Skip to main content

01.05.2024 | REVIEW

The immunosuppressive landscape in tumor microenvironment

verfasst von: Wuyi Liu, Huyue Zhou, Wenjing Lai, Changpeng Hu, Rufu Xu, Peng Gu, Menglin Luo, Rong Zhang, Guobing Li

Erschienen in: Immunologic Research

Einloggen, um Zugang zu erhalten

Abstract

Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Literatur
1.
2.
Zurück zum Zitat Schreiber RD, et al. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRef Schreiber RD, et al. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRef
3.
Zurück zum Zitat Kakavand H, et al. Targeted therapies and immune checkpoint inhibitors in the treatment of metastatic melanoma patients: a guide and update for pathologists. Pathology. 2016;48(2):194–202.PubMedCrossRef Kakavand H, et al. Targeted therapies and immune checkpoint inhibitors in the treatment of metastatic melanoma patients: a guide and update for pathologists. Pathology. 2016;48(2):194–202.PubMedCrossRef
5.
Zurück zum Zitat Herbst RS, et al. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef Herbst RS, et al. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef
6.
Zurück zum Zitat Emens LA et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer. 2021;9(8). Emens LA et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer. 2021;9(8).
7.
Zurück zum Zitat Topalian SL et al. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367(6477). Topalian SL et al. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367(6477).
9.
Zurück zum Zitat Alsaab HO, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentralCrossRef Alsaab HO, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentralCrossRef
10.
12.
Zurück zum Zitat Yuan Y, et al. Recent advancements in the mechanisms underlying resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers (Basel). 2021;13(4):663.PubMedCrossRef Yuan Y, et al. Recent advancements in the mechanisms underlying resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers (Basel). 2021;13(4):663.PubMedCrossRef
13.
Zurück zum Zitat Hargadon KM, et al. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.PubMedCrossRef Hargadon KM, et al. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.PubMedCrossRef
14.
Zurück zum Zitat Bagchi S, et al. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.PubMedCrossRef Bagchi S, et al. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49.PubMedCrossRef
16.
Zurück zum Zitat Wang J, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176(1–2):334-47 e12.PubMedCrossRef Wang J, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176(1–2):334-47 e12.PubMedCrossRef
17.
Zurück zum Zitat Maruhashi T, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity. 2022;55(5):912-24 e8.PubMedCrossRef Maruhashi T, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity. 2022;55(5):912-24 e8.PubMedCrossRef
18.
Zurück zum Zitat Hirayasu K, et al. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J Hum Genet. 2015;60(11):703–8.PubMedCrossRef Hirayasu K, et al. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J Hum Genet. 2015;60(11):703–8.PubMedCrossRef
19.
Zurück zum Zitat Stahl M, et al. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr Oncol Rep. 2019;21(4):37.PubMedCrossRef Stahl M, et al. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr Oncol Rep. 2019;21(4):37.PubMedCrossRef
20.
21.
Zurück zum Zitat Sharma N, et al. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med. 2021;218(7):e20201811. Sharma N, et al. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med. 2021;218(7):e20201811.
22.
Zurück zum Zitat Inui M, et al. Tolerogenic immunoreceptor ILT3/LILRB4 paradoxically marks pathogenic auto-antibody-producing plasmablasts and plasma cells in non-treated SLE. Int Immunol. 2016;28(12):597–604.PubMedCrossRef Inui M, et al. Tolerogenic immunoreceptor ILT3/LILRB4 paradoxically marks pathogenic auto-antibody-producing plasmablasts and plasma cells in non-treated SLE. Int Immunol. 2016;28(12):597–604.PubMedCrossRef
23.
Zurück zum Zitat Sugahara-Tobinai A, et al. Augmented ILT3/LILRB4 expression of peripheral blood antibody secreting cells in the acute phase of Kawasaki disease. Pediatr Infect Dis J. 2019;38(4):431–8.PubMedCrossRef Sugahara-Tobinai A, et al. Augmented ILT3/LILRB4 expression of peripheral blood antibody secreting cells in the acute phase of Kawasaki disease. Pediatr Infect Dis J. 2019;38(4):431–8.PubMedCrossRef
24.
Zurück zum Zitat Thies A, et al. CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol. 2002;20(10):2530–6.PubMedCrossRef Thies A, et al. CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol. 2002;20(10):2530–6.PubMedCrossRef
25.
Zurück zum Zitat Huang YH, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517(7534):386-U566.PubMedCrossRef Huang YH, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517(7534):386-U566.PubMedCrossRef
27.
