Skip to main content
Erschienen in: European Journal of Medical Research 1/2021

Open Access 01.12.2021 | Case report

Tandem fecal microbiota transplantation cycles in an allogeneic hematopoietic stem cell transplant recipient targeting carbapenem-resistant Enterobacteriaceae colonization: a case report and literature review

verfasst von: Fengqin Su, Yi Luo, Jian Yu, Jimin Shi, Yanmin Zhao, Mengni Yan, He Huang, Yamin Tan

Erschienen in: European Journal of Medical Research | Ausgabe 1/2021

Abstract

Background

Due to limited antibiotic options, carbapenem-resistant Enterobacteriaceae (CRE) infections are associated with high non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Also, intestinal CRE colonization is a risk factor for subsequent CRE infection. Several clinical studies have reported successful fecal microbiota transplantation (FMT) for the gut decontamination of a variety of multidrug-resistant bacteria (MDRB), even in immunosuppressed patients. Similarly, other studies have also indicated that multiple FMTs may increase or lead to successful therapeutic outcomes.

Case presentation

We report CRE colonization in an allo-HSCT patient with recurrent CRE infections, and its successful eradication using tandem FMT cycles at 488 days after allo-HSCT. We also performed a comprehensive microbiota analysis. No acute or delayed adverse events (AEs) were observed. The patient remained clinically stable with CRE-negative stool culture at 26-month follow-up. Our analyses also showed some gut microbiota reconstruction. We also reviewed the current literature on decolonization strategies for CRE.

Conclusions

CRE colonization led to a high no-relapse mortality after allo-HSCT; however, well-established decolonization strategies are currently lacking. The successful decolonization of this patient suggests that multiple FMT cycles may be potential options for CRE decolonization.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40001-021-00508-8.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CRE
Carbapenem-resistant Enterobacteriaceae
HSCT
Hematopoietic stem cell transplantation
allo-HSCT
Allogeneic hematopoietic stem cell transplantation
FMT
Fecal microbiota transplantation;
CDI
Clostridium difficile infection
GVHD
Graft-versus-host disease
MDRB
Multidrug-resistant bacteria
AML
Acute myeloid leukemia
MRD
Minimal residual disease
CRKp
Carbapenem-resistant Klebsiella pneumonia
CT
Computerized tomography
GMP
Good manufacturing practice
AEs
Adverse events
SCFAs
Short-chain fatty acids
VRE
Vancomycin-resistant enterococci
SAEs
Serious adverse events
M
Male
F
Female
aGVHD
Acute graft-versus-host disease
GI
Gastrointestinal
rCDI
Recurrent Clostridium difficile infection
auto-HSCT
Autogeneic hematopoietic stem cell transplantation

Background

Carbapenem-resistant Enterobacteriaceae (CRE) pose a significant threat to global health due to limited antibiotic options, especially for immunocompromised patients, such as solid organ and hematological transplant recipients. In a nationwide Italian retrospective survey, CRE infection cases were reported in 53.4% of hematopoietic stem cell transplant (HSCT) centers, involving 2% of allogeneic-HSCT (allo-HSCT) recipients, with 39.2% of allo-HSCT patients colonized by subsequent CRE infections [1]. For hematological patients, CRE colonization is a known risk factor for subsequent CRE infections [2, 3]. Previous research has shown that CRE infection-related fatality rates, ranging from 52.2 to 64.4%, occur in hematologic malignancies [4, 5].
Fecal microbiota transplantation (FMT) is a novel therapeutic strategy and is recommended by several international guidelines as an effective treatment option for recurrent Clostridium difficile infection (CDI) [69]. FMT is also being explored as a potential therapy for other conditions, including inflammatory bowel disease [10, 11], irritable bowel syndrome[12, 13], graft-versus-host disease (GVHD) [1417], the decolonization of multidrug-resistant bacteria (MDRB) [1820], and several ongoing clinical trials; NCT04711967 (prospective study of FMT for acute intestinal GVHD after allo-HSCT) and NCT03678493 (a study of FMT in patients with AML allo-HSCT in recipients). FMT efficacy for MDRB decolonization is believed to be secondary to the transfer of organisms that restore microbiome diversity and provide colonization resistance [21]. Previous studies have suggested that multiple FMTs may increase the chance of successful therapeutic outcomes [2224]. Thus, we hypothesized that multiple FMTs may exert significant effects on CRE decolonization in a manner similar to CDI. Therefore, we used tandem FMT cycles to successfully eradicate gut CRE in an allo-HSCT recipient with recurrent CRE infections. We also analyzed the gut microbiota to provide structural insights on ongoing microbiome reconfiguration.

