Skip to main content
Erschienen in: Journal of Translational Medicine 1/2023

Open Access 01.12.2023 | Research

Cancer functional states-based molecular subtypes of gastric cancer

verfasst von: Qi Zhou, Yiwu Yuan, Hao Lu, Xueqin Li, Ziyang Liu, Jinheng Gan, Zhenqi Yue, Jiping Wu, Jie Sheng, Lin Xin

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2023

Abstract

Background

The treatment of gastric cancer remains a challenge.

Methods

We divided gastric cancer into three subtypes based on 14 cancer functional states. We investigated differences between subtypes through multi-omics data, especially at the single-cell level, which allowed us to analyze differences from the perspective of each type of cell rather than the whole.

Results

The cluster 1 is characterized by high levels of tumor progression-related cancer functional status, worst survival outcomes, low metabolic level, high infiltration of immunosuppressive cells, high copy number variations (CNV), and low tumor mutational burden (TMB). The cluster 2 is characterized by low levels of tumor progression-related cancer functional status, favorable prognosis, moderate metabolic level, low immune cell infiltration, high CNV, and moderate TMB. Then, the cluster 3 is characterized by the high level of all cancer functional status, high metabolic level, low CNV, high TMB, high infiltration of immune cells with high cytotoxicity, and better response to immunotherapy. We also established a prognostic model based on cancer functional status and validated its robustness.

Conclusions

Collectively, our study identified gastric cancer subtypes and provided new insights into the clinical treatment of gastric cancer.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12967-023-03921-1.
Qi Zhou, Yiwu Yuan and Hao Lu have contributed equally to this work and share first authorship

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
GC
Gastric cancer
AJCC
American Joint Committee on Cancer
TCGA
The cancer genome atlas
ACRG
The Asian cancer research group
ICIs
Immune checkpoint inhibitors
SNP
Single nucleotide polymorphism
CNV
Copy number variations
TPM
Transcripts per million
GEO
Gene-expression omnibus
CCA
Canonical correlation analysis
KM
The Kaplan–Meier method
IC50
Half of the maximal inhibitory concentration
C1
Cluster 1
C2
Cluster 2
C3
Cluster 3
KEGG
Kyoto encyclopedia of genes and genomes
TMB
Tumor mutational burden
AUC
The area under the curve
myCAFs
Myo-cancer associated fibroblasts
undefined-CAFs
Undefined cancer-associated fibroblasts
iCAFs
Inflammatory cancer-associated fibroblasts

Introduction

Gastric cancer (GC) is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide [1]. And the main endemic area of GC is East Asia [2]. There are various treatment methods for GC, including surgery, chemotherapy, radiation therapy, and targeted therapy and immunotherapy. With the progress of these treatment methods, the mortality rate of GC has decreased significantly in recent decades, but it is still a great social burden [3]. Gastric cancer, like other tumors, is a heterogeneous disease. The most commonly used clinical classification methods are Lauren classification, histological classification and American Joint Committee on Cancer (AJCC) staging system. There are also many researchers to classify GC patients based on the gene expression characteristics of GC samples, and The Cancer Genome Atlas (TCGA) molecular subtypes [4] and the Asian Cancer Research Group (ACRG) molecular subtypes [5] are more commonly used. A better understanding of the heterogeneity of GC will allow us to carry out more precise treatment of GC patients.
In recent years, immunotherapy has attracted widespread attention, and multiple immune checkpoint inhibitors (ICIs) have been used in the treatment of multiple malignant tumors [6, 7]. Despite huge advances in immunotherapy, only a subset of GC patients treated with ICIs show good responses to immunotherapy. Therefore, it is critical to identify which patients have response to immunotherapy.
So far, there are many studies on the classification of GC, but many of them are based on certain types of characteristics of GC [810]. In our study, we used 14 malignancy features to perform unsupervised clustering analysis of GC samples. These cancer functional states gene sets were obtained from an online analysis website (CancerSEA; https://​biocc.​hrbmu.​edu.​cn/​CancerSEA/​home.​jsp) [11], including angiogenesis, apoptosis, cell cycle, differentiation, DNA damage, DNA repair, EMT, hypoxia, inflammation, invasion, metastasis, proliferation, quiescence and stemness. Based on the above cancer functional states, we divided GC into three subtypes. We conducted a detailed exploration on the characteristics of the three subtypes in terms of single nucleotide polymorphism (SNP), copy number variations (CNV), DNA methylation, proteomics, and tumor-infiltrating immune cells. Importantly, we also performed an exhaustive investigation of the differences between the various types of cells in the three subtypes at single-cell resolution. Overall, the classification of GC in our study may play a role in the precise treatment of patients.