Zurück zum Zitat Markel G, et al. CD66a interactions between human melanoma and NK cells: a novel class I MHC-independent inhibitory mechanism of cytotoxicity. J Immunol. 2002;168(6):2803–10.PubMedCrossRef Markel G, et al. CD66a interactions between human melanoma and NK cells: a novel class I MHC-independent inhibitory mechanism of cytotoxicity. J Immunol. 2002;168(6):2803–10.PubMedCrossRef
28.
29.
Zurück zum Zitat Hirota T, et al. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene. 2005;24(13):2229–35.PubMedCrossRef Hirota T, et al. Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene. 2005;24(13):2229–35.PubMedCrossRef
30.
Zurück zum Zitat Casado JG, et al. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother. 2009;58(9):1517–26.PubMedPubMedCentralCrossRef Casado JG, et al. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother. 2009;58(9):1517–26.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ozmadenci D, et al. Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proc Natl Acad Sci USA. 2022;119(17): e2117065119.PubMedPubMedCentralCrossRef Ozmadenci D, et al. Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proc Natl Acad Sci USA. 2022;119(17): e2117065119.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Nishiwada S, et al. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 2015;35(4):2287–97.PubMed Nishiwada S, et al. Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 2015;35(4):2287–97.PubMed
33.
Zurück zum Zitat Nakai R, et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010;101(5):1326–30.PubMedCrossRef Nakai R, et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010;101(5):1326–30.PubMedCrossRef
35.
Zurück zum Zitat Curley J, et al. Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia. Mod Pathol. 2020;33(6):1182–92.PubMedCrossRef Curley J, et al. Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia. Mod Pathol. 2020;33(6):1182–92.PubMedCrossRef
38.
Zurück zum Zitat Su M, et al. ERMAP is a B7 family-related molecule that negatively regulates T cell and macrophage responses. Cell Mol Immunol. 2021;18(8):1920–33.PubMedCrossRef Su M, et al. ERMAP is a B7 family-related molecule that negatively regulates T cell and macrophage responses. Cell Mol Immunol. 2021;18(8):1920–33.PubMedCrossRef
39.
Zurück zum Zitat Xiang J, et al. Disruption of SIRT7 increases the efficacy of checkpoint inhibitor via mef2d regulation of programmed cell death 1 ligand 1 in hepatocellular carcinoma cells. Gastroenterology. 2020;158(3):664-78 e24.PubMedCrossRef Xiang J, et al. Disruption of SIRT7 increases the efficacy of checkpoint inhibitor via mef2d regulation of programmed cell death 1 ligand 1 in hepatocellular carcinoma cells. Gastroenterology. 2020;158(3):664-78 e24.PubMedCrossRef
41.
Zurück zum Zitat Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRef Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Yarchoan M, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4(6):e126908. Yarchoan M, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4(6):e126908.
45.
Zurück zum Zitat Schrock AB, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019;30(7):1096–103.PubMedCrossRef Schrock AB, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019;30(7):1096–103.PubMedCrossRef
46.
Zurück zum Zitat Mandal R, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485–91.PubMedPubMedCentralCrossRef Mandal R, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485–91.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat McGranahan N, et al. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.PubMedCrossRef McGranahan N, et al. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.PubMedCrossRef
48.
Zurück zum Zitat McGranahan N, et al. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26.PubMedCrossRef McGranahan N, et al. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26.PubMedCrossRef
49.
Zurück zum Zitat Kreso A, et al. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91.PubMedCrossRef Kreso A, et al. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91.PubMedCrossRef
51.
Zurück zum Zitat Anagnostou V, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–76.PubMedCrossRef Anagnostou V, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–76.PubMedCrossRef
52.
53.
Zurück zum Zitat Brown SD, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24(5):743–50.PubMedPubMedCentralCrossRef Brown SD, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24(5):743–50.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Lauss M, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun. 2017;8(1):1738.PubMedPubMedCentralCrossRef Lauss M, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun. 2017;8(1):1738.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Campoli M, et al. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine. 2002;20(Suppl 4):A40–5.PubMedCrossRef Campoli M, et al. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine. 2002;20(Suppl 4):A40–5.PubMedCrossRef
57.
Zurück zum Zitat Marincola FM, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.PubMed Marincola FM, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.PubMed
58.
Zurück zum Zitat Pereira C, et al. Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin Cancer Res. 2017;23(12):3203–13.PubMedCrossRef Pereira C, et al. Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin Cancer Res. 2017;23(12):3203–13.PubMedCrossRef
59.
Zurück zum Zitat Roh W, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9(379):eaah3560. Roh W, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9(379):eaah3560.
61.
62.
63.
