Skip to main content
Erschienen in: European Journal of Medical Research 1/2023

Open Access 01.12.2023 | Research

Exercise and epigenetic ages in older adults with myeloid malignancies

verfasst von: Kah Poh Loh, Chandrika Sanapala, Marielle Jensen-Battaglia, Anish Rana, Michael B. Sohn, Erin Watson, Nikesha Gilmore, Heidi D. Klepin, Jason H. Mendler, Jane Liesveld, Eric Huselton, Marissa LoCastro, Martha Susiarjo, Colleen Netherby-Winslow, AnnaLynn M. Williams, Karen Mustian, Paula Vertino, Michelle C. Janelsins

Erschienen in: European Journal of Medical Research | Ausgabe 1/2023

Abstract

Background

Older adults with myeloid malignancies are susceptible to treatment-related toxicities. Accelerated DNAm age, or the difference between DNA methylation (DNAm) age and chronological age, may be used as a biomarker of biological age to predict individuals at risk. In addition, cancer treatment can also lead to accelerated DNAm age. Exercise is a promising intervention to reduce or prevent functional, psychological, and cognitive impairments in older patients with myeloid malignancies, yet there is little evidence of the effects of exercise on DNAm age. We explored (1) the associations of accelerated DNAm age with physical, psychological, and cognitive functions at baseline; (2) changes in DNAm age from baseline to post-intervention; and (3) the associations of changes in accelerated DNAm age with changes in functions from baseline to post-intervention.

Methods

We enrolled older patients with myeloid malignancies to a single-arm pilot study testing a mobile health (mHealth) exercise intervention that combines an exercise program (EXCAP©®) with a mobile application over 2 cycles of chemotherapy (8–12 weeks). Patients completed measures of physical, psychological, and cognitive functions and provided blood samples for analyses of DNAm age at baseline and post-intervention. Paired t-tests or Wilcoxon signed rank tests assessed changes in DNAm ages, and Spearman’s correlation assessed the relationships between accelerated ages and functions.

Results

We included 20 patients (mean age: 72 years, range 62–80). Accelerated GrimAge, accelerated PhenoAge, and DunedinPACE were stable from baseline to post-intervention. At baseline, DunedinPACE was correlated with worse grip strength (r = -0.41, p = 0.08). From baseline to post-intervention, decreases in accelerated GrimAge (r = -0.50, p = 0.02), accelerated PhenoAge (r = − 0.39, p = 0.09), and DunedinPace (r = − 0.43, p = 0.06) were correlated with increases in distance walked on 6-min walk test. Decreases in accelerated GrimAge (r = − 0.49, p = 0.03), accelerated PhenoAge (r = − 0.40, p = 0.08), and DunedinPace (r = − 0.41, p = 0.07) were correlated with increases in in grip strength.

Conclusions

Among older adults with myeloid malignancies receiving chemotherapy, GrimAge and PhenoAge on average are stable after a mHealth exercise intervention. Decreases in accelerated GrimAge, accelerated PhenoAge, and DunedinPACE over 8–12 weeks of exercise were correlated with increased physical performance. Future trials assessing the effects of exercise on treatment-related toxicities should evaluate DNAm age.
Trial registration Clinicaltrials.gov identifier: NCT04981821.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40001-023-01145-z.
Karen Mustian, Paula Vertino and Michelle C. Janelsins have contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AML
Acute myeloid leukemia
MDS
Myelodysplastic syndromes
QoL
Quality of life
DNAm
DNA methylation
GO-EXCAP
Geriatric oncology-Exercise for Cancer Patients
ACSM
American College of Sports Medicine
SPPB
Short Physical Performance Battery
6MWT
6-minute walk test
ADL
Activities of daily living
IADL
Instrumental activities of daily living
BFI
Brief fatigue inventory
CES-D
Center for Epidemiological Studies Depression Scale
HRQoL
Health-related quality of life
FACT-Leu
Functional assessment of cancer therapy-leukemia
MOCA
Montreal Cognitive Assessment
HMA
Hypomethylating agent
SD
Standard deviation
IQR
Interquartile range

Background

Myeloid malignancies, such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), most commonly occur in adults aged ≥ 60 years [13]. Studies have demonstrated that up to 73% of older patients with myeloid malignancies receiving chemotherapy have physical, psychological, and cognitive impairments prior to and during chemotherapy [410]. These impairments can lead to reduced quality of life (QoL), treatment interruptions, and reduced survival [4, 7, 1114]. Behavioral interventions such as an exercise program to prevent or reduce these impairments can improve outcomes in this vulnerable population.
Aging is a heterogeneous process, and chronological age does not always accurately represent underlying physiologic age [15]. Individuals can age at different rates and experience faster (accelerated) or slower (decelerated) aging, compared to their chronological age [16]. Several methods are available to measure physiologic age, which includes cognitive age, physical fitness, biological age, perceived age, and the frailty index [16]. DNA methylation (DNAm) age is a promising biomarker of biological age [17]. DNAm is a biological process whereby methyl groups are added to CpG sites (cytosine nucleotide followed by a guanine) on DNA molecules [18, 19]. DNAm age is estimated based on weighted average of methylation levels at specific CpG sites [2024]. Although DNAm age is highly correlated with chronological age [15, 21, 25], it is a more physiologic reflection of biological age, accounting for interactions between the genome, environment and epigenome [15, 26]. The difference between DNAm age and chronological age is suggested to provide a measure of biologic aging. In the general population, both DNAm age (without adjusting for chronological age) and ‘accelerated DNAm age’ (after adjusting for chronological age) are associated with functional decline, cognitive decline, frailty, morbidity, and mortality [20, 27, 28].
Older adults with myeloid malignancies are susceptible to treatment-related toxicities. Accelerated DNAm age may be used as a biomarker to predict individuals at risk. In addition, cancer treatment can also lead to accelerated DNAm age through epigenetic alterations [21, 2931]. In a previous study, patients with breast cancer who received radiation and chemotherapy experienced greater accelerated DNAm age from pre- to post-treatment (6.2–25.6 years) compared to non-cancer controls (change of less than 1 year over a 2- to 7-year period) [30]. Several algorithms are available to calculate DNAm age (e.g., GrimAge [20], PhenoAge [23], Horvath Age [21, 22], Hannum Age [24], and DunedinPACE) [32]. First generation epigenetic clocks (e.g., Horvath Age, Hannum Age) correlate with chronological age and second generation epigenetic clocks (e.g., GrimAge, PhenoAge) better reflect biological age [33]. Specifically, GrimAge and PhenoAge are strongly associated with functional decline, frailty, morbidity, and mortality in the general population [20, 27]. Because these first and second generation epigenetic clocks measure aging-related change in DNAm accumulated across the life course, they may not be sensitive enough to detect the effects of intervention [34]. DunedinPACE is a rate measure rather than a clock therefore allowing quantification of the changes in the pace of DNAm age in the context of an intervention [34]. A prior study also showed that a lifestyle intervention slowed DunedinPACE [34]. Therefore, we focused on DNAm GrimAge, DNAm PhenoAge, and DunedinPACE [21].
Exercise is a promising intervention to reduce or prevent functional, psychological, and cognitive impairments in older patients with myeloid malignancies [3538]. In a cross-sectional study, exercise is inversely correlated with accelerated DNAm age [39]. Only one previous study has evaluated DNAm age in a prospective non-randomized, single-arm exercise trial of older adults with hematologic malignancies; it showed that DNAm age decreased in 3 of 10 patients from baseline to post-intervention [40]. We previously demonstrated that a mobile health (mHealth) exercise intervention is feasible, usable, and safe in older adults with myeloid malignancies receiving outpatient chemotherapy over two cycles in a single-arm pilot study [41]. Patients maintained their physical, psychological, and cognitive functions from baseline to post-intervention. In the current study, we study the following aims: (1) the associations of accelerated DNAm age (focusing on Grim Age, PhenoAge, and DunedinPACE) with physical, psychological, and cognitive functions at baseline; (2) changes in DNAm age from baseline to post-intervention; and (3) the associations of changes in accelerated DNAm age with changes in functions from baseline to post-intervention.