Materials and methods

Data acquisition and processing

Gene expression profiles and clinical data for the TCGA-STAD cohort from The Cancer Genome Atlas (TCGA; https://​portal.​gdc.​cancer.​gov/​) were downloaded using TCGAbiolinks package in R. The count value of TCGA-STAD cohort samples were converted into transcripts per million (TPM) value. Somatic mutation and copy number variations in TCGA-STAD cohort were downloaded using the package TCGAbiolinks in R. After we downloaded the CNV data from TCGA, we first calculated it using GISTIC2 and then visualized it using the maftools package [12]. Somatic mutation data were analysed using R package maftools [12].
Gene expression profiles and clinical data for GSE62254 [5], GSE15459 [13], GSE57303 [14], GSE34942 [15] and GSE84437 [16] were downloaded from the Gene-Expression Omnibus (GEO; https://​www.​ncbi.​nlm.​nih.​gov/​gds/​). Because of the large number of datasets on the GPL570 platform, four datasets (GSE62254, GSE15459, GSE57303 and GSE34942) from the GPL570 platform were merged as one dataset named as GPL570 dataset using “oligo” package in R [17]. In the GPL570 dataset, we used the RMA method in the oligo package to normalize the expression values, and the combat method in “sva” package was used to remove batch effects [18]. The results obtained by the RMA method were log2 transformed. Regarding the GSE84437 dataset, the authors provided the expression matrix after normalization. The expression matrix of GSE84437 was then log2 transformed. Raw transcriptome and clinical data of immunotherapy cohort (IMvigor210) were retrieved using R package “IMvigor210CoreBiologies”.
Single cell-seq data from GSE183904 were selected for further analysis [19]. Our quality control standard is that each gene is expressed in 3 or more cells, and each cell has 300–5000 genes expressed. Cells with mitochondrial RNA percentages of > 20 were filtered out. We use the DoubletFinder package to remove the doublets cell [20]. Before clustering analysis, we performed canonical correlation analysis (CCA) to remove batch effects between different samples. We selected the top 3000 variably expressed genes as features for subsequent dimensionality reduction and cluster analysis using the FindVariableGenes function in Seurat. In using principal component analysis, we selected 30 principal components for subsequent analysis. The best resolution of 0.8 was chosen by us for cell clustering. Marker genes for various cell subtypes are obtained through the FindAllMarkers function with the parameter: logfc.threshold = 0.25, min.pct = 0.25 in Seurat. Since the cell types of stromal cells and myeloid cells could not be clearly distinguished in the first clustering, we extracted these cells for secondary clustering and performed cell type annotation.

Scoring assessment of gene sets at bulk and single-cell resolution

In bulk data, we estimate gene set scores using the GSVA method in the GSVA package [21]. In single-cell data, we use gene set scoring methods named “singscore” collected in the irGSEA package for gene set scoring.

Clustering and subcluster prediction

Based on the scores of 14 tumor features for each bulk sample calculated in the previous step, we clustered GC samples using consensus clustering with 1000 iterations and resampling of 80% using ConsensusClusterPlus package [22].
The single-cell sequencing used was not accompanied by bulk sequencing. We can think of bulk sequencing as measuring the total expression of each gene in all cells in a tumor tissue. Therefore, after the quality control of the single-cell expression matrix was completed, the average expression matrix of all cells in each sample was calculated to estimate the bulk-level expression of a single sample. Based on the prediction of the three clusters of TCGA-STAD dataset, we divided the TCGA-STAD dataset into two parts according to 7:3 using the createDataPartition function from the caret package. The proportions of the three clustering samples in two parts were consistent with original cohort. The former part is used as the training set, and the latter part is used as the validation data set. The single-cell samples were then subjected to subtype prediction based on the model trained on the training set. The above process uses the XGBoost algorithm [23]. We also performed subtype predictions for other tumors in TCGA, in the same way as described above.