Case presentation

A 45-year-old man with acute myeloid leukemia (AML-M5b) was subject to human leukocyte antigen-haploidentical relative HSCT for persistent minimal residual disease (MRD) (Fig. 1a). Apart from AML, the patient did not have any potentially relevant pre-existing conditions or medical treatments that may have impacted on bacterial colonization, clearance, or drug tolerance. The conditioning regimen comprised busulfan (0.8 mg/kg/q6h), cyclophosphamide (60 mg/kg/d), and semustine (250 mg/m2/d). Cyclosporin A, methotrexate, and mycophenolate mofetil were used for GVHD prophylaxis, and levofloxacin and cefotaxime/sulbactam were given for antimicrobial prophylaxis. Prior to conditioning therapy, carbapenem-resistant Klebsiella pneumoniae (CRKp) colonization, which has a high level of resistance to most routine antibiotics except for tigecycline (Additional file 1: Figure S1), was identified during routine rectal screening, while no decolonization strategies were performed. Six days after allo-HSCT, the patient developed neutropenic fever and the organism that grew in the blood culture was identified as CRKp which with the same resistance pattern as the previous one. CRKp bacteremia was successfully controlled by tigecycline. Hematopoietic stem cells were engrafted on day +11 and the patient discharged on day +20. During regular follow-up, the patient was in remission, but suffered chronic oral GVHD as it had not responded well to prednisone and tacrolimus. Thus, the patient remained in a very poor nutritional state, weighing approximately 45 kg (height = 168 cm).
A second fever episode was accompanied by chills, cough, and expectoration on day +421. On this occasion, lung computerized tomography (CT) suggested pulmonary infection, and sputum and stool cultures were both positive for CRKp. This confirmed previous susceptibility tests, although blood cultures were negative. Infection was controlled by administering an antibiotic therapeutic regimen, including tigecycline. However, sputum and stool cultures remained positive for CRKp, indicating persistent CRKp colonization. Based on the same resistance patterns, we speculated that they were the same strain. Moreover, a previous study indicated that most bacteremia cases originated from the gut [25, 26]. Thus, FMT was planned to reduce the risk of infection and improve future quality of life.