Methods

Study design, setting, and participants

We conducted a single-arm pilot study of older patients with myeloid malignancies recruited from an academic cancer center [University of Rochester Medical Center/Wilmot Cancer Institute, Rochester, New York, USA)]. Details of the study have been previously reported [41]. Briefly, we included patients aged ≥ 60 years with a myeloid malignancy receiving outpatient-based chemotherapy who were able to walk four meters, had a physician-verified Eastern Cooperative Oncology Group (ECOG) Performance Status between 0 and 2, had no medical contraindications to exercise per the treating oncologist, and were able to provide informed consent. We excluded patients with a platelet count of 10,000 per microliter or less in their most recent complete blood count if they did not receive platelet transfusion. The University of Rochester Research Subjects Review Board approved this study. All participants provided informed consent.

Study intervention

The Geriatric Oncology-Exercise for Cancer Patients (GO-EXCAP) intervention is an integrated mHealth exercise intervention that combines an exercise program [Exercise for Cancer Patients (EXCAP©®)] with a mobile application (app). EXCAP©® is an individually tailored, low to moderate intensity, home-based exercise program consisting of progressive walking and resistance band exercises, delivered by an American College of Sports Medicine (ACSM)-certified exercise physiologist [42]. The mobile app has a patient interface for data entry and an online dashboard assessed by study personnel and exercise physiologists to monitor data.

Study procedures

After obtaining informed consent, patients completed demographics and baseline measures. Clinical data were obtained by study staff from the electronic medical record. Participants also provided non-fasting blood samples. To obtain baseline step count, patients were provided with an activity tracker (Garmin Forerunner® 35) to wear for 4–7 days prior to start of the intervention. Study participants then met with an ACSM-certified exercise physiologist to receive exercise intervention training, as well as instructions from the study team for mobile app use. They were provided with an EXCAP©® exercise kit (three therapeutic bands and exercise instruction manual), Garmin activity tracker, and a tablet with the mobile app.
Participants performed the exercises at home and entered data on exercises (daily steps and resistance band) and symptoms into the mobile app over two cycles of chemotherapy (i.e., 8 to 12 weeks). The exercise physiologists and study team communicated with the participants through the remote portal and/or by phone and provided tailored feedback regarding intervention progress. At post-intervention, similar measures including blood samples were collected. Post-intervention step counts were collected for 4–7 days during the final week of the intervention.

Measures

Clinical outcomes included physical function (self-reported and objectively assessed), fatigue, depressive symptoms, cognition, and quality of life.

Physical function

Physical function was assessed with the Short Physical Performance Battery (SPPB), virtual SPPB (added during the COVID-19 pandemic), 6-minute walk test (6MWT), and handgrip strength. The SPPB is a valid [43] three-component objective assessment used to evaluate physical function in older adults. It ranges from 0 to 12; higher scores indicate better physical function [44]. The virtual SPPB utilizes the same scoring system as the SPPB and assesses patient self-reported ability to perform the SPPP components [45]. The 6MWT is an assessment of aerobic capacity and functional endurance. The test measures distance walked in six minutes [46]. The handgrip dynamometer was used to assess upper extremity muscle strength. Assessments were performed in an alternating bilateral sequence, with three measurements taken per arm.
We also collected Katz Activities of Daily Living (ADL) and Lawton Instrumental ADL (IADL). The Katz ADL measures independence in six self-care activities (e.g., bathing, ambulating) with scores ranging from 0 to 6, with lower scores indicating greater dependency. The Lawton IADL assesses independence in seven self-care activities that are more complex (e.g., preparing meals, managing finances). Each question rated is on a three-point Likert scale with total scores ranging from 0 to 14, with lower scores indicating greater dependence.

Fatigue

Fatigue was measured using the Brief Fatigue Inventory (BFI). The BFI consists of nine items with scores ranging from 0 to 11, with higher scores indicating greater fatigue [47].

Depressive symptoms

Depressive symptoms were measured using the Center for Epidemiological Studies Depression Scale (CES-D). It consists of 10 items with scores ranging from 0 to 60, with higher scores indicating more severe depressive symptoms [48].
Health-related quality of life (HRQoL) was measured using the functional assessment of cancer therapy-leukemia (FACT-Leu). FACT-Leu is a valid measure for patients with acute or chronic leukemia and consists of five subsections: physical well-being, social/family well-being, emotional well-being, and leukemia-specific symptoms. Each question is rated on a five-point Likert scale, and higher scores indicate better HRQoL [49].

Cognition

Cognition was measured using the Montreal Cognitive Assessment (MOCA) or MOCA-Blind (if in-person assessment was not possible due to COVID-19 pandemic), with scores ranging from 0–30 to 0–22, respectively [5052]. Higher scores indicate better cognition.

DNA methylation

For DNAm analysis, 1000 ng of DNA was isolated from whole blood and bisulfite converted (converts cytosine to uracil but leaves 5-methylcytosine residues unaffected). DNA methylation microarray assay was performed using the Illumina Infinium® Methylation EPIC Array platform, an oligonucleotide array that interrogates > 850,000 CpG dinucleotides per sample. Assays were performed by Roswell Park Genomics Shared Resource laboratory per manufacturer’s protocol. The raw data were processed by the R package “minfi” [53] and converted to methylation ß-values ranging from 0 (unmethylated) to 1 (fully methylated) to represent the methylation level of each CpG site. Potential residue batch effects were inferred from the data using a Surrogate Variable Analysis [54], and the ComBat algorithm was used for correction [54]. The final data were supplied to the online DNAm age calculators (https://​dnamage.​genetics.​ucla.​edu/​). GrimAge [20], PhenoAge [23], Horvath Age [21, 22], Hannum Age [24], and DunedinPACE. We focused on DNAm GrimAge, DNAm PhenoAge, and DunedinPACE [21].

Analyses

We used descriptive statistics to summarize our study sample, clinical measures, and accelerated DNAm age [Horvath Age, Hannum Age, GrimAge, PhenoAge, and DunedinPACE, as well as intrinsic (IEAA) and extrinsic (EEAA) epigenetic age acceleration; EEAA adjusts for blood cell proportions whereas IEAA is independent of blood cell proportions). Accelerated Horvath Age, Hannum Age, GrimAge, and PhenoAge were calculated from the difference between DNAm age and chronologic age, with positive values suggesting faster aging and negative values reflecting slower aging. DunedinPACE was calculated using “DunedinPACE” R package [32]. To assess whether changes in DNAm ages from baseline to post-intervention were significantly different from zero, we used paired t-tests or Wilcoxon signed rank tests when differences were not normally distributed. For relationships between accelerated ages and measures, we focused specifically on the second generation epigenetic clocks (GrimAge and PhenoAge) and DunedinPACE. To assess the relationships between accelerated DNAm ages and measures, we used Spearman’s rank correlation coefficient.
Given our small sample size and the exploratory nature of our study, we pre-specified α = 0.10 (2-tailed) for hypothesis testing to indicate a significance threshold of interest for future studies. For the same reasons, we did not do multiple testing. We used the R to calculate DunedinPACE and SAS v.9.4 (SAS Institute Inc., Cary, NC) to perform the remaining analyses.

