Skip to main content
Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2022

Open Access 01.12.2022 | Case Report

Conus medullary arteriovenous malformation mimicking intramedullary tumor: a case report

verfasst von: Maria Monica, Tjokorda Gde Bagus Mahadewa, Steven Awyono, Dicky Teguh Prakoso

Erschienen in: The Egyptian Journal of Neurology, Psychiatry and Neurosurgery | Ausgabe 1/2022

Abstract

Background

Vascular malformation of the spine accounted for 3–4% of all intradural lesions. Spinal arteriovenous malformation (AVM) is often missed because of overlapping symptoms with other pathology and ambiguous imaging. Here, we report a conus medullary AVM that mimics intramedullary tumours either from clinical findings or MR imaging.

Case presentation

We report a 24-year-old man with left foot monoparesis, paresthesia, and intermittent claudication for the last 3 months. Magnetic resonance imaging revealed a strongly enhanced intramedullary lesion with a hypointense signal on T1-weighted images and a hyperintense signal on T2-weighted images without flow void, suggesting an intramedullary tumour of ependymoma. Left-sided hemilaminectomy was performed, revealing an AVM on conus medullary. Microsurgical resection was performed by subsequently ligating the arterial feeder and draining vein using a temporary clip. Improvement of neurological status without postoperative sequelae was noted.

Conclusions

Because of the similarity in epidemiology, symptoms, clinical progression, and imaging, suspicion of spinal AVM should remain. This case highlights that appropriate and meticulous surgical resection can preserve the patient's neurological function.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AVM
Arteriorvenous malformation
MRI
Magnetic resonance imaging
AVF
Arteriovenous fistula
DSA
Digital subtraction angiography

Background

Spinal arteriovenous malformation (AVM) is a type of vascular malformation of the spine composed of nidus with draining vein and feeding artery, accounting for 3–4% of all intradural spinal cord tumours [13]. As part of intramedullary AVM subclassification, conus medullary AVM is less frequent [1]. Despite advances in neuroimaging technology, vascular lesion diagnosis is often missed, because the symptoms usually overlap with more frequent cases of myelopathy, such as neoplasms and other spinal degenerative diseases [4]. In patients with progressive myelopathy symptoms, Magnetic Resonance Imaging (MRI) is the primary diagnostic modality. However, this examination often provides ambiguous or even normal imaging in cases of vascular lesions. Thus, the diagnosis of spinal AVM is overlooked [4, 5].
Current therapeutic approaches to spinal AVM include close observation, endovascular embolisation, microsurgery resection, stereotactic radiosurgery, or a combination of those mentioned above [1, 6]. If left untreated, spinal AVM could cause significant and progressive neurological disability in a short time [7]. Here, we report a conus medullary AVM mimicking intramedullary tumour that was opted to be resected intraoperatively while preserving the patient's neurological function.

Case presentation

A 24-year-old man with an uneventful clinical history was referred to our outpatient clinic with complaints of weakness on the left foot 3 months prior. The patient initially complained of a tingling sensation in the left foot, followed by progreesive weakness on the left sole. Pain on the left foot was also aggravated upon walking but abated after resting. The complaints varied throughout the day, sometimes interfering with walking (Modified McCormick Scale 2) [8]. No history of trauma was reported.
Neurological examination revealed reduced lower extremity muscular strength (MMT4) on the left extensor digitorum pedis, extensor halucis longus, and gastrocnemius, accompanied by respective muscle atrophy. Normal pinprick, light touch, and proprioceptive sensation were noted. Diminished Achilles tendon reflex (+ 1) on the left foot was found without any pathological reflexes. Sphincter examinations revealed normal findings.
The whole spine MRI (Siemens 3 T Skyra VD13, Siemens Healthineers, Erlangen, Germany) revealed an intramedullary mass at Thoracal 11th and 12th level with a low-intensity feature on T1-weighted and high intensity on T2-weighted images that strongly enhanced after gadolinium injection with significant cord swelling. No serpiginous areas of the signal void were observed. Based on these findings, we suspected an intramedullary tumour of ependymoma. Vascular malformation diagnosis was not considered at this point; thus, no further imaging and angiography was carried out (Fig. 1).
After preoperative evaluation, surgery was performed to achieve surgical decompression by maximally preserving the functional status. We performed a left-sided hemilaminectomy, revealing tortuous vessels on the dorsal surface of the conus medullary. Based on the purpose of decompressing the medulla, we decided to proceed with the surgery.
We subsequently ligated the arterial feeder and draining vein with temporary aneurysm clips. Upon careful inspection, the nidus was found adhered to the nearby radix. Thus, pial resection of the AVM nidus along the conus and nerve roots was done. The nidus and attached radix were extirpated en bloc. The feeding arteries were cut, and the draining veins were coagulated. Post-resection evaluation showed enough decompression of the nerve root (Fig. 2).
The surgery and the postoperative course were uneventful. The patient was discharged within four days of surgery. After one month of follow-up, the patient’s complaints were resolved entirely (Modified McCormick Scale 1) [8]. Upon neurological examination, we found improved lower extremity muscular strength (MMT5) on the left extensor digitorum pedis, extensor halucis longus, and gastrocnemius.
A follow-up MRI showed a tortuous flow void lesion suggesting a small residual mass on the ventral part of the conus. Due to limited resources, we did not further perform MR angiography and digital subtraction angiography. The patient is currently under close observation (Fig. 3).

