Skip to main content

18.04.2024

The Classification of Lumbar Spondylolisthesis X-Ray Images Using Convolutional Neural Networks

verfasst von: Wutong Chen, Du Junsheng, Yanzhen Chen, Yifeng Fan, Hengzhi Liu, Chang Tan, Xuanming Shao, Xinzhi Li

Erschienen in: Journal of Imaging Informatics in Medicine

Einloggen, um Zugang zu erhalten

Abstract

We aimed to develop and validate a deep convolutional neural network (DCNN) model capable of accurately identifying spondylolysis or spondylolisthesis on lateral or dynamic X-ray images. A total of 2449 lumbar lateral and dynamic X-ray images were collected from two tertiary hospitals. These images were categorized into lumbar spondylolysis (LS), degenerative lumbar spondylolisthesis (DLS), and normal lumbar in a proportional manner. Subsequently, the images were randomly divided into training, validation, and test sets to establish a classification recognition network. The model training and validation process utilized the EfficientNetV2-M network. The model’s ability to generalize was assessed by conducting a rigorous evaluation on an entirely independent test set and comparing its performance with the diagnoses made by three orthopedists and three radiologists. The evaluation metrics employed to assess the model’s performance included accuracy, sensitivity, specificity, and F1 score. Additionally, the weight distribution of the network was visualized using gradient-weighted class activation mapping (Grad-CAM). For the doctor group, accuracy ranged from 87.9 to 90.0% (mean, 89.0%), precision ranged from 87.2 to 90.5% (mean, 89.0%), sensitivity ranged from 87.1 to 91.0% (mean, 89.2%), specificity ranged from 93.7 to 94.7% (mean, 94.3%), and F1 score ranged from 88.2 to 89.9% (mean, 89.1%). The DCNN model had accuracy of 92.0%, precision of 91.9%, sensitivity of 92.2%, specificity of 95.7%, and F1 score of 92.0%. Grad-CAM exhibited concentrations of highlighted areas in the intervertebral foraminal region. We developed a DCNN model that intelligently distinguished spondylolysis or spondylolisthesis on lumbar lateral or lumbar dynamic radiographs.
Literatur
1.
Zurück zum Zitat Leone A, Cianfoni A, Cerase A, et al. Lumbar spondylolysis: a review[J]. Skeletal Radiol, 2011,40(6):683-700.CrossRefPubMed Leone A, Cianfoni A, Cerase A, et al. Lumbar spondylolysis: a review[J]. Skeletal Radiol, 2011,40(6):683-700.CrossRefPubMed
2.
Zurück zum Zitat Choi JH, Ochoa JK, Lubinus A, et al. Management of lumbar spondylolysis in the adolescent athlete: a review of over 200 cases[J]. The Spine Journal, 2022,22(10):1628-1633.CrossRefPubMed Choi JH, Ochoa JK, Lubinus A, et al. Management of lumbar spondylolysis in the adolescent athlete: a review of over 200 cases[J]. The Spine Journal, 2022,22(10):1628-1633.CrossRefPubMed
3.
Zurück zum Zitat Li J, Liang J, Xu Y, et al. Incidence of lumbar spondylolysis in athletes with low back pain: A systematic evaluation and single-arm meta-analysis[J]. Medicine (Baltimore), 023,102(38):e34857. Li J, Liang J, Xu Y, et al. Incidence of lumbar spondylolysis in athletes with low back pain: A systematic evaluation and single-arm meta-analysis[J]. Medicine (Baltimore), 023,102(38):e34857.
4.
Zurück zum Zitat Mohile NV, Kuczmarski AS, Lee D, et al. Spondylolysis and Isthmic Spondylolisthesis: A Guide to Diagnosis and Management[J]. J Am Board Fam Med, 2022,35(6):1204-1216.CrossRefPubMed Mohile NV, Kuczmarski AS, Lee D, et al. Spondylolysis and Isthmic Spondylolisthesis: A Guide to Diagnosis and Management[J]. J Am Board Fam Med, 2022,35(6):1204-1216.CrossRefPubMed
5.