Results

Demographics

We previously published the demographics and clinical characteristics of the 25 participants [41]. Twenty patients had complete DNAm data at baseline and post-intervention and were included in the analysis (Table 1). Mean age of the 20 participants was 71.2 (SD 4.8, range 62–80), 65% were males, 90% were white, 75% had Karnofsky Performance Status 70–100, and 55% had acute myeloid leukemia. Table 2 shows the disease status and blood counts at baseline and post-intervention.
Table 1
Demographics and clinical characteristics
Variables
 
N = 20
Age in years, mean (SD, range)
 
71.2 (4.8, 62–80)
Gender, n (%)
Male
13 (65.0)
Female
7 (35.0)
Race, n (%)
White
18 (90.0)
Black or African American
1 (5.0)
Prefer not to say
1 (5.0)
Ethnicity, n (%)
Not Hispanic or Latino
19 (95.0)
Prefer not to say
1 (5.0)
Marital status, n (%)
Married
13 (65.0)
Divorced or widowed
2 (10.0)
Single
5 (25.0)
Education, n (%)
High school or below
2 (10.0)
At least some college
6 (30.0)
College graduate
5 (25.0)
Postgraduate level
6 (30.0)
Prefer not to say
1 (5.0)
Karnofsky performance status, n (%)
90–100
3 (15.0)
70–80
12 (60.0)
50–60
5 (25.0)
Diagnosis, n (%)
AML
11 (55.0)
MDS
8 (40.0)
MDS/myeloproliferative neoplasm overlap syndromes
1 (5.0)
Treatment, n (%)
HMA combination treatment (e.g., venetoclax)
11 (55.0)
HMA only
7 (35.0)
Other*
2 (10.0)
Chemotherapy cycle at initiation of intervention, n (%)*
1
3 (15.0)
2
9 (45.0)
3
4 (20.0)
 ≥ 4
4 (20.0)
AML, acute myeloid leukemia; HMA, hypomethylating agent; MDS, myelodysplastic syndrome
*1 received gilteritinib and 1 received low dose cytarabine and venetoclax
Table 2
Disease status and blood counts at baseline and post-intervention
Disease status
 
Baseline
Post-intervention
Change
P
Disease status, n (%)
    
0.81^
Active MDS
 
7 (35.0)
7 (35.0)
 
Active AML
 
4 (20.0)
4 (20.0)
 
Remission
 
7 (35.0)
8 (40.0)
 
Unable to be determined
 
2 (10.0)
1 (5.0)
 
Blood counts
 White blood cell, thousand/uL
Mean (SD)
2.91 (2.70)
3.05 (2.23)
0.14 (2.41)
 
Median (IQR)
1.95 (3.80)
2.25 (4.30)
0.35 (1.95)
0.45*
 Absolute neutrophil count, thousand/uL
Mean (SD)
1.59 (1.98)
1.45 (1.63)
− 0.14 (1.50)
 
Median (IQR)
0.65 (2.55)
0.85 (2.65)
− 0.00 (1.20)
0.91*
 Absolute monocyte count
Mean (SD)
0.28 (0.35)
0.21 (0.28)
− 0.07 (0.28)
 
Median (IQR)
0.10 (0.50)
0.10 (0.35)
− 0.02 (1.30)
0.29*
 Absolute lymphocyte count
Mean (SD)
0.90 (0.44)
1.00 (0.44)
0.09 (0.39)
 
Median (IQR)
0.95 (0.75)
1.00 (0.65)
0.10 (0.40)
0.17*
 Hemoglobin, g/dL
Mean (SD)
9.31 (2.32)
9.05 (2.97)
− 0.26 (1.61)
 
Median (IQR)
8.45 (2.15)
8.95 (3.05)
− 0.30 (1.20)
0.30*
 Platelets, thousand/uL
Mean (SD)
148.98 (110.82)
116.97 (93.63)
− 32.02 (112.05)
 
Median (IQR)
143.50 (121.00)
92.50 (130.00)
− 13.00 (66.50)
0.22*^
AML, acute myeloid leukemia; HMA, hypomethylating agent; MDS, myelodysplastic syndrome
^P value from Bowker exact symmetry test
*P value from Wilcoxon signed rank test
At baseline, patients walked on average 3289.4 (SD 2056.0, n = 18) steps per day. At post-intervention, patients walked 3649.1 (SD 2651.8, n = 18) daily steps. Patients reported performing resistance band exercises for a mean duration of 26.4 (SD 10.21, n = 19) minutes/day, 3.0 (SD 2.3, n = 19) days/week, and they rated their perceived exertion at 3.4 (SD 1.2, n = 18) on a 1–10 Likert scale, indicating low intensity.

DNAm ages at baseline and post-intervention

DNAm ages are shown in Table 3 and Additional file 1: Fig. S1. At baseline, mean GrimAge was 73.2 years [SD 6.8; accelerated GrimAge = 1.5 years (SD 5.4)] and mean PhenoAge was 58.2 years [SD 9.7; accelerated PhenoAge = − 13.4 years (SD 9.0)]. Mean DunedinPACE was 1.2 years (SD 0.3). GrimAge and PhenoAge were stable from baseline to post-intervention [median change for GrimAge = − 1.4 years (interquartile range (IQR) 4.5), p = 0.17 and median change for Pheno Age = − 1.4 years (IQR 12.4), p = 0.35] (Table 2). Additional file 2: Fig. S2 shows the individual-level changes and by treatment types (HMA combination treatment, HMA only, and others). No consistent pattern of changes in DNA methylation ages are noted with treatment types. GrimAge decreased in 14 of 20 patients, and PhenoAge decreased in 13 of 20. Median DunedinPACE remained stable [median change = − 0.1 (IQR 0.2), p = 0.47]; DunedinPACE decreased in 14 of 20 patients.
Table 3
DNA methylation ages at baseline and post-intervention
Baseline ages (N = 20)
Statistics
Baseline
Post-intervention
Change
P*
Chronological age
Mean (SD)
71.7 (4.9)
71.9 (4.8)
  
Median (IQR)
72.4 (6.5)
72.6 (6.5)
  
Horvath age
Mean (SD)
70.8 (9.3)
70.3 (9.7)
− 0.5 (5.6)
 
Median (IQR)
69.6 (13.4)
68.7 (15.1)
− 0.8 (7.4)
0.73
Hannum age
Mean (SD)
58.4 (9.1)
58.7 (8.6)
0.3 (10.2)
 
Median (IQR)
59.1 (7.5)
57.6 (11.4)
− 0.7 (10.8)
0.57
IEAA
Mean (SD)
− 1.0 (7.9)
− 1.6 (7.8)
− 0.7 (4.1)
 