Discussion

According to Kim and Spetzler’s classification [10], spinal vascular malformation consists of a spinal vascular tumour (hemangioblastoma and cavernous malformation), a spinal aneurysm, and arteriovenous fistula (AVF) [1, 911]. Spinal AVM is responsible for 20–30% of spinal vascular malformations [6, 7, 12, 13]. Intramedullary AVM was the most common (40.9%), followed by conus medullary (31.8%), metameric (18.2%), and extradural AVM (9.1%) [1]. Because of its infrequent incidence, misdiagnosis often occurs due to atypical clinical symptoms and a lack of understanding about conus medullary AVM [1, 6, 9, 14]. Additional information such as age, gender, clinical course, imaging, and location may aid in differentiating vascular lesions from other lesions. [15]
Rangel-Castilla and colleagues conducted a study on 110 patients with spinal AVF and AVM, and found that women and men had the same distribution (51.8% men and 48.2% women) [1]. According to Lad and colleagues[6], Singh and colleagues [2], Ozpinar and colleagues [3], and Park and colleagues [14], the incidence was significantly higher in men—consistent with our study. Regarding age, the average age of spinal AVM patients was 45–64 (with a range of 18 months–to 81 years) [13, 6]. For cases of intramedullary tumours, ependymomas are the most common entity, with a peak incidence in the fourth and fifth decades, predominantly occurring in men [15, 16]. In this study, we presented a case of a 24-year-old man with conus medullary AVM, which does not fit into the classical age group for spinal AVM or ependymomas.
The clinical course of AVM and ependymoma are similar and cannot be differentiated [4, 5]. Intramedullary AVM lesion has an unremitting neurological worsening, with 50% of all patients being severely disabled in three years, and only less than 10% could walk without assistance [1]. As in AVM, spinal ependymoma also has a slowly-progressive clinical course with an average time between presentation and diagnosis of more than two years [4].
Multiple theories may explain the pathophysiology of how neurological symptoms may occur from AVM. Abnormal blood flow from the artery to the nidus and vein without going through the capillary causes pressure from the artery to be transmitted directly through the vein. This phenomenon will lead to stagnation of blood flow resulting in impaired spinal cord venous drainage and venous hypertension. Venous hypertension is then sent to all valveless intrinsic veins in the spinal cord, resulting in a decrease in the arteriovenous pressure gradient in the spinal cord, decreased tissue perfusion, and progressive deterioration of spinal cord function [1, 14, 1719].
Another known pathophysiology of neurological deficit in spinal AVM is mass effect, haemorrhage, or vascular steal phenomenon. The above mechanism will cause symptoms, such as pain, sensory deficit, motoric abnormality, or myelopathy [2, 3, 6]. Our patient presented with the classical presentation of left foot monoparesis, paresthesia, and intermittent claudication. Venous hypertension and rapid redistribution of blood supply leading to the formation of ischemic areas, known as the “steal phenomenon”, may explain how neurogenic claudication occurred in our patient [2, 1719].
A thorough examination is essential in differentiating spinal AVM from other lesions and planning a suitable therapeutic option. MRI is the primary diagnostic modality for patients with progressive myelopathy symptoms. Spinal AVM findings on the MRI include hyperintensity signals on T2, reflecting venous hypertension and ischemia, enlargement of the lower spinal cord segment, abnormal intramedullary signal before and contrast administration, and the presence of abnormal serpiginous blood vessels [19]. However, findings such as signal abnormalities and cord enlargement are non-specific. These findings may arise not only from vascular lesions but also from neoplasms and infections. Moreover, the flow-void phenomenon may not be seen on T2 if the flow in the engorged vein is very slow or if the imaging plane is parallel to the flow direction [20]. Therefore, a normal MRI does not exclude AVM, and angiography should be followed if a spinal vascular lesion is suspected [14, 21].