Zurück zum Zitat Huang L, et al. The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin Cancer Res. 2018;24(14):3366–76.PubMedPubMedCentralCrossRef Huang L, et al. The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin Cancer Res. 2018;24(14):3366–76.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Chew GL, et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev Cell. 2019;50(5):658-71 e7.PubMedPubMedCentralCrossRef Chew GL, et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev Cell. 2019;50(5):658-71 e7.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Hurwitz AA, et al. Costimulatory wars: the tumor menace. Curr Opin Immunol. 2000;12(5):589–96.PubMedCrossRef Hurwitz AA, et al. Costimulatory wars: the tumor menace. Curr Opin Immunol. 2000;12(5):589–96.PubMedCrossRef
67.
68.
Zurück zum Zitat Banchereau J, et al. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRef Banchereau J, et al. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRef
69.
Zurück zum Zitat Sanchez-Paulete AR, et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol. 2017;28(suppl_12):xii74.PubMedCrossRef Sanchez-Paulete AR, et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol. 2017;28(suppl_12):xii74.PubMedCrossRef
70.
Zurück zum Zitat Bandola-Simon J, et al. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. 2019;113:31–7.PubMedCrossRef Bandola-Simon J, et al. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol. 2019;113:31–7.PubMedCrossRef
71.
72.
Zurück zum Zitat Dammeijer F, et al. Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev. 2017;36:5–15.PubMedCrossRef Dammeijer F, et al. Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev. 2017;36:5–15.PubMedCrossRef
73.
Zurück zum Zitat Kadam P, et al. PD-1 Immune checkpoint blockade promotes therapeutic cancer vaccine to eradicate lung cancer. Vaccines (Basel). 2020;8(2):317.PubMedCrossRef Kadam P, et al. PD-1 Immune checkpoint blockade promotes therapeutic cancer vaccine to eradicate lung cancer. Vaccines (Basel). 2020;8(2):317.PubMedCrossRef
74.
Zurück zum Zitat Antonios JP, et al. PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight. 2016;1(10):e87059. Antonios JP, et al. PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight. 2016;1(10):e87059.
75.
76.
Zurück zum Zitat Schietinger A, et al. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.PubMedCrossRef Schietinger A, et al. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.PubMedCrossRef
78.
79.
Zurück zum Zitat Hosseini A, et al. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 2020;80: 106221.PubMedCrossRef Hosseini A, et al. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 2020;80: 106221.PubMedCrossRef
80.
Zurück zum Zitat Anderson AC, et al. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.PubMedPubMedCentralCrossRef Anderson AC, et al. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Monney L, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415(6871):536–41.PubMedCrossRef Monney L, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415(6871):536–41.PubMedCrossRef
82.
Zurück zum Zitat Anderson AC. Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol. 2012;24(2):213–6.PubMedCrossRef Anderson AC. Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol. 2012;24(2):213–6.PubMedCrossRef
83.
Zurück zum Zitat Zhang Y, et al. TIM-3 is a potential prognostic marker for patients with solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8(19):31705–13.PubMedPubMedCentralCrossRef Zhang Y, et al. TIM-3 is a potential prognostic marker for patients with solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8(19):31705–13.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Yu X, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57.PubMedCrossRef Yu X, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10(1):48–57.PubMedCrossRef
85.
Zurück zum Zitat Stanietsky N, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA. 2009;106(42):17858–63.PubMedPubMedCentralCrossRef Stanietsky N, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA. 2009;106(42):17858–63.PubMedPubMedCentralCrossRef
86.
87.
Zurück zum Zitat Lozano E, et al. The TIGIT/CD226 axis regulates human T cell function. J Immunol. 2012;188(8):3869–75.PubMedCrossRef Lozano E, et al. The TIGIT/CD226 axis regulates human T cell function. J Immunol. 2012;188(8):3869–75.PubMedCrossRef
88.
Zurück zum Zitat Napoleon JV, et al. Design, synthesis, and targeted delivery of an immune stimulant that selectively reactivates exhausted CAR T cells. Angew Chem Int Ed Engl. 2022;61(15): e202113341.PubMedCrossRef Napoleon JV, et al. Design, synthesis, and targeted delivery of an immune stimulant that selectively reactivates exhausted CAR T cells. Angew Chem Int Ed Engl. 2022;61(15): e202113341.PubMedCrossRef
89.
90.
Zurück zum Zitat Alissafi T, et al. Balancing cancer immunotherapy and immune-related adverse events: the emerging role of regulatory T cells. J Autoimmun. 2019;104: 102310.PubMedCrossRef Alissafi T, et al. Balancing cancer immunotherapy and immune-related adverse events: the emerging role of regulatory T cells. J Autoimmun. 2019;104: 102310.PubMedCrossRef
91.