Median (IQR)
− 3.0 (10.3)
− 1.8 (11.4)
− 1.0 (5.3)
0.43
EEAA
Mean (SD)
− 1.2 (10.8)
− 1.0 (11.2)
0.2 (12.5)
 
Median (IQR)
− 0.6 (14.1)
− 0.1 (15.8)
− 0.7 (13.7)
0.81
GrimAge
Mean (SD)
73.2 (6.8)
72.5 (5.7)
− 0.7 (4.7)
 
Median (IQR)
73.5 (8.1)
72.3 (6.9)
− 1.4 (4.5)
0.17
PhenoAge
Mean (SD)
58.2 (9.7)
57.4 (8.5)
− 0.8 (12.1)
 
Median (IQR)
57.2 (14.9)
57.0 (6.9)
− 1.4 (12.4)
0.35
DunedinPACE
Mean (SD)
1.2 (0.3)
1.2 (0.2)
0.02 (0.34)
 
Median (IQR)
1.1 (0.4)
1.2 (0.3)
− 0.1 (0.2)
0.47
EEAA, extrinsic epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration
*P value from Wilcoxon signed rank test

Associations of accelerated DNAm ages with physical, psychological, and cognitive functions

Table 4 shows the outcomes at baseline and post-intervention among those who completed these measures at both time points (n = 20). The SPPB, BFI, CES-D, and FACT-Leu data have been previously reported [41]. Overall, physical, psychological, and cognitive functions were stable from baseline to post-intervention. When clinically meaningful cut-off scores were utilized, lower percentages of participants had physical [except for ADL and IADL (IADL), psychological, and cognitive impairments at post-intervention than at baseline.
Table 4
Outcomes at baseline and post-intervention for patients with complete DNA methylation data
N = 20
Statistic
Baseline
Post-intervention
Change from baseline to post-intervention
Pe
Short Physical Performance Battery (SPPB)a
Mean (SD)
9.00 (1.78)
9.25 (2.53)
0.25 (1.62)
0.66
Median (IQR)
9.00 (2.50)
10.00 (3.00)
1.00 (2.00)
SPPB < 10 is considered impaired
N (%)
11 (55.0%)
9 (45.0%)
 
0.69
Virtual SPPBa, c
Mean (SD)
8.07 (2.94)
8.38 (2.93)
0.08 (2.35)
0.73
Median (IQR)
9.00 (5.00)
9.00 (6.00)
0.50 (1.50)
Virtual SPPB < 10 is considered impaired
N (%)
9 (75.0%)
8 (66.7%)
 
1
6-minute walk test, in metersa
Mean (SD)
360.20 (135.93)
334.49 (187.98)
− 25.71 (151.50)
0.46
Median (IQR)
377.04 (172.21)
392.89 (268.99)
7.16 (114.76)
Grip strength, in kilogramsa
Mean (SD)
25.37 (9.74)
25.86 (9.04)
0.49 (3.18)
0.50
Median (IQR)
25.50 (13.63)
25.46 (13.88)
0.58 (4.52)
 < 25.8 is considered impaired in men and < 17.4 is considered impaired in women
N (%)
10 (50.0%)
8 (40.0%)
 
0.63
Activities of Daily Living (ADL)a
Mean (SD)
5.85 (0.49)
5.85 (0.49)
0.00 (0.32)
1
Median (IQR)
6.00 (0.00)
6.00 (0.00)
0.00 (0.00)
 < 6 is considered impaired
N (%)
2 (10.0%)
2 (10.0%)
 
1
Instrumental IADLa
Mean (SD)
12.50 (1.88)
12.30 (2.00)
− 0.20 (1.15)
0.56
Median (IQR)
13.00 (2.00)
13.00 (4.00)
0.00 (0.00)
 < 14 is considered impaired
N (%)
2 (10.0%)
2 (10.0%)
 
1
Brief Fatigue Inventoryb
Mean (SD)
28.45 (20.25)
23.85 (19.60)
− 4.60 (16.86)
0.24
Median (IQR)
25.00 (27.00)
15.50 (39.00)
− 2.00 (23.50)
Center for Epidemiologic Studies Depressionb
Mean (SD)
12.10 (7.71)
11.50 (8.14)
− 0.60 (6.34)
0.68
Median (IQR)
11.50 (13.50)
10.50 (9.50)
0.00 (6.50)
 > 15 is considered impaired
N (%)
6 (30.0%)
4 (20.0%)
 
0.63
Functional Assessment of Cancer Therapy-Leukemiaa
Mean (SD)
125.20 (21.67)
127.20 (24.02)
2.00 (13.28)
0.51
Median (IQR)
126.92 (25.83)
133.50 (28.17)
1.83 (20.25)
Montreal Cognitive Assessment (MOCA)a,d
Mean (SD)
25.29 (3.48)
25.76 (3.05)
0.47 (3.00)
0.53
Median (IQR)
26.00 (5.00)
27.00 (3.00)
0.00 (3.00)
 < 26 is considered impaired
N (%)
7 (41.2%)
6 (35.3%)
 
1.00
aHigher is better
bLower is better
c12 patients
d17 patients
eP value from McNemar’s test for categorical (impairment) and paired t test or Wilcoxon signed rank test for continuous variables
At baseline, DunedinPACE was inversely correlated with grip strength (r = − 0.41, p = 0.08) (Fig. 1).

Associations of change in DNAm age with changes in physical, psychological, and cognitive functions from baseline to post-intervention

From baseline to post-intervention, the change in accelerated DNAm ages, as determined using GrimAge, PhenoAge, and DunedinPace were correlated with the change in distance walked on 6-minute walk test (6MWT) and grip strength. Decreases in accelerated GrimAge (r = − 0.47, p = 0.04), accelerated PhenoAge (r = − 0.38, p = 0.09), and DunedinPace (r = − 0.43, p = 0.06) were correlated with increases in distance walked on 6MWT (Fig. 2). Similarly, decreases in accelerated GrimAge (r = − 0.49, p = 0.03), PhenoAge (r = − 0.42, p = 0.07), and DunedinPace (r = − 0.41, p = 0.07) were correlated with increases in in grip strength.

DNAm ages and exercise levels

To explore changes in exercise levels and changes in DNAm age, we stratified the group by the degree to which their steps and resistance minutes increased from baseline to post-intervention (> median vs ≤ median; Table 5). Compared to those who had an increase in steps ≤ median from baseline to post-intervention, patients who had an increase in steps > median showed a greater decrease in DNAm age. For example, among those who had increased steps > median, change in median GrimAge from baseline to post-intervention was -2.66 (IQR 4.06). Among those who had an increased in steps ≤ median, change in median GrimAge from baseline to post-intervention was + 0.79 (IQR 2.85). However, no consistent association between changes in DNA age and minutes of resistance exercise was observed (Table 4). Additional file 3: Fig. S3 shows the changes in DNAm age by steps at an individual level.
Table 5
Subgroup analysis evaluating change in accelerated DNA methylation age from baseline to post-intervention compared by change in daily steps or minutes of resistance exercise
ΔDNAm accelerated age
Statistic
Increase in steps from baseline to post-intervention (≥ median) n = 9
Increase in steps from baseline to post-intervention (< median) n = 9
P*
Increase in minutes from baseline to post-intervention (≥ median) n = 9
Increase in minutes from baseline to post-intervention (< median) n = 10
P*
ΔPhenoAge
Mean (SD)
− 2.83 (8.89)
− 0.82 (10.56)
 