Intramedullary ependymoma appears as an enhancing centrally located lesion with an isointense signal on T1-weighted imaging and a hyperintense signal on T2-weighted imaging. Due to the similarity, spinal AVM may be misdiagnosed as an intramedullary tumour [4, 5, 15, 22]. The whole spine MR imaging in this study revealed an enhancing intramedullary lesion with a hypointense signal on T1-weighted images and hyperintense signal on T2-weighted images at 11th to 12th thoracic vertebrae with spinal cord swelling and no flow void, suggesting intramedullary tumour of ependymoma. Vascular malformation was not suspected at this point.
The gold standard examination for spinal AVM is Digital Subtraction Angiography (DSA). This examination could detect and characterized vascular malformation [3, 6, 18, 19]. Unfortunately, we did not perform angiography in this study because spinal AVM was not suspected in the initial diagnosis and spinal DSA is not yet available in our center.
In this case, conus medullary AVM was diagnosed intraoperatively. Nevertheless, appropriate surgical treatment could still be done. The management principles of AVM are to stop the flow of dilated feeding arteries, excision of the nidus, strip off the dilated perimedullary veins, and obliterate arterial/venous aneurysms while maintaining blood flow to the spinal cord and preserving neurological function. This can be achieved by occlusion of the feeding vessel alone or occlusion and resection [1, 6, 9, 14]. Current therapeutic options are endovascular embolisation, microsurgery resection, stereotactic radiosurgery, and a combination of all above with or without using somatosensory and motor-evoked potential monitoring or indocyanine green fluorescent angiography [1, 6, 23].
Before selecting the proper management for vascular malformation, several essential considerations that need to be evaluated regarding the type and location of the lesion, vascular structure, inflow and outflow tract, hemodynamic characteristics, and surgeon’s preference [1, 9, 14]. This study identified a conus medullary AVM with multiple feeding arteries, nidus, and complex venous drainage attaching to the radix. Endovascular embolisation is growing as a treatment option. In 56% of cases, this therapy was safe and was used as the sole therapy in 9.1% [23]. However, not every AVM can be treated with embolisation alone [1, 9]. Even if spinal AVM was suspected earlier, endovascular embolisation was not suitable in this case, given the highly eloquent surrounding tissue and the complexity of the AVM [1].
Here, we performed a left-sided hemilaminectomy on Thoracal 11th and 12th levels, followed by microsurgery resection. Hemilaminectomy was chosen because the approach provides adequate exposure with less trauma to the posterior column [24]. To achieve the goal of AVM management, we coagulated the feeding arteries, draining veins, and resected the nidus. Some part of the nidus attaching to the radix was intentionally left to avoid risking the patient's neurological function.
The previous study mentioned significant improvement in neurological function after AVM surgery. Good outcome was found in 70–95% of all cases, with 11 out of 16 patients with conus medullary AVM (68.7%) experiencing improvement. This could be explained by the decompression effect after AVM resection, subdural or intraparenchymal haemorrhage evacuation, syrinx drainage, and spinal cord untethering [1, 2, 7]. Despite the unforeseen diagnosis, the patient tolerated the surgery well and improved motoric function without any postoperative sequelae upon follow-up.
The recommended follow-up examination is MRI and spinal angiography [9]. Since spinal angiography is unavailable in our center, we only performed MRI, which revealed a small residual mass on the ventral conus intentionally left to preserve neurological function. Although the recurrence and regrowth risk of adult spinal AVM is low [25, 26], this patient still needs long-term surveillance, since total resection was not achieved. In addition, conus medullary AVM has the highest recurrence rate due to a large number of feeding arteries. [11]
The main limitation of this study is that we did not perform pre- and post-surgical angiography. Although an MRI examination is adequate in planning the surgery, a DSA could better characterize the vascular malformation structure, feeding arteries, venous drainage, and hemodynamics [14, 19, 21, 27]. Long-term surveillance is also essential in determining whether or not there is a regrowth of the lesion, which could affect neurological function.