Zurück zum Zitat Sato E, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102(51):18538–43.PubMedPubMedCentralCrossRef Sato E, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102(51):18538–43.PubMedPubMedCentralCrossRef
92.
93.
Zurück zum Zitat Fisher SA, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5(1):16–28.PubMedCrossRef Fisher SA, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5(1):16–28.PubMedCrossRef
94.
Zurück zum Zitat Angelova M, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16:64.PubMedPubMedCentralCrossRef Angelova M, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16:64.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Li T, et al. Targeting MDSC for immune-checkpoint blockade in cancer immunotherapy: current progress and new prospects. Clin Med Insights Oncol. 2021;15:11795549211035540.PubMedPubMedCentralCrossRef Li T, et al. Targeting MDSC for immune-checkpoint blockade in cancer immunotherapy: current progress and new prospects. Clin Med Insights Oncol. 2021;15:11795549211035540.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Ugel S, et al. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest. 2015;125(9):3365–76.PubMedPubMedCentralCrossRef Ugel S, et al. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest. 2015;125(9):3365–76.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Novitskiy SV, et al. TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov. 2011;1(5):430–41.PubMedPubMedCentralCrossRef Novitskiy SV, et al. TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov. 2011;1(5):430–41.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Messmer MN, et al. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother. 2015;64(1):1–13.PubMedCrossRef Messmer MN, et al. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother. 2015;64(1):1–13.PubMedCrossRef
102.
Zurück zum Zitat Solito S, et al. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci. 2014;1319:47–65.PubMedCrossRef Solito S, et al. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci. 2014;1319:47–65.PubMedCrossRef
103.
Zurück zum Zitat Meyer C, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother. 2014;63(3):247–57.PubMedCrossRef Meyer C, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother. 2014;63(3):247–57.PubMedCrossRef
104.
Zurück zum Zitat Tarhini AA, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE. 2014;9(2): e87705.PubMedPubMedCentralCrossRef Tarhini AA, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE. 2014;9(2): e87705.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Zhu Y, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.PubMedPubMedCentralCrossRef Zhu Y, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.PubMedCrossRef Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.PubMedCrossRef
107.
Zurück zum Zitat Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10(10):712–23.PubMedCrossRef Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10(10):712–23.PubMedCrossRef
108.
Zurück zum Zitat Joyce JA, et al. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.PubMedCrossRef Joyce JA, et al. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.PubMedCrossRef
109.
Zurück zum Zitat Cazet AS, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun. 2018;9(1):2897.PubMedPubMedCentralCrossRef Cazet AS, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun. 2018;9(1):2897.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Kakarla S, et al. Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy. 2012;4(11):1129–38.PubMedCrossRef Kakarla S, et al. Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy. 2012;4(11):1129–38.PubMedCrossRef
111.
Zurück zum Zitat Al-Bzour NN, et al. Cancer-associated fibroblasts in gastrointestinal cancers: unveiling their dynamic roles in the tumor microenvironment. Int J Mol Sci. 2023;24(22):16505.PubMedPubMedCentralCrossRef Al-Bzour NN, et al. Cancer-associated fibroblasts in gastrointestinal cancers: unveiling their dynamic roles in the tumor microenvironment. Int J Mol Sci. 2023;24(22):16505.PubMedPubMedCentralCrossRef
112.
113.
Zurück zum Zitat Gong X, et al. Microvesicle-inspired oxygen-delivering nanosystem potentiates radiotherapy-mediated modulation of tumor stroma and antitumor immunity. Biomaterials. 2022;290: 121855.PubMedCrossRef Gong X, et al. Microvesicle-inspired oxygen-delivering nanosystem potentiates radiotherapy-mediated modulation of tumor stroma and antitumor immunity. Biomaterials. 2022;290: 121855.PubMedCrossRef
114.
Zurück zum Zitat Liu Y, et al. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med. 2023;21(1):255.PubMedPubMedCentralCrossRef Liu Y, et al. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med. 2023;21(1):255.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Franco-Barraza J, et al. Matrix-regulated integrin alpha(v)beta(5) maintains alpha(5)beta(1)-dependent desmoplastic traits prognostic of neoplastic recurrence. Elife. 2017;6:e20600. Franco-Barraza J, et al. Matrix-regulated integrin alpha(v)beta(5) maintains alpha(5)beta(1)-dependent desmoplastic traits prognostic of neoplastic recurrence. Elife. 2017;6:e20600.
116.