Methods

Frozen microbiota stocks were generated by a non-profit stool bank (MedBiome, Xian, China). The unrelated donor was a 23-year-old male volunteer, who was carefully screened using our inclusion and exclusion criteria (Additional file 2: Table S1) [27]. Prior to donation, the donor provided informed written consent and was provided with a nutritious, balanced diet, without seafood, spices, and unclean food for 3 days. This donor contributed independently two fecal samples for this study.
Donor fecal microbiota was prepared by the stoolbank in a Good Manufacturing Practice (GMP)-level laboratory and workflow. Fresh feces were purified using a newly developed automatic purification system (GenFMTer, MedBiome, Xian, China), which ensured increased quality control when compared with manual sample preparation. The process also significantly reduced FMT-related adverse events (AEs) by removing undigested food residues, fungi, parasite eggs, and some small particles [28]. The precipitate was removed from the washed fecal suspension by centrifugation, followed by washing three times in sterile saline, and re-centrifugation. Thus, crudely purified fecal microbiota precipitate was obtained, and approximately 30–40 ml precipitate was resuspended in 30% sterile glycerin, packaged in each of three plastic bottles, and stored at − 80 °C. Each time, the laboratory supplied the three frozen microbiota stocks for one cycle which were transported to the clinic on dry ice before the cycle.
Prior to FMT, the suspension from one plastic bottle was thawed at 37 °C and purified by repeated centrifugation. The precipitate was diluted to 200 ml (except on one occasion when it was diluted to 250 ml) in sterile saline. It was then stirred, and was ready for use when completely homogenized.
Before the procedure, the patient provided written informed consent. To reduce the risk of failure, we performed tandem FMT cycles.
Fecal microbiota preparations were delivered to the intestine over 2–4 min using a nasoduodenal tube (localized using X rays). The patient then fasted for 2 h after which he was permitted to eat and drink normally. This procedure was repeated three times every other day for each course. Two courses were performed with a 17 day interval (23/25/27 July 2018 and 13/15/17 Aug 2018) (Fig. 1b). FMT was initiated at day +488, while the patient was under prednisone immunosuppressive therapy, and no antibiotics were taken since his last discharge from hospital. The patient was observed for a few hours at the hospital after each procedure. He was regularly followed up in the outpatient clinic using stool culture samples.
For stool analysis, we performed the following; prior to FMT, 1 week and 3 weeks after the first cycle, and 1 week, 3 months, and 11 months after the second, we collected stool samples, extracted DNA, and analyzed 16 s rDNA amplicons using an Illumina Miseq (Genetalks, Changsha, China). Raw sequence data were analyzed using Quantitative Insights Into Microbial Ecology software (QIIME, version 1.9.1), and visualized by R (version 3.5.1, R Foundation for Statistical Computing, Vienna, Austria). Microbial diversity was estimated using the Shannon diversity index.

Results

The patient tolerated tandem FMT cycles without AEs during the initial process and follow-up period (26 months). Throughout follow-up after FMT termination, and for the next 26 months (between August 2018 and October 2020), stool cultures were CRE negative at 1 week, 1 month, 2 months, 3 months, 6 months, 11 months, and 26 months, and the patient remained clinically stable. The only fever episode occurred at 12 months, and included a positive sputum culture for the same CRKp as previously observed, but lung CT was clear and blood and stool cultures were negative. Empirical treatment with piperacillin/tazobactam did not control the fever, but it was quickly resolved by successive meropenem administration, suggesting that the CRKp may not have been the causative pathogen this time. A significant improvement was observed in oral chronic GVHD, and the patient gained approximately 5 kg over 8 months following FMT.
To identify correlations between fecal microbiota and clinical benefits, we evaluated changes in bacterial microbiota before and after FMT cycles using 16 s rDNA sequencing (Fig. 2). Prior to FMT, we detected pathobionts of the Proteobacteria phylum, more notably Escherichia/Shigella and Klebsiella, which accounted for > 33% of the whole community, and was far higher than healthy individuals [29]. Eleven months after tandem FMT cycles, with the expansion of the protective phylum, Bacteroidetes, the patients’ microbial composition was eventually dominated by Firmicutes and Bacteroidetes, similar to normal commensal patterns (Fig. 2a) [30]. Bacteroidetes were associated with protection against Enterococcus domination [31], improved gut GVHD [32, 33], protection against CDI [34], and protection against Gram-negative blood infections [35], which were mainly associated with short-chain fatty acids’ (SCFAs) production. In contrast, the outgrowth of opportunistic pathogens belonging to Proteobacteria had been linked to increased treatment-related mortality, including GVHD, infections, and organ failure after allo-HSCT [36]. In a recent study, recolonization with microbiota containing anaerobic Prevotella species as a keystone genus was correlated with CRE decolonization [37]. In our case, the donor’s two fecal samples both contained significant Prevotella levels which are not ordinarily detected in patient’s fecal microbiota before FMT. Also, levels were significant 3 weeks after the first FMT cycle and remained for 1 week after the second cycle (Fig. 2c). Although levels disappeared 3 weeks after the second FMT cycle, our observations suggest that Prevotella may play an important role in CRE decolonization. Fecal microbiota diversity (Shannon diversity index) also increased from 3.09 to 3.52 (final measurement) (Fig. 2b).
We also analyzed differences between the patient’s fecal microbiota and the first or second donor fecal sample using UniFrac distance analysis (Fig. 3). The difference was dramatically increased after the second FMT cycle. This may have been due to the difference between the donor’s two samples. The patient’s fecal microbiota closely matched the donor’s fecal microbiota after both cycles, suggesting that the grafted samples contributed to diversity recovery.