Evaluation of infiltrating immune cells in the TME

The CIBERSORT algorithm (https://​cibersortx.​stanford.​edu/​) was used to estimate the proportion of 22 immune cell types in GC samples with 1000 permutations of batch-corrected mode, relative mode and b-mode [24]. We use the ESTIMATE algorithm to estimate stromal score and immune score in GC [25].

Establishment of a prognostic risk model for gastric cancer associated with tumor characteristics

In order to explore whether these 14 cancer functional states can predict the prognosis of gastric cancer, we used lasso-cox regression analysis to screen the most optimal cancer functional states, and then established a prognostic risk model in TCGA-STAD cohort using the glmnet package of R [26]. Based on the important features and weight coefficients obtained by the previous model, we calculated the risk score of each sample in the GPL570 cohort and GSE84437. The optimal cutoff value was confirmed by maxstat package. Overall survival curves were estimated by the Kaplan–Meier method (KM), and differences in survival were assessed by log-rank test.

Additional analysis of single-cell RNA-sequencing data

Because the R version of scenic analysis is very time-consuming, we first pergormed pyscenic on the python platform to process single-cell data, and then use the R version of scenic to analyze the calculated files [27]. We identified multiple cell types in single-cell analysis and used the MuSiC package to estimate cell fraction in bulk samples [28]. We used SCORPIUS to infer cellular trajectories [29].

Additional bioinformatic and statistical analyses

Half of the maximal inhibitory concentration (IC50) was estimated by the R package prophet. Connectivity Map (CMap, https://​clue.​io/​) was used to predict candidate small molecules based on differentially expressed genes. ICB responses were predicted using the TIDE algorithm (http://​tide.​dfci.​harvard.​edu). Statistical differences not specifically stated were set at P < 0.05.

Result

Cancer functional states identify three GC subtypes

Based on the 14 cancer functional status scores calculated by the GSVA method, we divided the TCGA-STAD dataset into 3 subtypes using the consensus clustering method (Fig. 1A, Additional file 2: Table S1). Principal component analysis found that the cluster 1 (C1) and the cluster 2 (C2) could be significantly separated, while the cluster 3 (C3) was distributed between the two subtypes, and it seemed that C3 was a category of transition features (Fig. 1G). We found that C3 is more like a cluster of the same characteristics picked from C1 and C2 (Additional file 1: Fig S1). KM analysis shows that C1 tended to have a worse survival prognosis, C2 has the best survival. The C3 has no significant survival difference, but the trend of the curve shows that the overall survival time of C3 is between C1 and C2 (Fig. 1B). C1 had low expression of cell cycle, DNA damage and DNA repair, and the remaining 11 cancer functional states had low levels. C2 is just the opposite of C1. C3 has high level in all cancer functional states (Fig. 1A). Similar results were also observed in the GPL570 dataset and GSE84437 (Fig. 1C–F, H, I).

