM, Yu K, Li Y, Tang H, Xu G, Yi S, Zhang Z. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging. 2021;13:4663–73.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Yang J, Cao XH, Luan KF, Huang YD. Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A11 axis. Front Oncol. 2021;11: 672724.PubMedPubMedCentralCrossRef Yang J, Cao XH, Luan KF, Huang YD. Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A11 axis. Front Oncol. 2021;11: 672724.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Wang HH, Ma JN, Zhan XR. Circular RNA Circ_0067934 attenuates ferroptosis of thyroid cancer cells by miR-545-3p/SLC7A11 signaling. Front Endocrinol. 2021;12:670031.CrossRef Wang HH, Ma JN, Zhan XR. Circular RNA Circ_0067934 attenuates ferroptosis of thyroid cancer cells by miR-545-3p/SLC7A11 signaling. Front Endocrinol. 2021;12:670031.CrossRef
176.
Zurück zum Zitat Wang W, Xie Y, Malhotra A. Potential of curcumin and quercetin in modulation of premature mitochondrial senescence and related changes during lung carcinogenesis. J Environ Pathol Toxicol Oncol. 2021;40:53–60.PubMedCrossRef Wang W, Xie Y, Malhotra A. Potential of curcumin and quercetin in modulation of premature mitochondrial senescence and related changes during lung carcinogenesis. J Environ Pathol Toxicol Oncol. 2021;40:53–60.PubMedCrossRef
177.
Zurück zum Zitat Zhang H, Ge Z, Wang Z, Gao Y, Wang Y, Qu X. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging. 2021;13:8115–26.PubMedPubMedCentralCrossRef Zhang H, Ge Z, Wang Z, Gao Y, Wang Y, Qu X. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging. 2021;13:8115–26.PubMedPubMedCentralCrossRef
Metadaten
Titel
Ferroptosis in tumors and its relationship to other programmed cell death: role of non-coding RNAs
verfasst von
Qi Zhang
Xinfeng Fan
Xinyu Zhang
Shaoqing Ju
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2023
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04370-6

Weitere Artikel der Ausgabe 1/2023

Journal of Translational Medicine 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.