Conclusions

Because of the similarity in epidemiology, symptoms, clinical progression, and imaging, suspicion of spinal AVM should remain. Myelopathy and claudication may occur due to ischemia caused by the stealing phenomenon of the AVM, venous hypertension, mass effect, and haemorrhage. There is a steep learning curve to changing the surgical plan intraoperative. Regardless, this case highlights that appropriate and meticulous surgical resection can preserve the patient's neurological function.

Acknowledgements

Not applicable.

Declarations

Since this is a case report, there is no need for ethical approval. Written informed consent was obtained from the patient to publish this case report and accompanying images.
Written informed consent was obtained from the patient to publish this case report and accompanying images.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Rangel-Castilla L, Russin JJ, Zaidi HA, Martinez-del-Campo E, Park MS, Albuquerque FC, et al. Contemporary management of spinal AVFs and AVMs: lessons learned from 110 cases. Neurosurg Focus FOC. 2014;37(3):E14.CrossRef Rangel-Castilla L, Russin JJ, Zaidi HA, Martinez-del-Campo E, Park MS, Albuquerque FC, et al. Contemporary management of spinal AVFs and AVMs: lessons learned from 110 cases. Neurosurg Focus FOC. 2014;37(3):E14.CrossRef
2.
Zurück zum Zitat Singh B, Behari S, Jaiswal AK, Sahu RN, Mehrotra A, Mohan BM, et al. Spinal arteriovenous malformations: is surgery indicated? Asian J Neurosurg. 2016;11(2):134–42.CrossRefPubMedPubMedCentral Singh B, Behari S, Jaiswal AK, Sahu RN, Mehrotra A, Mohan BM, et al. Spinal arteriovenous malformations: is surgery indicated? Asian J Neurosurg. 2016;11(2):134–42.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Ozpinar A, Weiner GM, Ducruet AF. Chapter 14—Epidemiology, clinical presentation, diagnostic evaluation, and prognosis of spinal arteriovenous malformations. In: Spetzler RF, Moon K, Almefty ROBTH of CN, editors. Arteriovenous and cavernous malformations. Elsevier; 2017. p. 145–52. Ozpinar A, Weiner GM, Ducruet AF. Chapter 14—Epidemiology, clinical presentation, diagnostic evaluation, and prognosis of spinal arteriovenous malformations. In: Spetzler RF, Moon K, Almefty ROBTH of CN, editors. Arteriovenous and cavernous malformations. Elsevier; 2017. p. 145–52.
4.
Zurück zum Zitat Oh S, Bae C, Ahn JS, Rhim S. Spinal intradural ventral arteriovenous fistula mimicking an intramedullary ependymoma. Kor J Spine. 2010;7:107–10. Oh S, Bae C, Ahn JS, Rhim S. Spinal intradural ventral arteriovenous fistula mimicking an intramedullary ependymoma. Kor J Spine. 2010;7:107–10.
5.
Zurück zum Zitat Campos W, Silva B, Guasti J. Spinal intradural arteriovenous fistula mimicking intramedullary tumor and associated with a giant intracranial aneurysm. Arq Bras Neurocir. 2011;30:199.CrossRef Campos W, Silva B, Guasti J. Spinal intradural arteriovenous fistula mimicking intramedullary tumor and associated with a giant intracranial aneurysm. Arq Bras Neurocir. 2011;30:199.CrossRef
6.
Zurück zum Zitat Lad SP, Santarelli JG, Patil CG, Steinberg GK, Boakye M. National trends in spinal arteriovenous malformations: a review. Neurosurg Focus FOC. 2009;26(1):1–5.CrossRef Lad SP, Santarelli JG, Patil CG, Steinberg GK, Boakye M. National trends in spinal arteriovenous malformations: a review. Neurosurg Focus FOC. 2009;26(1):1–5.CrossRef
7.
Zurück zum Zitat Varshneya K, Pendharkar AV, Azad TD, Ratliff JK, Veeravagu A. A descriptive analysis of spinal cord arteriovenous malformations: clinical features, outcomes, and trends in management. World Neurosurg. 2019;131:e579–85.CrossRefPubMed Varshneya K, Pendharkar AV, Azad TD, Ratliff JK, Veeravagu A. A descriptive analysis of spinal cord arteriovenous malformations: clinical features, outcomes, and trends in management. World Neurosurg. 2019;131:e579–85.CrossRefPubMed
8.