Signaling pathways and immune cells of three GC subtypes

To explore the functional status among the three subtypes, we calculated scores for all Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways using the GSVA method. Interestingly, almost all metabolic related KEGG signaling pathways were highly expressed in C3, suggesting that cells of C3 are in the status of high levels of metabolism (Additional file 1: Fig S2). The activities of the 4 energy metabolic pathways (glycolysis/gluconeogenesis, citrate cycle, pentose phosphate pathway and oxidative phosphorylation) are: C1 < C2 < C3 (Fig. 2A). Immune-related pathway analysis showed that C3 had the highest immune activity, followed by C2, and C1 was the lowest (Fig. 2B). In addition, we also analyzed the expression of 10 cancer-related signaling pathways, all of which are highly expressed in C3 (Fig. 2C).
The immune and stromal scores were calculated by the ESTIMATE algorithm. Similar to the results of the signaling pathway analysis, these data confirmed that C1 and C2 had the highest and lowest immune score, stromal score and ESTIMATE score, respectively (Fig. 2D). In addition, we also used the CIBERSORT algorithm to estimate the proportions of 22 immune cells in GC samples. C1 was characterized by high B cells naive, B cells memory, plasma cells, T cells CD4 memory resting, T cells regulatory (Tregs), dendritic cells resting and mast cells resting (Fig. 2F). C3 was remarkably rich in T cells CD4 memory activated, T cells follicular helper, NK cells resting, NK cells activated, macrophages M0, macrophages M1, macrophages M2 and neutrophils (Fig. 2F). C2 is characterized by low infiltration of all immune cells. Furthermore, to assess the immune cytolytic activity of GC samples, we analyzed the differences in IFN-γ and TNF signaling pathway among the three subgroups. Interestingly, C3 was the highest in both scores, indicating that C3 has the strongest immune cytolytic activity (Fig. 2E).

Genomic alterations of three GC subtypes

To explore the genomic differences between three subtypes, we analyzed the CNV profile of TCGA-STAD with a threshold of q < 0.05. After removing germline CNVs, we found that C3 had lower levels of arm- and focal-level CNVs compared to C1 and C2 (Fig. 3A–C). Furthermore, C1 and C2 had a higher proportion of chromosomal instability (CIN) patients relative to C1 (Fig. 3D). The above results demonstrate that C3 has better genomic stability. This was also demonstrated by differences in the number of genes affected by CNV among the three subtypes.
Next, we analyzed the differences in gene mutations among the three subtypes. We analyzed the top 20 genes with different mutation frequency among the three subtypes, 13 of which (TTN, MUC16, FAT3, LRP1B, SYNE1, CSMD3, PCLO, FAT4, DNAH5, ZFHX4, RYR2, CSMD1 and KMT2D) were also in the top 20 mutated genes for all GC samples (Fig. 3F, G). We found that C3 has a higher mutation frequency than C1 and C2, and C2 has a higher mutation frequency than C1. This is consistent with the distribution of microsatellite instable (MSI) patients among the three subtypes (Fig. 3D). This was also supported by differences in tumor mutational burden (TMB) among the three groups (Fig. 3E). These results indicated that gene mutations may be associated with the phenotype of GC subtypes.

Cancer functional states score as a marker for prognosis

Significant OS differences between subtypes were observed, so we thought whether the cancer functional status score could be a prognostic marker. The Lasso-Cox algorithm was used to identify the most robust cancer functional states pathways for prognosis prediction after obtaining 14 gene set scores of all samples from the TCGA-STAD cohort (Fig. 4A). Finally, risk models associated with cancer functional status pathways were developed as fellow: -0.00135455854945771*Cell Cycle-0.416041346360079*DNA damage + 0.440674355732646*Hypoxia + 0.10833269488575*Invasion. As shown in Fig. 4B, KM analysis demonstrated that patients with higher risk score exhibited worse overall survival in TCGA-STAD (HR = 1.78, 95% CI = 1.27–2.49, P = 7.5e-4). In order to validate the stability of the model, we performed analysis in two additional cohorts. Similar results were also observed in GPL570 cohort and GSE84437(GPL570 dataset: HR = 1.66, 95% CI = 1.32–2.07, p = 8.7e-6; GSE84437: HR = 2.33, 95% CI = 1.59–3.41, p = 8.0e-6; Fig. 4C, D).