Zurück zum Zitat Aoki Y, Takahashi H, Nakajima A, et al. Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease[J]. Sci Rep, 2020,10(1):6739.CrossRefPubMedPubMedCentral Aoki Y, Takahashi H, Nakajima A, et al. Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease[J]. Sci Rep, 2020,10(1):6739.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis[J]. Clin Orthop Relat Res, 1976(117):23-29. Wiltse LL, Newman PH, Macnab I. Classification of spondylolisis and spondylolisthesis[J]. Clin Orthop Relat Res, 1976(117):23-29.
7.
Zurück zum Zitat Hammerberg KW. New concepts on the pathogenesis and classification of spondylolisthesis[J]. Spine (Phila Pa 1976), 2005,30(6 Suppl):S4-S11. Hammerberg KW. New concepts on the pathogenesis and classification of spondylolisthesis[J]. Spine (Phila Pa 1976), 2005,30(6 Suppl):S4-S11.
8.
Zurück zum Zitat Bhalla A, Bono CM. Isthmic Lumbar Spondylolisthesis[J]. Neurosurg Clin N Am, 2019,30(3):283-290.CrossRefPubMed Bhalla A, Bono CM. Isthmic Lumbar Spondylolisthesis[J]. Neurosurg Clin N Am, 2019,30(3):283-290.CrossRefPubMed
9.
Zurück zum Zitat Bydon M, Alvi MA, Goyal A. Degenerative Lumbar Spondylolisthesis: Definition, Natural History, Conservative Management, and Surgical Treatment[J]. Neurosurg Clin N Am, 2019,30(3):299-304.CrossRefPubMed Bydon M, Alvi MA, Goyal A. Degenerative Lumbar Spondylolisthesis: Definition, Natural History, Conservative Management, and Surgical Treatment[J]. Neurosurg Clin N Am, 2019,30(3):299-304.CrossRefPubMed
10.
Zurück zum Zitat Bernard F, Mazerand E, Gallet C, et al. History of degenerative spondylolisthesis: From anatomical description to surgical management[J]. Neurochirurgie, 2019,65(2-3):75-82.CrossRefPubMed Bernard F, Mazerand E, Gallet C, et al. History of degenerative spondylolisthesis: From anatomical description to surgical management[J]. Neurochirurgie, 2019,65(2-3):75-82.CrossRefPubMed
11.
Zurück zum Zitat Beck NA, Miller R, Baldwin K, et al. Do Oblique Views Add Value in the Diagnosis of Spondylolysis in Adolescents?[J]. The Journal of Bone and Joint Surgery-American Volume, 2013,95(10):e61-e65. Beck NA, Miller R, Baldwin K, et al. Do Oblique Views Add Value in the Diagnosis of Spondylolysis in Adolescents?[J]. The Journal of Bone and Joint Surgery-American Volume, 2013,95(10):e61-e65.
12.
Zurück zum Zitat Iguchi T, Wakami T, Kurihara A, et al. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis[J]. J Spinal Disord Tech, 2002,15(2):93-99.CrossRefPubMed Iguchi T, Wakami T, Kurihara A, et al. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis[J]. J Spinal Disord Tech, 2002,15(2):93-99.CrossRefPubMed
13.
Zurück zum Zitat Butt S, Saifuddin A. The imaging of lumbar spondylolisthesis[J]. Clinical Radiology, 2005,60(5):533-546.CrossRefPubMed Butt S, Saifuddin A. The imaging of lumbar spondylolisthesis[J]. Clinical Radiology, 2005,60(5):533-546.CrossRefPubMed
14.