2.86 (15.02)
− 3.15 (9.27)
 
Median (IQR)
− 5.58 (11.63)
− 0.05 (7.90)
0.79
− 1.55 (12.56)
− 3.08 (17.52)
0.71
ΔGrimAge
Mean (SD)
− 1.98 (3.22)
1.83 (5.68)
 
− 0.10 (5.42)
− 0.04 (4.37)
 
Median (IQR)
− 2.66 (4.06)
0.79 (2.85)
0.08
− 0.32 (2.65)
− 0.30 (4.93)
0.90
ΔDunedinPACE
Mean (SD)
− 0.13 (0.28)
0.08 (0.29)
 
0.10 (0.40)
− 0.05 (0.31)
 
Median (IQR)
− 0.18 (0.27)
− 0.03 (0.13)
0.13
− 0.05 (0.15)
− 0.07 (0.22)
0.49
*P value from Wilcoxon two-sample test comparing median change in accelerated DNA age for those who increased by ≥ median steps or resistance minutes to those who increased by < median steps or resistance minutes

Discussion

In this single-arm pilot study, we demonstrated that it was feasible to evaluate DNAm ages using blood samples collected as part of a mHealth exercise trial among older adults with myeloid malignancies. We evaluated the relationship between accelerated DNAm age and physical, psychological, and cognitive functions in older adults with myeloid malignancies. Examination of correlations between accelerated DNAm ages and clinical measures at baseline revealed that DunedinPACE was inversely correlated with grip strength. We showed that after a mhealth exercise intervention (over two cycles of treatment or approximately 8–12 weeks), DNAm age measured via GrimAge and PhenoAge were stable from baseline to post-intervention. Nevertheless, from baseline to post-intervention, decreases in accelerated GrimAge, accelerated PhenoAge, DunedinPACE, were correlated with increase in both distance walked on 6MWT and in grip strength.
Older adults with myeloid malignancies are vulnerable to treatment-related toxicities which can lead to declines in physical, psychological, and cognitive functions, thereby increasing morbidity and mortality. Identifying those at risk using a biomarker such as accelerated DNAm age allows healthcare professionals to warn of declines in functions. Accelerated DNAm age is associated with functional decline in the general population.20–21 For example, in a previous cross-sectional study, older adults (aged > 60 years) with accelerated aging (PhenoAge) were found to have decreased physical performance (measured using the 6MWT) [55]. In a longitudinal study of middle-aged urban adults, accelerated DNAm age was associated with diminished performance on visual memory/visuoconstructive ability tests and attention/processing speed [28]. In a cross-sectional analysis of older adults (> 70 years old), accelerated DNAm age (Horvath Age) was associated with poorer lung function, cognitive function, and grip strength [56]. In the cancer population, a longitudinal study of patients with head and neck cancer undergoing radiation therapy demonstrated that those who experienced severe fatigue had higher accelerated DNAm age (PhenoAge) by 3.1 years compared to those who did not [57]. Our study supports these studies by demonstrating that DunedinPACE is inversely correlated with grip strength among older adults with myeloid malignancies.
Behavioral interventions, such as the mHealth exercise intervention evaluated here, may ameliorate treatment-related toxicities and slow the rate of accelerated aging. After an 8-week exercise intervention in older patients with myeloid malignancies, we found that DNAm age was generally unchanged. While we do not have a control arm for comparison, a previous study demonstrated among patients with breast cancer, radiation and chemotherapy lead to accelerated DNAm age from pre- to post-treatment by 6.2–25.6 years [30]. In a mouse study, DNAm age measured from skeletal muscle was younger in mice who were subjected to endurance exercise training compared to their sedentary counterparts [58]. Prior population-based studies have also evaluated the relationship between DNAm age and physical activity [39, 60]. For example, Sillanpaa and colleagues explored the association of various levels of physical activity with DNAm age in a cross-sectional study of adults aged 23–69 years. They demonstrated that compared to adults with low activity levels, measured using accelerometers, those with medium activity levels had lower accelerated GrimAge (− 3.20; p = 0.04).[60] In a randomized controlled trial, 43 healthy adult men aged 50–72 were assigned to an 8-week behavioral intervention (diet, sleep, exercise, and relaxation guidance, and supplemental probiotics and phytonutrients) versus controls. Participants in the intervention arm had decreased DNAm age (Horvath Age) compared to controls (3.23 years, p = 0.018).[61] Finally, in a single-arm pilot study of older adults with hematologic malignancies, Rosko and colleagues demonstrated that PhenoAge decreased in 3 of 10 patients after a 6-month exercise intervention [40].
We demonstrated decreases in accelerated aging were correlated with increases in both distance walked on 6MWT and grip strength. However, the mechanisms by which epigenetic clocks are changed in response to behavioral interventions such as exercise are unclear. DNAm ages are generated from a set of CpG sites, and the methylation levels are a reflection of biological age. These CpG sites reside across the genome, but depending on the platform used to measure methylation, are biased towards promoter regions and may therefore influence expression of certain genes. Previous studies have demonstrated that exercise can lead to hypomethylation and hypermethylation of specific CpG sites, as well as global hypomethylation and hypermethylation [6267]. Of note, Brown and colleagues showed that exercise-induced DNA methylation modification was stronger among older versus younger individuals, which suggests that exercise may be more effective in slowing accelerated DNAm age in older individuals [68].
Our study has strengths. First, we included older adults with myeloid malignancies, a population not typically studied in clinical trials. Second, we were able to measure DNAm ages prospectively in a clinical trial. Several limitations also should be noted. For example, our sample includes patients with various myeloid malignancies and at different stages and types of treatment (e.g., hypomethylating agents alone or in combination). Therefore, it is difficult to differentiate the effects of the cancer, treatment, and exercise on DNAm ages. Given the small sample size, we were unable to perform subgroup analyses and it may have also limited our ability to detect other associations. Given the evolving treatment landscape for myeloid malignancies and the increasing difficulty in recruiting a homogeneous population, future larger multicenter trials are needed to recruit this population in order to understand the influence of aging, cancer, treatment, and exercise on DNAm ages.
In conclusion, DunedinPACE is inversely correlated with grip strength at baseline. We demonstrated that GrimAge and PhenoAge on average are stable after a mHealth exercise intervention in older adults with myeloid malignancies receiving chemotherapy. Decreases in accelerated PhenoAge and GrimAge as well as decreases in DunedinPACE over 8–12 weeks of exercise are correlated with increased physical performance. Our findings will inform an ongoing pilot randomized controlled trial (clinicaltrials.gov identifier: NCT04981821) testing the effect of the mHealth exercise intervention in older adults with myeloid malignancies, in which we will evaluate the change in DNAm age, comparing the intervention and control arms. Our study supports the use of GrimAge, PhenoAge, and DunedinPACE when measuring accelerated aging as part of an exercise clinical trial.

Acknowledgements

We wish to acknowledge Susan Rosenthal, MD, for her editorial assistance.

Declarations

The University of Rochester Research Subjects Review Board approved this study. All participants provided informed consent.
No individual-level data are included in the manuscript.