Stromal cells dominate the cancer functional state

Since tumor tissue is not composed of single type of cells, including epithelial cells, immune cells, and mesenchymal cells, it is necessary to explore the differences between various cell types among GC subtypes. The original data contained many tumor-adjacent normal samples and some un-primary tumor samples. But we selected the primary tumor samples for analysis. Detailed clinical and pathological information is provided in Additional file 2: Table S2. After following our standard quality control, we obtained 93583 cells of 26 GC samples for subsequent analysis. We thought that by calculating the average gene expression of all cells in each single-cell sample, we can obtain approximate bulk-level sequencing results. We first randomly divide TCGA-STAD into two parts according to 7:3, the former is used as the training cohort, and the latter is used as the validation cohort. The model was then trained in the training dataset based on the 14 cancer functional status scores, which had an area under the curve (AUC) value of 1 in the training dataset. Shockingly, in the validation cohort, the AUC also reached 0.9909. Then we used the trained model to predict the GC subtypes of the single-cell cohort samples, and finally got 13 patients of C1, 11 of C2, and 2 of C3 (Additional file 2: Table S3). The distributional characteristics of cancer functional status were also consistent with those of the TCGA-STAD cohort (Fig. 5A), which proves the robustness of the classifier. Based on res of 0.8, a total of 27 cell clusters are obtained (Fig. 5B). We then identified five major cell types, including epithelial cells, T cells, B cells, stromal cells, and myeloid cells (detailed markers in Additional file 2: Table S4, Fig. 5C). The heatmaps of these cancer functional status scores showed predominantly high scores in stromal cells (Fig. 5D). So, we next analyzed the differences of stromal cells among the three subtypes.
The stromal cells can be re-clustered into 14 clusters with res of 0.3. We annotated these stromal cells as pericytes, myo-cancer associated fibroblasts (myCAFs), undefined cancer-associated fibroblasts (undefined-CAFs), inflammatory cancer-associated fibroblasts (iCAFs), and endothelial cells (detailed markers in Additional file 2: Table S5; Fig. 5E). Remarkably, myCAF is a specific cell type of the C1 subtype, implying that myCAF may be involved in the formation of C1 subtype-related characteristic (Fig. 5E, F). We performed KEGG pathway enrichment analysis on the marker genes of myCAF. The results suggested that myCAF was in a relatively active state, which may be related to its tumor-promoting effect and is consistent with C1 having the worst prognosis (Fig. 5G, H). KM analysis also suggested that GC patients with high myCAF infiltration have poor OS (p = 0.02; Fig. 5K). We investigated developmental trajectories in endothelial cells, iCAF and pericytes, respectively. But in endothelial cells and pericytes, we did not find obvious trajectory variety among the three clusters. Only the developmental pattern of C1-C2-C3 presented in iCAF (Fig. 5J). We also performed a scenic analysis in iCAF. The results indicate that MAFK and TWIST2 are highly activated in C3 (Fig. 5I). Previous studies have shown that these two transcription factors induce EMT and then promote tumor progression [30, 31], which is consistent with the high EMT score in C3 (Fig. 5L). At the same time, we found that high iCAF infiltration means worse OS, which may be related to the ability of iCAF to promote tumor progression (Fig. 5M). We also found that iCAF infiltration was also highest in C1 and lowest in C3 among the three subtypes in the TCGA-STAD cohort (Fig. 5N).