Zurück zum Zitat Tauriello DVF, et al. Overcoming TGFbeta-mediated immune evasion in cancer. Nat Rev Cancer. 2022;22(1):25–44.PubMedCrossRef Tauriello DVF, et al. Overcoming TGFbeta-mediated immune evasion in cancer. Nat Rev Cancer. 2022;22(1):25–44.PubMedCrossRef
117.
Zurück zum Zitat Hu J, et al. Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models. J Immunother Cancer. 2024;12(1):e006991. Hu J, et al. Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models. J Immunother Cancer. 2024;12(1):e006991.
118.
120.
Zurück zum Zitat Zheng X, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436–52.PubMedPubMedCentralCrossRef Zheng X, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436–52.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Movahedi K, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70(14):5728–39.PubMedCrossRef Movahedi K, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70(14):5728–39.PubMedCrossRef
122.
123.
Zurück zum Zitat Zhu Y, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 2019;68(9):1653–66.PubMedCrossRef Zhu Y, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 2019;68(9):1653–66.PubMedCrossRef
124.
Zurück zum Zitat Ramesh A, et al. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater. 2019;31(51): e1904364.PubMedCrossRef Ramesh A, et al. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater. 2019;31(51): e1904364.PubMedCrossRef
125.
126.
Zurück zum Zitat Shahbaz S, et al. CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol. 2018;16(12): e2006649.PubMedPubMedCentralCrossRef Shahbaz S, et al. CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol. 2018;16(12): e2006649.PubMedPubMedCentralCrossRef
127.
128.
Zurück zum Zitat Chen J, et al. Intratumoral CD45(+)CD71(+) erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma. Cancer Lett. 2021;499:85–98.PubMedCrossRef Chen J, et al. Intratumoral CD45(+)CD71(+) erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma. Cancer Lett. 2021;499:85–98.PubMedCrossRef
129.
Zurück zum Zitat Long H, et al. Tumor-induced erythroid precursor-differentiated myeloid cells mediate immunosuppression and curtail anti-PD-1/PD-L1 treatment efficacy. Cancer Cell. 2022;40(6):674-93 e7.PubMedCrossRef Long H, et al. Tumor-induced erythroid precursor-differentiated myeloid cells mediate immunosuppression and curtail anti-PD-1/PD-L1 treatment efficacy. Cancer Cell. 2022;40(6):674-93 e7.PubMedCrossRef
130.
Zurück zum Zitat Wellenstein MD, et al. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48(3):399–416.PubMedCrossRef Wellenstein MD, et al. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48(3):399–416.PubMedCrossRef
132.
Zurück zum Zitat Lu Y, et al. JAK/STAT and PI3K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem. 2008;21(4):305–14.PubMedCrossRef Lu Y, et al. JAK/STAT and PI3K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem. 2008;21(4):305–14.PubMedCrossRef
133.
Zurück zum Zitat Darnell JE Jr, et al. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.PubMedCrossRef Darnell JE Jr, et al. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.PubMedCrossRef
134.
135.
Zurück zum Zitat Owen KL, et al. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel). 2019;11(12):2002.PubMedCrossRef Owen KL, et al. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel). 2019;11(12):2002.PubMedCrossRef
137.
Zurück zum Zitat Zhang X, et al. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol. 2020;86: 106749.PubMedPubMedCentralCrossRef Zhang X, et al. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol. 2020;86: 106749.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Li S, et al. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. Eur J Med Chem. 2016;124:1006–18.PubMedCrossRef Li S, et al. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. Eur J Med Chem. 2016;124:1006–18.PubMedCrossRef
139.
Zurück zum Zitat Xu J, et al. Flavopereirine suppresses the progression of human oral cancer by inhibiting the JAK-STAT signaling pathway via targeting LASP1. Drug Des Devel Ther. 2021;15:1705–16.PubMedPubMedCentralCrossRef Xu J, et al. Flavopereirine suppresses the progression of human oral cancer by inhibiting the JAK-STAT signaling pathway via targeting LASP1. Drug Des Devel Ther. 2021;15:1705–16.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Dao KT, et al. Efficacy of ruxolitinib in patients with chronic neutrophilic leukemia and atypical chronic myeloid leukemia. J Clin Oncol. 2020;38(10):1006–18.PubMedCrossRef Dao KT, et al. Efficacy of ruxolitinib in patients with chronic neutrophilic leukemia and atypical chronic myeloid leukemia. J Clin Oncol. 2020;38(10):1006–18.PubMedCrossRef
142.
143.
Zurück zum Zitat Vitale M, et al. NK-active cytokines IL-2, IL-12, and IL-15 selectively modulate specific protein kinase C (PKC) isoforms in primary human NK cells. Anat Rec. 2002;266(2):87–92.PubMedCrossRef Vitale M, et al. NK-active cytokines IL-2, IL-12, and IL-15 selectively modulate specific protein kinase C (PKC) isoforms in primary human NK cells. Anat Rec. 2002;266(2):87–92.PubMedCrossRef
144.