Competing interests

Dr. Loh has served as a consultant to Pfizer and Seattle Genetics and has received honoraria from Pfizer. All other authors have no relevant competing interests to report.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536–42.PubMedCrossRef Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536–42.PubMedCrossRef
3.
Zurück zum Zitat Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.PubMedCrossRef Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.PubMedCrossRef
4.
Zurück zum Zitat Klepin HD, Geiger AM, Tooze JA, Kritchevsky SB, Williamson JD, Pardee TS, et al. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood. 2013;121(21):4287–94.PubMedPubMedCentralCrossRef Klepin HD, Geiger AM, Tooze JA, Kritchevsky SB, Williamson JD, Pardee TS, et al. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood. 2013;121(21):4287–94.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Klepin HD, Tooze JA, Pardee TS, Ellis LR, Berenzon D, Mihalko SL, et al. Effect of intensive chemotherapy on physical, cognitive, and emotional health of older adults with acute myeloid leukemia. J Am Geriatr Soc. 2016;64(10):1988–95.PubMedPubMedCentralCrossRef Klepin HD, Tooze JA, Pardee TS, Ellis LR, Berenzon D, Mihalko SL, et al. Effect of intensive chemotherapy on physical, cognitive, and emotional health of older adults with acute myeloid leukemia. J Am Geriatr Soc. 2016;64(10):1988–95.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Alibhai SM, Leach M, Kermalli H, Gupta V, Kowgier ME, Tomlinson GA, et al. The impact of acute myeloid leukemia and its treatment on quality of life and functional status in older adults. Crit Rev Oncol Hematol. 2007;64(1):19–30.PubMedCrossRef Alibhai SM, Leach M, Kermalli H, Gupta V, Kowgier ME, Tomlinson GA, et al. The impact of acute myeloid leukemia and its treatment on quality of life and functional status in older adults. Crit Rev Oncol Hematol. 2007;64(1):19–30.PubMedCrossRef
8.
Zurück zum Zitat Loh KP, Tooze JA, Nicklas BJ, Kritchevsky SB, Williamson JD, Ellis LR, et al. Inflammatory biomarkers, geriatric assessment, and treatment outcomes in acute myeloid leukemia. J Geriatr Oncol. 2020;11(3):410–6.PubMedCrossRef Loh KP, Tooze JA, Nicklas BJ, Kritchevsky SB, Williamson JD, Ellis LR, et al. Inflammatory biomarkers, geriatric assessment, and treatment outcomes in acute myeloid leukemia. J Geriatr Oncol. 2020;11(3):410–6.PubMedCrossRef
9.
Zurück zum Zitat Loh KP, Ramsdale E, Culakova E, Mendler JH, Liesveld JL, O’Dwyer KM, et al. Novel mHealth app to deliver geriatric assessment-driven interventions for older adults with cancer: pilot feasibility and usability study. JMIR Cancer. 2018;4(2):e10296.PubMedPubMedCentralCrossRef Loh KP, Ramsdale E, Culakova E, Mendler JH, Liesveld JL, O’Dwyer KM, et al. Novel mHealth app to deliver geriatric assessment-driven interventions for older adults with cancer: pilot feasibility and usability study. JMIR Cancer. 2018;4(2):e10296.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Loh KP, Duberstein P, Zittel J, Lei L, Culakova E, Xu H, et al. Relationships of self-perceived age with geriatric assessment domains in older adults with cancer. J Geriatr Oncol. 2020;11(6):1006–10.PubMedCrossRef Loh KP, Duberstein P, Zittel J, Lei L, Culakova E, Xu H, et al. Relationships of self-perceived age with geriatric assessment domains in older adults with cancer. J Geriatr Oncol. 2020;11(6):1006–10.PubMedCrossRef
11.
Zurück zum Zitat Tinsley SM, Sutton SK, Thapa R, Lancet J, McMillan SC. Treatment choices: a quality of life comparison in acute myeloid leukemia and high-risk myelodysplastic syndrome. Clin Lymphoma Myeloma Leuk. 2017;17s:S75–9.PubMedCrossRef Tinsley SM, Sutton SK, Thapa R, Lancet J, McMillan SC. Treatment choices: a quality of life comparison in acute myeloid leukemia and high-risk myelodysplastic syndrome. Clin Lymphoma Myeloma Leuk. 2017;17s:S75–9.PubMedCrossRef
12.
Zurück zum Zitat Wyatt G, Sikorskii A, Tesnjak I, Victorson D, Srkalovic G. Chemotherapy interruptions in relation to symptom severity in advanced breast cancer. Support Care Cancer. 2015;23(11):3183–91.PubMedPubMedCentralCrossRef Wyatt G, Sikorskii A, Tesnjak I, Victorson D, Srkalovic G. Chemotherapy interruptions in relation to symptom severity in advanced breast cancer. Support Care Cancer. 2015;23(11):3183–91.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Brown JC, Harhay MO, Harhay MN. Physical function as a prognostic biomarker among cancer survivors. Br J Cancer. 2015;112(1):194–8.PubMedCrossRef Brown JC, Harhay MO, Harhay MN. Physical function as a prognostic biomarker among cancer survivors. Br J Cancer. 2015;112(1):194–8.PubMedCrossRef
14.
Zurück zum Zitat Hurria A, Togawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29(25):3457–65.PubMedPubMedCentralCrossRef Hurria A, Togawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29(25):3457–65.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018;71(6):882–95.PubMedPubMedCentralCrossRef Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018;71(6):882–95.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27.PubMedCrossRef Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27.PubMedCrossRef
22.
Zurück zum Zitat Gale CR, Marioni RE, Cukic I, Chastin SF, Dall PM, Dontje ML, et al. The epigenetic clock and objectively measured sedentary and walking behavior in older adults: the Lothian Birth Cohort 1936. Clin Epigenetics. 2018;10:4.PubMedPubMedCentralCrossRef Gale CR, Marioni RE, Cukic I, Chastin SF, Dall PM, Dontje ML, et al. The epigenetic clock and objectively measured sedentary and walking behavior in older adults: the Lothian Birth Cohort 1936. Clin Epigenetics. 2018;10:4.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.PubMedCrossRef Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.PubMedCrossRef
24.
Zurück zum Zitat Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.PubMedCrossRef Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.PubMedCrossRef
25.
Zurück zum Zitat Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8(9):1844–65.PubMedPubMedCentralCrossRef Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8(9):1844–65.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, et al. DNA Methylation age and physical and cognitive aging. J Gerontol A Biol Sci Med Sci. 2020;75(3):504–11.PubMed Maddock J, Castillo-Fernandez J, Wong A, Cooper R, Richards M, Ong KK, et al. DNA Methylation age and physical and cognitive aging. J Gerontol A Biol Sci Med Sci. 2020;75(3):504–11.PubMed
28.