C3 has better response to immunotherapy

We annotated T cells as CD4 + T cells, CD8 + T cells, NK T cells, regulatory T cells (Tregs) and proliferative T cells (detailed markers in Additional file 2: Table S6, Fig. 6A). Since T cells play an important role in antitumor immunity, we next investigated the characteristics heterogeneity of T cell between three subtypes. There was no significant difference in the number of various types of T cells among the three subtypes (Fig. 6B). To investigate the differences in the cytotoxicity of the three subtypes of T cells, we focused on CD8 + T cells and NK T cells. We found that C3 had stronger tumor-killing activity, as evidenced by either the IFN-γ pathway and the expression of the IFNG gene or the cytotoxicity score (Fig. 6C, D). And NK T cells of C3 seem to have more significant tumor-killing activity than C1 and C2 (Fig. 6C, D).
Now that C3 has the strongest antitumor ability, we next analyzed whether the three GC subtypes had different responses to immunotherapy. Among CD8 + T cells, C3 had higher exhaustion scores and immune checkpoint gene expression (PDCD1, LAG3), which proved that C3 may have a better response to immunotherapy (Fig. 6E). We found that at the bulk level, C3 also had higher TIDE scores than C1 and C2, which is consistent with our findings at single-cell resolution (Fig. 6G). We also analyzed differences between the three subtypes in a cohort of urothelial carcinomas undergoing immunotherapy. First, we typed the patients in the IMvigor210 cohort as three subtypes based on the previously established subtype prediction model, and the three subtypes also had the same characteristic distribution as the previous gastric cancer cohort (Fig. 6F). The three subtypes also had the same survival differences as the GC cohort (Fig. 6H). The proportion of immunotherapy responders was significantly higher in C3 compared with C1 and C2, especially the proportion of complete responders (Fig. 6I, J).
Chemotherapy is an important strategy in cancer treatment. The Cancer Genome Project (CGP) database was used to predict chemotherapeutic response. The results showed that 5-Fluorouracil, cisplatin, docetaxel, mitomycin C and paclitaxel were more suitable for patients of C1 (Fig. 7). We used the CMap database to predict drugs with specific therapeutic effects on the three subtypes. We predicted many drugs specific to the three subtypes (Additional file 2: Table S7).

Discussion

In this study, we proposed a classification method of gastric cancer based on 14 cancer functional status, and based on this gastric cancer was divided into three subtypes. This classification method has also been shown to be stable in multiple datasets. We elucidate the characteristics of the three subtypes in detail. C1 is characterized by high levels of tumor progression-related cancer functional status, worst survival outcomes, low metabolic level, high infiltration of immunosuppressive cells, high CNV, and low TMB. C2 is characterized by low levels of tumor progression-related cancer functional status, favorable prognosis, moderate metabolic level, low immune cell infiltration, high CNV, and moderate TMB. Then, C3 is characterized by the high level of all cancer functional status, high metabolic level, low CNV, high TMB, high infiltration of immune cells with high cytotoxicity, and better response to immunotherapy. Many differences between subtypes were also validated by single-cell data. These differential characteristics among the three subtypes suggest that our GC classification should be taken into consideration when developing personalized therapy.
We divided GC into three subtypes based on levels of 14 types of cancer functional status. This classification system was not only consistent with TCGA-STAD performance in the GPL570 cohort and GSE84437, but also with the characteristics of the three subtypes of the IMvigor210 cohort. To verify whether our classification model can be applied to other tumors, we performed subtype predictions for all tumors in the TCGA database. The results showed that the subtypes of cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, lung squamous cell carcinoma, and thymoma had the same prognostic differences as the subtypes of GC (Additional file 1: Fig S3). We also found significant prognostic differences among the three subtypes for 12 tumors, but not consistent with differences among gastric cancer subtypes (Additional file 1: Fig S4).
It is worth noting that only cell cycle, DNA damage and DNA repair are highly expressed in C2, while many other pathways, such as angiogenesis, EMT, hypoxia, invasion, metastasis, and stemness related to malignant characteristics of tumors, are low-expressed. This suggests that C2 is a relatively low-malignancy GC subtype, which is consistent with the best prognosis of C2. Although C2 is characterized by low immune cell infiltration, single-cell analysis suggests that C2 possesses T cell tumor-killing capacity second only to C3. Although both C1 and C3 have high expression of tumor malignant characteristics, C1 has high infiltration of immunosuppressive cells, which makes the prognosis of C1 poor. This was also demonstrated by the lowest tumor-killing capacity of T cells of C1 at single-cell resolution. C3 is characterized by high expression in all cancer functional states, and C3 is at high levels in almost all metabolic pathways. The immune cell infiltration of C3 is also more abundant, and the tumor killing ability is also the strongest. This probably means that C3 is active. Immune checkpoint molecules mainly exist on the surface of various immune cells, and the ligands on the surface of other immunosuppressive cells can inhibit the cytotoxic effect of T cells after binding to them [32, 33. Interestingly, our single-cell analysis found that T cells in C3 had higher expression of immune checkpoint genes and immune exhaustion scores, so we thought that C3 could benefit from immunotherapy. We also validated our conclusions in an immunotherapy cohort. It is worth noting that C3 not only had a better response to immunotherapy, but also had a higher sensitivity to the five chemotherapeutic agents.
A number of previous studies had also identified various subtypes of gastric cancer [4, 5] [348]. Compared to their classification methods, ours has some strengths. First, we classify based on 14 functional states of cancer, which makes our classification factors more comprehensive. The second is that we have a more comprehensive analysis of the differences between the subtypes, especially our elucidation of these differences at single-cell resolution.