Zurück zum Zitat Gotthardt D, et al. STATs in NK-cells: the good, the bad, and the ugly. Front Immunol. 2016;7:694.PubMed Gotthardt D, et al. STATs in NK-cells: the good, the bad, and the ugly. Front Immunol. 2016;7:694.PubMed
146.
Zurück zum Zitat Wu L, et al. Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. Am J Pathol. 2011;179(4):2131–41.PubMedPubMedCentralCrossRef Wu L, et al. Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. Am J Pathol. 2011;179(4):2131–41.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Fu C, et al. beta-Catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci USA. 2015;112(9):2823–8.PubMedPubMedCentralCrossRef Fu C, et al. beta-Catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci USA. 2015;112(9):2823–8.PubMedPubMedCentralCrossRef
148.
149.
Zurück zum Zitat Dhillon AS, et al. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.PubMedCrossRef Dhillon AS, et al. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.PubMedCrossRef
150.
Zurück zum Zitat de Sauvage MA, et al. The ERK inhibitor LY3214996 augments anti-PD-1 immunotherapy in preclinical mouse models of BRAFV600E melanoma brain metastasis. Neuro Oncol. 2023:noad248. de Sauvage MA, et al. The ERK inhibitor LY3214996 augments anti-PD-1 immunotherapy in preclinical mouse models of BRAFV600E melanoma brain metastasis. Neuro Oncol. 2023:noad248.
151.
Zurück zum Zitat Sumimoto H, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6.PubMedPubMedCentralCrossRef Sumimoto H, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–6.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Liu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013;19(2):393–403.PubMedCrossRef Liu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013;19(2):393–403.PubMedCrossRef
153.
154.
155.
Zurück zum Zitat Jiang X, et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013;19(3):598–609.PubMedCrossRef Jiang X, et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013;19(3):598–609.PubMedCrossRef
156.
Zurück zum Zitat Feng D, et al. BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene. 2019;38(41):6752–66.PubMedPubMedCentralCrossRef Feng D, et al. BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene. 2019;38(41):6752–66.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat D’Souza WN, et al. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol. 2008;181(11):7617–29.PubMedCrossRef D’Souza WN, et al. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol. 2008;181(11):7617–29.PubMedCrossRef
159.
Zurück zum Zitat Ebert PJR, et al. MAP kinase inhibition promotes t cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity. 2016;44(3):609–21.PubMedCrossRef Ebert PJR, et al. MAP kinase inhibition promotes t cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity. 2016;44(3):609–21.PubMedCrossRef
160.
Zurück zum Zitat Kosnopfel C, et al. Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion. J Exp Clin Cancer Res. 2023;42(1):175.PubMedPubMedCentralCrossRef Kosnopfel C, et al. Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion. J Exp Clin Cancer Res. 2023;42(1):175.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. 2015;43(3):435–49.PubMedCrossRef Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. 2015;43(3):435–49.PubMedCrossRef
162.
164.
Zurück zum Zitat Almeida L, et al. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514–24.PubMedCrossRef Almeida L, et al. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28(5):514–24.PubMedCrossRef
165.
Zurück zum Zitat Liu X, et al. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 2022;43(2):132–47.PubMedCrossRef Liu X, et al. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 2022;43(2):132–47.PubMedCrossRef
166.
167.
Zurück zum Zitat Zurier RB, et al. Human peripheral blood T lymphocyte proliferation after activation of the T cell receptor: effects of unsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 1999;60(5–6):371–5.PubMedCrossRef Zurier RB, et al. Human peripheral blood T lymphocyte proliferation after activation of the T cell receptor: effects of unsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 1999;60(5–6):371–5.PubMedCrossRef
168.
Zurück zum Zitat Lima TM, et al. Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol In Vitro. 2002;16(6):741–7.PubMedCrossRef Lima TM, et al. Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol In Vitro. 2002;16(6):741–7.PubMedCrossRef
169.
Zurück zum Zitat Haas R, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T Cell migration and effector functions. PLoS Biol. 2015;13(7): e1002202.PubMedPubMedCentralCrossRef Haas R, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T Cell migration and effector functions. PLoS Biol. 2015;13(7): e1002202.PubMedPubMedCentralCrossRef
170.
172.
Zurück zum Zitat Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis. 2018;9(3):336.PubMedPubMedCentralCrossRef Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis. 2018;9(3):336.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Yang M, et al. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16(10):650–62.PubMedCrossRef Yang M, et al. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16(10):650–62.PubMedCrossRef
175.