Zurück zum Zitat Bakhshi SK, Waqas M, Shakaib B, Enam SA. Management and outcomes of intramedullary spinal cord tumors: a single center experience from a developing country. Surg Neurol Int. 2016;7(24):S617–22.CrossRefPubMedPubMedCentral Bakhshi SK, Waqas M, Shakaib B, Enam SA. Management and outcomes of intramedullary spinal cord tumors: a single center experience from a developing country. Surg Neurol Int. 2016;7(24):S617–22.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Zozulya YP, Slin’ko EI, Al-Qashqish II. Spinal arteriovenous malformations: new classification and surgical treatment. Neurosurg Focus FOC. 2006;20(5):1–17.CrossRef Zozulya YP, Slin’ko EI, Al-Qashqish II. Spinal arteriovenous malformations: new classification and surgical treatment. Neurosurg Focus FOC. 2006;20(5):1–17.CrossRef
10.
Zurück zum Zitat Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery. 2006;59(suppl_5):S3-195-S3-201.CrossRef Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery. 2006;59(suppl_5):S3-195-S3-201.CrossRef
11.
Zurück zum Zitat Spetzler RF, Detwiler PW, Riina HA, Porter RW. Modified classification of spinal cord vascular lesions. J Neurosurg Spine. 2002;96(2):145–56.CrossRef Spetzler RF, Detwiler PW, Riina HA, Porter RW. Modified classification of spinal cord vascular lesions. J Neurosurg Spine. 2002;96(2):145–56.CrossRef
12.
Zurück zum Zitat Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. J Spinal Cord Med. 2016;39(6):655–64.CrossRefPubMedPubMedCentral Hur JW, Cho TH, Park DH, Lee JB, Park JY, Chung YG. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. J Spinal Cord Med. 2016;39(6):655–64.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Lee YJ, Terbrugge KG, Saliou G, Krings T. Clinical features and outcomes of spinal cord arteriovenous malformations. Stroke. 2014;45(9):2606–12.CrossRefPubMed Lee YJ, Terbrugge KG, Saliou G, Krings T. Clinical features and outcomes of spinal cord arteriovenous malformations. Stroke. 2014;45(9):2606–12.CrossRefPubMed
14.
Zurück zum Zitat Park JE, Koo HW, Liu H, Jung SC, Park D, Suh DC. Clinical characteristics and treatment outcomes of spinal arteriovenous malformations. Clin Neuroradiol. 2018;28(1):39–46.CrossRefPubMed Park JE, Koo HW, Liu H, Jung SC, Park D, Suh DC. Clinical characteristics and treatment outcomes of spinal arteriovenous malformations. Clin Neuroradiol. 2018;28(1):39–46.CrossRefPubMed
15.
Zurück zum Zitat Abul-Kasim K, Thurnher MM, McKeever P, Sundgren PC. Intradural spinal tumors: current classification and MRI features. Neuroradiology. 2008;50(4):301–14.CrossRefPubMed Abul-Kasim K, Thurnher MM, McKeever P, Sundgren PC. Intradural spinal tumors: current classification and MRI features. Neuroradiology. 2008;50(4):301–14.CrossRefPubMed
16.
Zurück zum Zitat Wostrack M, Ringel F, Eicker S, Jägersberg M, Schaller K, Kerschbaumer J, et al. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine. 2018;28:1–9.CrossRef Wostrack M, Ringel F, Eicker S, Jägersberg M, Schaller K, Kerschbaumer J, et al. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine. 2018;28:1–9.CrossRef
17.
Zurück zum Zitat Madsen JR, Heros RC. Spinal arteriovenous malformations and neurogenic claudication. Report of two cases. J Neurosurg. 1988;68(5):793–7.CrossRefPubMed Madsen JR, Heros RC. Spinal arteriovenous malformations and neurogenic claudication. Report of two cases. J Neurosurg. 1988;68(5):793–7.CrossRefPubMed
18.
Zurück zum Zitat Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A. Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. Am J Neuroradiol. 2007;28(7):1249 LP – 1258.CrossRef Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A. Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. Am J Neuroradiol. 2007;28(7):1249 LP – 1258.CrossRef
19.
Zurück zum Zitat Kataoka H, Miyamoto S, Nagata I, Ueba T, Hashimoto N. Venous congestion is a major cause of neurological deterioration in spinal arteriovenous malformations. Neurosurgery. 2001;48(6):1224–30.PubMed Kataoka H, Miyamoto S, Nagata I, Ueba T, Hashimoto N. Venous congestion is a major cause of neurological deterioration in spinal arteriovenous malformations. Neurosurgery. 2001;48(6):1224–30.PubMed