Zurück zum Zitat Le NQK, Huynh TT. Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation[J]. Front Physiol, 2019,10:1501.CrossRefPubMedPubMedCentral Le NQK, Huynh TT. Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation[J]. Front Physiol, 2019,10:1501.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Foersch S, Glasner C, Woerl AC, et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer[J]. Nat Med, 2023,29(2):430-439.CrossRefPubMed Foersch S, Glasner C, Woerl AC, et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer[J]. Nat Med, 2023,29(2):430-439.CrossRefPubMed
17.
Zurück zum Zitat Lee RY, Kross EK, Torrence J, et al. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome[J]. JAMA Netw Open, 2023,6(3):e231204.CrossRefPubMedPubMedCentral Lee RY, Kross EK, Torrence J, et al. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome[J]. JAMA Netw Open, 2023,6(3):e231204.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Yoon AP, Lee YL, Kane RL, et al. Development and Validation of a Deep Learning Model Using Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs[J]. JAMA Netw Open, 2021,4(5):e216096.CrossRefPubMedPubMedCentral Yoon AP, Lee YL, Kane RL, et al. Development and Validation of a Deep Learning Model Using Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs[J]. JAMA Netw Open, 2021,4(5):e216096.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer[J]. Strahlenther Onkol, 2020,196(10):879-887.CrossRefPubMed Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer[J]. Strahlenther Onkol, 2020,196(10):879-887.CrossRefPubMed
21.
Zurück zum Zitat Keenan T, Chen Q, Agron E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity[J]. Ophthalmology, 2022,129(5):571-584.CrossRefPubMed Keenan T, Chen Q, Agron E, et al. DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity[J]. Ophthalmology, 2022,129(5):571-584.CrossRefPubMed
22.
Zurück zum Zitat Chen W, Liu X, Li K, et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography[J]. Eur Radiol, 2022,32(3):1496-1505.CrossRefPubMed Chen W, Liu X, Li K, et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography[J]. Eur Radiol, 2022,32(3):1496-1505.CrossRefPubMed
23.
Zurück zum Zitat Hong N, Cho SW, Shin S, et al. Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography[J]. J Bone Miner Res, 2023,38(6):887-895.CrossRefPubMed Hong N, Cho SW, Shin S, et al. Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography[J]. J Bone Miner Res, 2023,38(6):887-895.CrossRefPubMed
24.
Zurück zum Zitat Alukaev D, Kiselev S, Mustafaev T, et al. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation[J]. Eur Spine J, 2022,31(8):2115-2124.CrossRefPubMed Alukaev D, Kiselev S, Mustafaev T, et al. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation[J]. Eur Spine J, 2022,31(8):2115-2124.CrossRefPubMed
25.
Zurück zum Zitat Perez-Diaz M. Use of systems with deep learning and machine learning for the detection and classification of malignant vs. benign spinal fractures with MRI: can deep/machine learning help us further for detection and characterization?[J]. Eur Radiol, 2023,33(7):5058–5059. Perez-Diaz M. Use of systems with deep learning and machine learning for the detection and classification of malignant vs. benign spinal fractures with MRI: can deep/machine learning help us further for detection and characterization?[J]. Eur Radiol, 2023,33(7):5058–5059.
26.
Zurück zum Zitat Liao S, Zhan Y, Dong Z, et al. Automatic Lumbar Spondylolisthesis Measurement in CT Images[J]. IEEE Trans Med Imaging, 2016, 35(7): 1658-1669.CrossRefPubMed Liao S, Zhan Y, Dong Z, et al. Automatic Lumbar Spondylolisthesis Measurement in CT Images[J]. IEEE Trans Med Imaging, 2016, 35(7): 1658-1669.CrossRefPubMed
27.
Zurück zum Zitat Zhao S, Wu X, Chen B, et al. Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network[J]. Med Image Anal, 2019, 12, 58:101533.CrossRef Zhao S, Wu X, Chen B, et al. Automatic spondylolisthesis grading from MRIs across modalities using faster adversarial recognition network[J]. Med Image Anal, 2019, 12, 58:101533.CrossRef
28.