Zurück zum Zitat Beydoun MA, Shaked D, Tajuddin SM, Weiss J, Evans MK, Zonderman AB. Accelerated epigenetic age and cognitive decline among urban-dwelling adults. Neurology. 2020;94(6):e613–25.PubMedPubMedCentralCrossRef Beydoun MA, Shaked D, Tajuddin SM, Weiss J, Evans MK, Zonderman AB. Accelerated epigenetic age and cognitive decline among urban-dwelling adults. Neurology. 2020;94(6):e613–25.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Castle JR, Lin N, Liu J, Storniolo AMV, Shendre A, Hou L, et al. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data. Clin Epigenetics. 2020;12(1):45.PubMedPubMedCentralCrossRef Castle JR, Lin N, Liu J, Storniolo AMV, Shendre A, Hou L, et al. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data. Clin Epigenetics. 2020;12(1):45.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Sehl ME, Carroll JE, Horvath S, Bower JE. The acute effects of adjuvant radiation and chemotherapy on peripheral blood epigenetic age in early stage breast cancer patients. NPJ Breast Cancer. 2020;6:23.PubMedPubMedCentralCrossRef Sehl ME, Carroll JE, Horvath S, Bower JE. The acute effects of adjuvant radiation and chemotherapy on peripheral blood epigenetic age in early stage breast cancer patients. NPJ Breast Cancer. 2020;6:23.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Scuric Z, Carroll JE, Bower JE, Ramos-Perlberg S, Petersen L, Esquivel S, et al. Biomarkers of aging associated with past treatments in breast cancer survivors. NPJ breast cancer. 2017;3:50.PubMedPubMedCentralCrossRef Scuric Z, Carroll JE, Bower JE, Ramos-Perlberg S, Petersen L, Esquivel S, et al. Biomarkers of aging associated with past treatments in breast cancer survivors. NPJ breast cancer. 2017;3:50.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Levine ME. Assessment of epigenetic clocks as biomarkers of aging in basic and population research. J Gerontol A Biol Sci Med Sci. 2020;75(3):463–5.PubMedPubMedCentralCrossRef Levine ME. Assessment of epigenetic clocks as biomarkers of aging in basic and population research. J Gerontol A Biol Sci Med Sci. 2020;75(3):463–5.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Waziry R, Corcoran DL, Huffman KM, Kobor MS, Kothari M, Kraus VB, et al. Effect of Long-Term Caloric Restriction on DNA Methylation Measures of Biological Aging in Healthy Adults: CALERIE™ Trial Analysis. medRxiv. 2021;2021.09.21.21263912. Waziry R, Corcoran DL, Huffman KM, Kobor MS, Kothari M, Kraus VB, et al. Effect of Long-Term Caloric Restriction on DNA Methylation Measures of Biological Aging in Healthy Adults: CALERIE™ Trial Analysis. medRxiv. 2021;2021.09.21.21263912.
35.
Zurück zum Zitat Schuler MK, Hentschel L, Göbel J, Balaian E, Hornemann B, Hoffmann J, et al. Effects of a home-based exercise program on physical capacity and fatigue in patients with low to intermediate risk myelodysplastic syndrome-a pilot study. Leuk Res. 2016;47:128–35.PubMedCrossRef Schuler MK, Hentschel L, Göbel J, Balaian E, Hornemann B, Hoffmann J, et al. Effects of a home-based exercise program on physical capacity and fatigue in patients with low to intermediate risk myelodysplastic syndrome-a pilot study. Leuk Res. 2016;47:128–35.PubMedCrossRef
36.
Zurück zum Zitat Klepin HD, Danhauer SC, Tooze JA, Stott K, Daley K, Vishnevsky T, et al. Exercise for older adult inpatients with acute myelogenous leukemia: a pilot study. J Geriatr Oncol. 2011;2(1):11–7.PubMedPubMedCentralCrossRef Klepin HD, Danhauer SC, Tooze JA, Stott K, Daley K, Vishnevsky T, et al. Exercise for older adult inpatients with acute myelogenous leukemia: a pilot study. J Geriatr Oncol. 2011;2(1):11–7.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Schaffer K, Panneerselvam N, Loh KP, Herrmann R, Kleckner IR, Dunne RF, et al. Systematic review of randomized controlled trials of exercise interventions using digital activity trackers in patients with cancer. J Nat Compr Canc Netw JNCCN. 2019;17(1):57–63.CrossRef Schaffer K, Panneerselvam N, Loh KP, Herrmann R, Kleckner IR, Dunne RF, et al. Systematic review of randomized controlled trials of exercise interventions using digital activity trackers in patients with cancer. J Nat Compr Canc Netw JNCCN. 2019;17(1):57–63.CrossRef
38.
Zurück zum Zitat Valenzuela T, Okubo Y, Woodbury A, Lord SR, Delbaere K. Adherence to technology-based exercise programs in older adults: a systematic review. J Geriatr Phys Ther. 2018;41(1):49–61.PubMedCrossRef Valenzuela T, Okubo Y, Woodbury A, Lord SR, Delbaere K. Adherence to technology-based exercise programs in older adults: a systematic review. J Geriatr Phys Ther. 2018;41(1):49–61.PubMedCrossRef
39.
Zurück zum Zitat Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419–46.PubMedCrossRef Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419–46.PubMedCrossRef
42.
Zurück zum Zitat Loh KP, Kleckner IR, Lin PJ, Mohile SG, Canin BE, Flannery MA, et al. Effects of a home-based exercise program on anxiety and mood disturbances in older adults with cancer receiving chemotherapy. J Am Geriatr Soc. 2019;67(5):1005–11.PubMedPubMedCentralCrossRef Loh KP, Kleckner IR, Lin PJ, Mohile SG, Canin BE, Flannery MA, et al. Effects of a home-based exercise program on anxiety and mood disturbances in older adults with cancer receiving chemotherapy. J Am Geriatr Soc. 2019;67(5):1005–11.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Gómez JF, Curcio C-L, Alvarado B, Zunzunegui MV, Guralnik J. Validity and reliability of the short physical performance battery (SPPB): a pilot study on mobility in the Colombian Andes. Colomb Med (Cali). 2013;44(3):165–71.PubMedCrossRef Gómez JF, Curcio C-L, Alvarado B, Zunzunegui MV, Guralnik J. Validity and reliability of the short physical performance battery (SPPB): a pilot study on mobility in the Colombian Andes. Colomb Med (Cali). 2013;44(3):165–71.PubMedCrossRef
44.
Zurück zum Zitat Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556–62.PubMedPubMedCentralCrossRef Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556–62.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Marsh AP, Wrights AP, Haakonssen EH, Dobrosielski MA, Chmelo EA, Barnard RT, et al. The virtual short physical performance battery. J Gerontol A Biol Sci Med Sci. 2015;70(10):1233–41.PubMedPubMedCentralCrossRef Marsh AP, Wrights AP, Haakonssen EH, Dobrosielski MA, Chmelo EA, Barnard RT, et al. The virtual short physical performance battery. J Gerontol A Biol Sci Med Sci. 2015;70(10):1233–41.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Enright PL, McBurnie MA, Bittner V, Tracy RP, McNamara R, Arnold A, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387–98.PubMedCrossRef Enright PL, McBurnie MA, Bittner V, Tracy RP, McNamara R, Arnold A, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387–98.PubMedCrossRef
47.
Zurück zum Zitat Shuman-Paretsky MJ, Belser-Ehrlich J, Holtzer R. Psychometric properties of the brief fatigue inventory in community-dwelling older adults. Arch Phys Med Rehabil. 2014;95(8):1533–9.PubMedPubMedCentralCrossRef Shuman-Paretsky MJ, Belser-Ehrlich J, Holtzer R. Psychometric properties of the brief fatigue inventory in community-dwelling older adults. Arch Phys Med Rehabil. 2014;95(8):1533–9.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Prescott CA, McArdle JJ, Hishinuma ES, Johnson RC, Miyamoto RH, Andrade NN, et al. Prediction of major depression and dysthymia from CES-D scores among ethnic minority adolescents. J Am Acad Child Adolesc Psychiatry. 1998;37(5):495–503.PubMedCrossRef Prescott CA, McArdle JJ, Hishinuma ES, Johnson RC, Miyamoto RH, Andrade NN, et al. Prediction of major depression and dysthymia from CES-D scores among ethnic minority adolescents. J Am Acad Child Adolesc Psychiatry. 1998;37(5):495–503.PubMedCrossRef