Zurück zum Zitat Kawalekar OU, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–90.PubMedCrossRef Kawalekar OU, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–90.PubMedCrossRef
176.
Zurück zum Zitat van Bruggen JAC, et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8(+) T cells and impede CAR T-cell efficacy. Blood. 2019;134(1):44–58.PubMedPubMedCentralCrossRef van Bruggen JAC, et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8(+) T cells and impede CAR T-cell efficacy. Blood. 2019;134(1):44–58.PubMedPubMedCentralCrossRef
177.
178.
Zurück zum Zitat Fletcher M, et al. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 2015;75(2):275–83.PubMedCrossRef Fletcher M, et al. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 2015;75(2):275–83.PubMedCrossRef
179.
Zurück zum Zitat Rodriguez PC, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol. 2003;171(3):1232–9.PubMedCrossRef Rodriguez PC, et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol. 2003;171(3):1232–9.PubMedCrossRef
180.
Zurück zum Zitat Lamas B, et al. Altered functions of natural killer cells in response to L-arginine availability. Cell Immunol. 2012;280(2):182–90.PubMedCrossRef Lamas B, et al. Altered functions of natural killer cells in response to L-arginine availability. Cell Immunol. 2012;280(2):182–90.PubMedCrossRef
181.
Zurück zum Zitat Yu J, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190(7):3783–97.PubMedCrossRef Yu J, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190(7):3783–97.PubMedCrossRef
182.
183.
185.
Zurück zum Zitat Qin R, et al. Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer. 2021;9(7):e002840. Qin R, et al. Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer. 2021;9(7):e002840.
186.
Zurück zum Zitat Liu Y, et al. IL-2 regulates tumor-reactive CD8(+) T cell exhaustion by activating the aryl hydrocarbon receptor. Nat Immunol. 2021;22(3):358–69.PubMedCrossRef Liu Y, et al. IL-2 regulates tumor-reactive CD8(+) T cell exhaustion by activating the aryl hydrocarbon receptor. Nat Immunol. 2021;22(3):358–69.PubMedCrossRef
187.
Zurück zum Zitat Opitz CA, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.PubMedCrossRef Opitz CA, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.PubMedCrossRef
188.
Zurück zum Zitat Frumento G, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.PubMedPubMedCentralCrossRef Frumento G, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Della Chiesa M, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006;108(13):4118–25.PubMedCrossRef Della Chiesa M, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 2006;108(13):4118–25.PubMedCrossRef
190.
Zurück zum Zitat Zhao F, et al. Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity. 2018;48(1):147-60 e7.PubMedPubMedCentralCrossRef Zhao F, et al. Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity. 2018;48(1):147-60 e7.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Nguyen NT, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA. 2010;107(46):19961–6.PubMedPubMedCentralCrossRef Nguyen NT, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA. 2010;107(46):19961–6.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Rodriguez PC, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69(4):1553–60.PubMedPubMedCentralCrossRef Rodriguez PC, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69(4):1553–60.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Horig H, et al. Exogenous glutamine requirement is confined to late events of T cell activation. J Cell Biochem. 1993;53(4):343–51.PubMedCrossRef Horig H, et al. Exogenous glutamine requirement is confined to late events of T cell activation. J Cell Biochem. 1993;53(4):343–51.PubMedCrossRef
194.
Zurück zum Zitat Carr EL, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185(2):1037–44.PubMedCrossRef Carr EL, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185(2):1037–44.PubMedCrossRef
195.
Zurück zum Zitat Klysz D, et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.PubMedCrossRef Klysz D, et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97.PubMedCrossRef
196.
Zurück zum Zitat Metzler B, et al. Restricting glutamine or glutamine-dependent purine and pyrimidine syntheses promotes human T cells with high FOXP3 expression and regulatory properties. J Immunol. 2016;196(9):3618–30.PubMedCrossRef Metzler B, et al. Restricting glutamine or glutamine-dependent purine and pyrimidine syntheses promotes human T cells with high FOXP3 expression and regulatory properties. J Immunol. 2016;196(9):3618–30.PubMedCrossRef
197.
Zurück zum Zitat Ma EH, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25(2):345–57.PubMedCrossRef Ma EH, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25(2):345–57.PubMedCrossRef
198.
Zurück zum Zitat Siska PJ, et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J Immunol Methods. 2016;438:51–8.PubMedPubMedCentralCrossRef Siska PJ, et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J Immunol Methods. 2016;438:51–8.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Gmunder H, et al. Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem. 1991;201(1):113–7.PubMedCrossRef Gmunder H, et al. Low membrane transport activity for cystine in resting and mitogenically stimulated human lymphocyte preparations and human T cell clones. Eur J Biochem. 1991;201(1):113–7.PubMedCrossRef
200.