Zurück zum Zitat Xuan J, Ke B, Ma W, et al. Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods[J]. Front Public Health, 2023, 11: 1044525.CrossRefPubMedPubMedCentral Xuan J, Ke B, Ma W, et al. Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods[J]. Front Public Health, 2023, 11: 1044525.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Linton AA, Hsu WK. A Review of Treatment for Acute and Chronic Pars Fractures in the Lumbar Spine[J]. Curr Rev Musculoskelet Med, 2022,15(4):259-271.CrossRefPubMedPubMedCentral Linton AA, Hsu WK. A Review of Treatment for Acute and Chronic Pars Fractures in the Lumbar Spine[J]. Curr Rev Musculoskelet Med, 2022,15(4):259-271.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Trinh GM, Shao HC, Hsieh KL, et al. Detection of Lumbar Spondylolisthesis from X-ray Images Using Deep Learning Network[J]. J Clin Med, 2022, 11(18): 5450.CrossRefPubMedPubMedCentral Trinh GM, Shao HC, Hsieh KL, et al. Detection of Lumbar Spondylolisthesis from X-ray Images Using Deep Learning Network[J]. J Clin Med, 2022, 11(18): 5450.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Mohammed N, Patra DP, Narayan V, et al. A comparison of the techniques of direct pars interarticularis repairs for spondylolysis and low-grade spondylolisthesis: a meta-analysis[J]. Neurosurg Focus, 2018,44(1):E10.CrossRefPubMed Mohammed N, Patra DP, Narayan V, et al. A comparison of the techniques of direct pars interarticularis repairs for spondylolysis and low-grade spondylolisthesis: a meta-analysis[J]. Neurosurg Focus, 2018,44(1):E10.CrossRefPubMed
32.
Zurück zum Zitat Koslosky E, Gendelberg D. Classification in Brief: The Meyerding Classification System of Spondylolisthesis[J]. Clin Orthop Relat Res, 2020,478(5):1125-1130.CrossRefPubMedPubMedCentral Koslosky E, Gendelberg D. Classification in Brief: The Meyerding Classification System of Spondylolisthesis[J]. Clin Orthop Relat Res, 2020,478(5):1125-1130.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Sun Y, Wang H, Yang D, et al. Characterization of radiographic features of consecutive lumbar spondylolisthesis[J]. Medicine (Baltimore), 2016,95(46):e5323.CrossRefPubMed Sun Y, Wang H, Yang D, et al. Characterization of radiographic features of consecutive lumbar spondylolisthesis[J]. Medicine (Baltimore), 2016,95(46):e5323.CrossRefPubMed
34.
Zurück zum Zitat Man T, Le Q. EfficientNetV2: Smaller Models and Faster Training[J]. International Conference on Machine Learning[C], 2021. Man T, Le Q. EfficientNetV2: Smaller Models and Faster Training[J]. International Conference on Machine Learning[C], 2021.
35.
Zurück zum Zitat Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.CrossRef Russakovsky O, Deng J, Su H, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.CrossRef
36.
Zurück zum Zitat He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. arXiv, 2015. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. arXiv, 2015.
37.
Zurück zum Zitat Huang G, Liu Z, van der Maaten L, et al. Densely Connected Convolutional Networks[J]. arXiv, 2018. Huang G, Liu Z, van der Maaten L, et al. Densely Connected Convolutional Networks[J]. arXiv, 2018.
38.
Zurück zum Zitat Man T, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[J]. Proceedings of the 36th International Conference on Machine Learning[C], 2019:6105–6114. Man T, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[J]. Proceedings of the 36th International Conference on Machine Learning[C], 2019:6105–6114.
39.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017:618-626. Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017:618-626.
40.
Zurück zum Zitat Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019,25(1):44-56.CrossRefPubMed Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019,25(1):44-56.CrossRefPubMed
41.
Zurück zum Zitat Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist[J]. European Radiology, 2023,33(3):1575-1588.CrossRefPubMed Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist[J]. European Radiology, 2023,33(3):1575-1588.CrossRefPubMed
42.