20.
Zurück zum Zitat Doppman JL, Di Chiro G, Dwyer AJ, Frank JL, Oldfield EH. Magnetic resonance imaging of spinal arteriovenous malformations. J Neurosurg. 1987;66(6):830–4.CrossRefPubMed Doppman JL, Di Chiro G, Dwyer AJ, Frank JL, Oldfield EH. Magnetic resonance imaging of spinal arteriovenous malformations. J Neurosurg. 1987;66(6):830–4.CrossRefPubMed
21.
Zurück zum Zitat Koenig E, Thron A, Schrader V, Dichgans J. Spinal arteriovenous malformations and fistulae: clinical, neuroradiological and neurophysiological findings. J Neurol. 1989;236(5):260–6.CrossRefPubMed Koenig E, Thron A, Schrader V, Dichgans J. Spinal arteriovenous malformations and fistulae: clinical, neuroradiological and neurophysiological findings. J Neurol. 1989;236(5):260–6.CrossRefPubMed
22.
Zurück zum Zitat Roccatagliata L, Centanaro F, Castellan L. Venous congestive myelopathy in spinal dural arteriovenous fistula mimicking neoplasia. Neurol Sci. 2007;28(4):212–5.CrossRefPubMed Roccatagliata L, Centanaro F, Castellan L. Venous congestive myelopathy in spinal dural arteriovenous fistula mimicking neoplasia. Neurol Sci. 2007;28(4):212–5.CrossRefPubMed
23.
Zurück zum Zitat Xu DS, Sun H, Spetzler RF. Chapter 15—Spinal arteriovenous malformations: surgical management. In: Spetzler RF, Moon K, Almefty ROBTH of CN, editors. Arteriovenous and cavernous malformations. Elsevier; 2017. p. 153–60. Xu DS, Sun H, Spetzler RF. Chapter 15—Spinal arteriovenous malformations: surgical management. In: Spetzler RF, Moon K, Almefty ROBTH of CN, editors. Arteriovenous and cavernous malformations. Elsevier; 2017. p. 153–60.
24.
Zurück zum Zitat Awyono S, Mardhika PE, Mahadewa TGB, Wido A, Gaol HL, Wijaya IP. Unilateral laminectomy approach for total resection of intradural extramedullary spinal tumor. Neurol Spinale Med Chir. 2019;2(2):23–6.CrossRef Awyono S, Mardhika PE, Mahadewa TGB, Wido A, Gaol HL, Wijaya IP. Unilateral laminectomy approach for total resection of intradural extramedullary spinal tumor. Neurol Spinale Med Chir. 2019;2(2):23–6.CrossRef
25.
Zurück zum Zitat Patchana T, Savla P, Taka TM, Ghanchi H, Wiginton J 4th, Schiraldi M, et al. Spinal arteriovenous malformation: case report and review of the literature. Cureus. 2020;12(11):e11614–e11614.PubMedPubMedCentral Patchana T, Savla P, Taka TM, Ghanchi H, Wiginton J 4th, Schiraldi M, et al. Spinal arteriovenous malformation: case report and review of the literature. Cureus. 2020;12(11):e11614–e11614.PubMedPubMedCentral
26.
Zurück zum Zitat Freudenstein D, Duffner F, Ernemann U, Rachinger J, Grote EH. Recurrence of a cerebral arteriovenous malformation after surgical excision. Cerebrovasc Dis. 2001;11(1):59–64.CrossRefPubMed Freudenstein D, Duffner F, Ernemann U, Rachinger J, Grote EH. Recurrence of a cerebral arteriovenous malformation after surgical excision. Cerebrovasc Dis. 2001;11(1):59–64.CrossRefPubMed
27.
Zurück zum Zitat Ebner FH, Roser F, Acioly MA, Schoeber W, Tatagiba M. Intramedullary lesions of the conus medullaris: differential diagnosis and surgical management. Neurosurg Rev. 2008;32(3):287.CrossRefPubMed Ebner FH, Roser F, Acioly MA, Schoeber W, Tatagiba M. Intramedullary lesions of the conus medullaris: differential diagnosis and surgical management. Neurosurg Rev. 2008;32(3):287.CrossRefPubMed
Metadaten
Titel
Conus medullary arteriovenous malformation mimicking intramedullary tumor: a case report
verfasst von
Maria Monica
Tjokorda Gde Bagus Mahadewa
Steven Awyono
Dicky Teguh Prakoso
Publikationsdatum
01.12.2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1186/s41983-022-00553-y

Weitere Artikel der Ausgabe 1/2022

The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 1/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.