Zurück zum Zitat Srivastava MK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.PubMedCrossRef Srivastava MK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70(1):68–77.PubMedCrossRef
201.
Zurück zum Zitat Wu J, et al. Asparagine enhances LCK signalling to potentiate CD8(+) T-cell activation and anti-tumour responses. Nat Cell Biol. 2021;23(1):75–86.PubMedCrossRef Wu J, et al. Asparagine enhances LCK signalling to potentiate CD8(+) T-cell activation and anti-tumour responses. Nat Cell Biol. 2021;23(1):75–86.PubMedCrossRef
203.
Zurück zum Zitat Franek F, et al. Protection of B lymphocyte hybridoma against starvation-induced apoptosis: survival-signal role of some amino acids. Immunol Lett. 1996;52(2–3):139–44.PubMedCrossRef Franek F, et al. Protection of B lymphocyte hybridoma against starvation-induced apoptosis: survival-signal role of some amino acids. Immunol Lett. 1996;52(2–3):139–44.PubMedCrossRef
204.
Zurück zum Zitat Hayashi K, et al. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol. 2013;191(8):4080–5.PubMedCrossRef Hayashi K, et al. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol. 2013;191(8):4080–5.PubMedCrossRef
206.
Zurück zum Zitat Sinclair LV, et al. Antigen receptor control of methionine metabolism in T cells. Elife. 2019;8:e44210. Sinclair LV, et al. Antigen receptor control of methionine metabolism in T cells. Elife. 2019;8:e44210.
207.
Zurück zum Zitat Hale LL, et al. Isoleucine needs of thirty- to forty-day-old female chickens: immunity. Poult Sci. 2004;83(12):1979–85.PubMedCrossRef Hale LL, et al. Isoleucine needs of thirty- to forty-day-old female chickens: immunity. Poult Sci. 2004;83(12):1979–85.PubMedCrossRef
208.
209.
Zurück zum Zitat Assmann N, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 2017;18(11):1197–206.PubMedCrossRef Assmann N, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 2017;18(11):1197–206.PubMedCrossRef
210.
Zurück zum Zitat Brand A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.PubMedCrossRef Brand A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.PubMedCrossRef
211.
Zurück zum Zitat Husain Z, et al. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol. 2013;191(3):1486–95.PubMedCrossRef Husain Z, et al. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol. 2013;191(3):1486–95.PubMedCrossRef
212.
213.
Zurück zum Zitat Calder PC. Functional roles of fatty acids and their effects on human health. JPEN J Parenter Enteral Nutr. 2015;39(1 Suppl):18S-32S.PubMed Calder PC. Functional roles of fatty acids and their effects on human health. JPEN J Parenter Enteral Nutr. 2015;39(1 Suppl):18S-32S.PubMed
214.
215.
Zurück zum Zitat Ma X, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33(5):1001-12 e5.PubMedPubMedCentralCrossRef Ma X, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33(5):1001-12 e5.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Everts B, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323–32.PubMedPubMedCentralCrossRef Everts B, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323–32.PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Cubillos-Ruiz JR, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.PubMedPubMedCentralCrossRef Cubillos-Ruiz JR, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 2015;161(7):1527–38.PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Bose D, et al. Inhibition of TGF-beta induced lipid droplets switches M2 macrophages to M1 phenotype. Toxicol In Vitro. 2019;58:207–14.PubMedCrossRef Bose D, et al. Inhibition of TGF-beta induced lipid droplets switches M2 macrophages to M1 phenotype. Toxicol In Vitro. 2019;58:207–14.PubMedCrossRef
221.
Metadaten
Titel
The immunosuppressive landscape in tumor microenvironment
verfasst von
Wuyi Liu
Huyue Zhou
Wenjing Lai
Changpeng Hu
Rufu Xu
Peng Gu
Menglin Luo
Rong Zhang
Guobing Li
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Immunologic Research
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-024-09483-8

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Real-World-Daten sprechen eher für Dupilumab als für Op.

14.05.2024 Rhinosinusitis Nachrichten

Zur Behandlung schwerer Formen der chronischen Rhinosinusitis mit Nasenpolypen (CRSwNP) stehen seit Kurzem verschiedene Behandlungsmethoden zur Verfügung, darunter Biologika, wie Dupilumab, und die endoskopische Sinuschirurgie (ESS). Beim Vergleich der beiden Therapieoptionen war Dupilumab leicht im Vorteil.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.