49.
Zurück zum Zitat Cella D, Jensen SE, Webster K, Hongyan D, Lai JS, Rosen S, et al. Measuring health-related quality of life in leukemia: the functional assessment of cancer therapy-leukemia (FACT-Leu) questionnaire. Value Health. 2012;15(8):1051–8.PubMedCrossRef Cella D, Jensen SE, Webster K, Hongyan D, Lai JS, Rosen S, et al. Measuring health-related quality of life in leukemia: the functional assessment of cancer therapy-leukemia (FACT-Leu) questionnaire. Value Health. 2012;15(8):1051–8.PubMedCrossRef
50.
Zurück zum Zitat Hoops S, Nazem S, Siderowf AD, Duda JE, Xie SX, Stern MB, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009;73(21):1738–45.PubMedPubMedCentralCrossRef Hoops S, Nazem S, Siderowf AD, Duda JE, Xie SX, Stern MB, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009;73(21):1738–45.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Milani SA, Marsiske M, Cottler LB, Chen X, Striley CW. Optimal cutoffs for the Montreal cognitive assessment vary by race and ethnicity. Alzheimers Dement (Amst). 2018;10:773–81.PubMedCrossRef Milani SA, Marsiske M, Cottler LB, Chen X, Striley CW. Optimal cutoffs for the Montreal cognitive assessment vary by race and ethnicity. Alzheimers Dement (Amst). 2018;10:773–81.PubMedCrossRef
52.
Zurück zum Zitat Dawes P, Pye A, Reeves D, Yeung WK, Sheikh S, Thodi C, et al. Protocol for the development of versions of the Montreal cognitive assessment (MoCA) for people with hearing or vision impairment. BMJ Open. 2019;9(3):e026246.PubMedPubMedCentralCrossRef Dawes P, Pye A, Reeves D, Yeung WK, Sheikh S, Thodi C, et al. Protocol for the development of versions of the Montreal cognitive assessment (MoCA) for people with hearing or vision impairment. BMJ Open. 2019;9(3):e026246.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.PubMedPubMedCentralCrossRef Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.PubMedPubMedCentralCrossRef Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol. 2015;44(4):1388–96.PubMedPubMedCentralCrossRef Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol. 2015;44(4):1388–96.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Xiao C, Beitler JJ, Peng G, Levine ME, Conneely KN, Zhao H, et al. Epigenetic age acceleration, fatigue, and inflammation in patients undergoing radiation therapy for head and neck cancer: a longitudinal study. Cancer. 2021;127(18):3361–71.PubMedCrossRef Xiao C, Beitler JJ, Peng G, Levine ME, Conneely KN, Zhao H, et al. Epigenetic age acceleration, fatigue, and inflammation in patients undergoing radiation therapy for head and neck cancer: a longitudinal study. Cancer. 2021;127(18):3361–71.PubMedCrossRef
58.
Zurück zum Zitat Murach KA, Dimet-Wiley AL, Wen Y, Brightwell CR, Latham CM, Dungan CM, et al. Late-life exercise mitigates skeletal muscle epigenetic aging. Aging Cell. 2022;21(1):e13527.PubMedCrossRef Murach KA, Dimet-Wiley AL, Wen Y, Brightwell CR, Latham CM, Dungan CM, et al. Late-life exercise mitigates skeletal muscle epigenetic aging. Aging Cell. 2022;21(1):e13527.PubMedCrossRef
59.
Zurück zum Zitat Sillanpää E, Ollikainen M, Kaprio J, Wang X, Leskinen T, Kujala UM, et al. Leisure-time physical activity and DNA methylation age-a twin study. Clin Epigenetics. 2019;11(1):12.PubMedPubMedCentralCrossRef Sillanpää E, Ollikainen M, Kaprio J, Wang X, Leskinen T, Kujala UM, et al. Leisure-time physical activity and DNA methylation age-a twin study. Clin Epigenetics. 2019;11(1):12.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Sillanpää E, Heikkinen A, Kankaanpää A, Paavilainen A, Kujala UM, Tammelin TH, et al. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clin Epigenetics. 2021;13(1):110.PubMedPubMedCentralCrossRef Sillanpää E, Heikkinen A, Kankaanpää A, Paavilainen A, Kujala UM, Tammelin TH, et al. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clin Epigenetics. 2021;13(1):110.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D, Szyf M, et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY). 2021;13(7):9419–32.PubMedCrossRef Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D, Szyf M, et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY). 2021;13(7):9419–32.PubMedCrossRef
62.
Zurück zum Zitat Hunter DJ, James L, Hussey B, Wadley AJ, Lindley MR, Mastana SS. Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics. 2019;14(3):294–309.PubMedPubMedCentralCrossRef Hunter DJ, James L, Hussey B, Wadley AJ, Lindley MR, Mastana SS. Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics. 2019;14(3):294–309.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 2015;213(1):39–59.PubMedCrossRef Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 2015;213(1):39–59.PubMedCrossRef
65.
Zurück zum Zitat Machado OAS, Diniz VLS, Passos MEP, de Oliveira HH, Santos-Oliveira LC, Alecrim AL, et al. Physical exercise increases global and gene-specific (interleukin-17 and interferon-γ) DNA methylation in lymphocytes from aged women. Exp Physiol. 2021;106(9):1878–85.PubMedCrossRef Machado OAS, Diniz VLS, Passos MEP, de Oliveira HH, Santos-Oliveira LC, Alecrim AL, et al. Physical exercise increases global and gene-specific (interleukin-17 and interferon-γ) DNA methylation in lymphocytes from aged women. Exp Physiol. 2021;106(9):1878–85.PubMedCrossRef
66.
Zurück zum Zitat Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(9):671–5.PubMedCrossRef Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, et al. Exercise effects on methylation of ASC gene. Int J Sports Med. 2010;31(9):671–5.PubMedCrossRef
67.
Zurück zum Zitat Denham J, Marques FZ, Bruns EL, O’Brien BJ, Charchar FJ. Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol. 2016;116(6):1245–53.PubMedCrossRef Denham J, Marques FZ, Bruns EL, O’Brien BJ, Charchar FJ. Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol. 2016;116(6):1245–53.PubMedCrossRef
68.
Zurück zum Zitat Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49(24):1567–78.PubMedCrossRef Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49(24):1567–78.PubMedCrossRef
Metadaten
Titel
Exercise and epigenetic ages in older adults with myeloid malignancies
verfasst von
Kah Poh Loh
Chandrika Sanapala
Marielle Jensen-Battaglia
Anish Rana
Michael B. Sohn
Erin Watson
Nikesha Gilmore
Heidi D. Klepin
Jason H. Mendler
Jane Liesveld
Eric Huselton
Marissa LoCastro
Martha Susiarjo
Colleen Netherby-Winslow
AnnaLynn M. Williams
Karen Mustian
Paula Vertino
Michelle C. Janelsins
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
European Journal of Medical Research / Ausgabe 1/2023
Elektronische ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01145-z

Weitere Artikel der Ausgabe 1/2023

European Journal of Medical Research 1/2023 Zur Ausgabe