Zurück zum Zitat Chen Y, Sun Q, Li Z, et al. Development and validation of a deep learning model using convolutional neural networks to identify femoral internal fixation device in radiographs[J]. Skeletal Radiology, 2023,52(8):1577-1583.CrossRefPubMed Chen Y, Sun Q, Li Z, et al. Development and validation of a deep learning model using convolutional neural networks to identify femoral internal fixation device in radiographs[J]. Skeletal Radiology, 2023,52(8):1577-1583.CrossRefPubMed
43.
Zurück zum Zitat Fritz B, Yi PH, Kijowski R, et al. Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches[J]. Invest Radiol, 2023,58(1):3-13.CrossRefPubMed Fritz B, Yi PH, Kijowski R, et al. Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches[J]. Invest Radiol, 2023,58(1):3-13.CrossRefPubMed
44.
Zurück zum Zitat Chae H, Hong SH, Yeoh HJ, et al. Improved diagnostic performance of plain radiography for cervical ossification of the posterior longitudinal ligament using deep learning[J]. PLOS ONE, 2022,17(4):e267643.CrossRef Chae H, Hong SH, Yeoh HJ, et al. Improved diagnostic performance of plain radiography for cervical ossification of the posterior longitudinal ligament using deep learning[J]. PLOS ONE, 2022,17(4):e267643.CrossRef
45.
Zurück zum Zitat Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020,9(2):14.PubMedPubMedCentral Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020,9(2):14.PubMedPubMedCentral
46.
Zurück zum Zitat Soffer S, Ben-Cohen A, Shimon O, et al. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide[J]. Radiology, 2019,290(3):590-606.CrossRefPubMed Soffer S, Ben-Cohen A, Shimon O, et al. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide[J]. Radiology, 2019,290(3):590-606.CrossRefPubMed
47.
Zurück zum Zitat Trinh, G.M, Shao, H, Hsieh, KL, et al. LumbarNet: A Deep Learning Network for the Automated Detection of Lumbar Spondylolisthesis From X-Ray Images[J]. Preprints 2022, 2022060043. Trinh, G.M, Shao, H, Hsieh, KL, et al. LumbarNet: A Deep Learning Network for the Automated Detection of Lumbar Spondylolisthesis From X-Ray Images[J]. Preprints 2022, 2022060043.
48.
Zurück zum Zitat Khare MR, Havaldar RH. Predicting the anterior slippage of vertebral lumbar spine using Densenet-201[J]. Biomedical Signal Processing and control, 2023,86. Khare MR, Havaldar RH. Predicting the anterior slippage of vertebral lumbar spine using Densenet-201[J]. Biomedical Signal Processing and control, 2023,86.
49.
Zurück zum Zitat Varcin F, Erbay H, Cetin E, et al. Diagnosis of Lumbar Spondylolisthesis via Convolutional Neural Networks, 2019[C]. IEEE, 2019. Varcin F, Erbay H, Cetin E, et al. Diagnosis of Lumbar Spondylolisthesis via Convolutional Neural Networks, 2019[C]. IEEE, 2019.
50.
Zurück zum Zitat Zhang J, Lin H, Wang H, et al. Deep learning system assisted detection and localization of lumbar spondylolisthesis[J]. Frontiers in Bioengineering and Biotechnology, 2023,11. Zhang J, Lin H, Wang H, et al. Deep learning system assisted detection and localization of lumbar spondylolisthesis[J]. Frontiers in Bioengineering and Biotechnology, 2023,11.
Metadaten
Titel
The Classification of Lumbar Spondylolisthesis X-Ray Images Using Convolutional Neural Networks
verfasst von
Wutong Chen
Du Junsheng
Yanzhen Chen
Yifeng Fan
Hengzhi Liu
Chang Tan
Xuanming Shao
Xinzhi Li
Publikationsdatum
18.04.2024
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-024-01115-9

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.