Conclusion

In conclusion, we divided gastric cancer into three subtypes based on 14 cancer functional states. We elucidated the differences of characteristics among the three subtypes from the level of signaling pathways, genomic alterations, and single-cell levels. We found that C3 is more sensitive to a variety of chemotherapeutic agents and can benefit from immunotherapy. This provides new insights into the clinical treatment of gastric cancer.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 8216100399), Jiangxi Province Academic and Technical Leaders Training Program for Major Disciplines (Leading Talents Program: 20213BCJ22014), Jiangxi Province Key Research and Development Program (No. 20203BBG73056) and Jiangxi Province Key Research and Development Programme General item (No. 20202BBGL73071).

Declarations

Competing interests

The authors declare no potential competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRef
2.
Zurück zum Zitat Moore MA. Cancer control programs in East Asia: evidence from the international literature. J Prev Med Public Health. 2014;47(4):183–200.CrossRef Moore MA. Cancer control programs in East Asia: evidence from the international literature. J Prev Med Public Health. 2014;47(4):183–200.CrossRef
3.
Zurück zum Zitat Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18(3):534–42.CrossRef Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18(3):534–42.CrossRef
4.
Zurück zum Zitat Cancer Genome Atlas Research Network and others. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.CrossRef Cancer Genome Atlas Research Network and others. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.CrossRef
5.
Zurück zum Zitat Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.CrossRef Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.CrossRef
6.
Zurück zum Zitat Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. 2018;34(4):690.CrossRef Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell. 2018;34(4):690.CrossRef
7.
Zurück zum Zitat Doroshow DB, Sanmamed MF, Hastings K, Politi K, Rimm DL, Chen L, et al. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. 2019;25(15):4592–602.CrossRef Doroshow DB, Sanmamed MF, Hastings K, Politi K, Rimm DL, Chen L, et al. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. 2019;25(15):4592–602.CrossRef
8.
Zurück zum Zitat Lin Y, Pan X, Zhao L, Yang C, Zhang Z, Wang B, et al. Immune cell infiltration signatures identified molecular subtypes and underlying mechanisms in gastric cancer. NPJ Genom Med. 2021;6(1):83.CrossRef Lin Y, Pan X, Zhao L, Yang C, Zhang Z, Wang B, et al. Immune cell infiltration signatures identified molecular subtypes and underlying mechanisms in gastric cancer. NPJ Genom Med. 2021;6(1):83.CrossRef
9.
Zurück zum Zitat Zhou YJ, Zhu GQ, Lu XF, Zheng KI, Wang QW, Chen JN, et al. Identification and validation of tumour microenvironment-based immune molecular subgroups for gastric cancer: immunotherapeutic implications. Cancer Immunol Immunother. 2020;69(6):1057–69.CrossRef Zhou YJ, Zhu GQ, Lu XF, Zheng KI, Wang QW, Chen JN, et al. Identification and validation of tumour microenvironment-based immune molecular subgroups for gastric cancer: immunotherapeutic implications. Cancer Immunol Immunother. 2020;69(6):1057–69.CrossRef
10.
Zurück zum Zitat Li T, Chen X, Gu M, Deng A, Qian C. Identification of the subtypes of gastric cancer based on DNA methylation and the prediction of prognosis. Clin Epigenetics. 2020;12(1):161.CrossRef Li T, Chen X, Gu M, Deng A, Qian C. Identification of the subtypes of gastric cancer based on DNA methylation and the prediction of prognosis. Clin Epigenetics. 2020;12(1):161.CrossRef
11.
Zurück zum Zitat Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900-d908.CrossRef Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019;47(D1):D900-d908.CrossRef
12.
Zurück zum Zitat Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.CrossRef Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.CrossRef
13.
Zurück zum Zitat Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5(10): e1000676.CrossRef Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5(10): e1000676.CrossRef
14.
Zurück zum Zitat Qian Z, Zhu G, Tang L, Wang M, Zhang L, Fu J, et al. Whole genome gene copy number profiling of gastric cancer identifies PAK1 and KRAS gene amplification as therapy targets. Genes Chromosom Cancer. 2014;53(11):883–94.CrossRef Qian Z, Zhu G, Tang L, Wang M, Zhang L, Fu J, et al. Whole genome gene copy number profiling of gastric cancer identifies PAK1 and KRAS gene amplification as therapy targets. Genes Chromosom Cancer. 2014;53(11):883–94.CrossRef
15.
Zurück zum Zitat Chia NY, Deng N, Das K, Huang D, Hu L, Zhu Y, et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 2015;64(5):707–19.CrossRef Chia NY, Deng N, Das K, Huang D, Hu L, Zhu Y, et al. Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 2015;64(5):707–19.CrossRef
16.
Zurück zum Zitat Yoon SJ, Park J, Shin Y, Choi Y, Park SW, Kang SG, et al. Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. BMC Cancer. 2020;20(1):314.CrossRef Yoon SJ, Park J, Shin Y, Choi Y, Park SW, Kang SG, et al. Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. BMC Cancer. 2020;20(1):314.CrossRef
17.
Zurück zum Zitat Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7.CrossRef Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7.CrossRef
18.
Zurück zum Zitat Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.CrossRef Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.CrossRef
19.
Zurück zum Zitat Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12(3):670–91.CrossRef Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 2022;12(3):670–91.CrossRef
20.
Zurück zum Zitat McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329-337.e324.CrossRef McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329-337.e324.CrossRef
21.
Zurück zum Zitat Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.CrossRef Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.CrossRef
22.
Zurück zum Zitat Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3.CrossRef Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–3.CrossRef
24.
Zurück zum Zitat Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773–82.CrossRef Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773–82.CrossRef
25.
Zurück zum Zitat Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.CrossRef Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.CrossRef
26.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.CrossRef Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.CrossRef
27.
Zurück zum Zitat Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6.CrossRef Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6.CrossRef
28.
Zurück zum Zitat Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun. 2019;10(1):380.CrossRef Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun. 2019;10(1):380.CrossRef
29.
Zurück zum Zitat Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. bioRxiv. 2016;17(1):71. Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. bioRxiv. 2016;17(1):71.
31.
Zurück zum Zitat Mao Y, Xu J, Li Z, Zhang N, Yin H, Liu Z. The role of nuclear β-catenin accumulation in the Twist2-induced ovarian cancer EMT. PLoS ONE. 2013;8(11): e78200.CrossRef Mao Y, Xu J, Li Z, Zhang N, Yin H, Liu Z. The role of nuclear β-catenin accumulation in the Twist2-induced ovarian cancer EMT. PLoS ONE. 2013;8(11): e78200.CrossRef
32.
Zurück zum Zitat Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019;176(4):775-789.e718.CrossRef Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019;176(4):775-789.e718.CrossRef
33.
Zurück zum Zitat Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309–37.CrossRef Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309–37.CrossRef
34.
Zurück zum Zitat Li L, Wang X. Identification of gastric cancer subtypes based on pathway clustering. NPJ Precis Oncol. 2021;5(1):46.CrossRef Li L, Wang X. Identification of gastric cancer subtypes based on pathway clustering. NPJ Precis Oncol. 2021;5(1):46.CrossRef
Metadaten
Titel
Cancer functional states-based molecular subtypes of gastric cancer
verfasst von
Qi Zhou
Yiwu Yuan
Hao Lu
Xueqin Li
Ziyang Liu
Jinheng Gan
Zhenqi Yue
Jiping Wu
Jie Sheng
Lin Xin
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2023
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-03921-1

Weitere Artikel der Ausgabe 1/2023

Journal of Translational Medicine 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.