Discussion and conclusions

Previous reports have shown that colonization with MDRB, including CRE and vancomycin-resistant enterococci (VRE), exerts a negative impact on overall survival after allo-HSCT due to a higher incidence of infection, especially in patients with lower gut microbiota diversity [38]. Healthy gut microbiota can prevent invading pathogens from colonizing the intestinal tract, a phenomenon known as colonization resistance. This process is underpinned by several mechanisms, including competition for metabolic and physical niches, production of inhibitory metabolites, and interaction with the host immune system [39]. However, major factors including conditional chemotherapy and/or irradiation, antibiotic therapy, GVHD, mucositis, changes in diet, and infection (e.g., C. difficile) can alter microbiota homeostasis in allo-HSCT, and cause loss of this colonization resistance in allo-HSCT recipients [40, 41]. We therefore speculated that gut composition and diversity restoration by FMT could benefit allo-HSCT recipients and clear CRE from the gut.
The literature suggests that spontaneous CRE decolonization takes time. In a retrospective multicenter study conducted in two different tertiary care hospitals, the spontaneous decolonization of CRE and VRE occurred within the first 30 days in 16.4% of cases, and 48.2% after 3 months, with a median follow-up of 96 days (0–974) [42]. In addition, Haverkate et al. also reported that only 17% of long-term acute care hospital patients lost CRKp colonization within 4 weeks, and approximately 50% were still carriers after 9 months [43]. A previous meta-analysis reported that the rate of spontaneous CRE decolonization was only 23.3%, and a significant proportion of carriers (35.2%) were still colonized up to 12 months later [44].
The most common strategy for gut CRE decolonization is oral, non-absorbable antibiotics, including gentamicin, colistin, or polymyxin E, which must achieve sufficiently high concentrations in the digestive tract to inhibit bacterial growth. The decolonization rate of these antibiotics ranges between 37.5 and 71% [4547], and up to 66% in HSCT recipients [48]. These data were significantly higher than the spontaneous decolonization group. Previous studies have also shown that antibiotic therapies are associated with dramatic increases in antibiotic-resistant genes, and may increase microbial resistance in the future [49, 50]. Furthermore, due to long-term hospitalization, low functional patient status, and gut microbiota dysbiosis, even after successful decolonization, allo-HSCT recipients are more likely to reacquire colonization from other patients or the environment [51].
Several case reports and small-sample clinical studies have reported the beneficial effects of FMT towards MDRB decolonization in immunosuppressed patients with blood disorders. A prospective, single-center study by Bilinski et al. showed the complete eradication of MDRB in 15 of 20 patients with blood disorders after FMT, with a higher abundance of Barnesiella species, Bacteroides, and Butyricimonas in responders [52]. Of note, six patients received FMT after allo-HSCT. Similarly, Battipaglia et al. successfully eradicated CRE/VRE after FMT in 7 of 10 patients with hematologic malignancies, before or after allo-HCST [53]. More recently, Merli et al. showed that MDRB decolonization was achieved in four of five (80%) pediatric patients before allo-HSCT by FMT, within 1 week [54]. These reports supported not only FMT efficacy but also demonstrated that FMT in allo-HSCT settings was safe and tolerable. Furthermore, some studies have also suggested a significant reduction in antibiotic-resistant gene carriage in recipient microbiota following FMT for CDI [5557].
However, some studies have observed mixed conclusions. Sohn et al. performed FMT to eradicate long-term VRE colonization in three patients; however, only one patient was cleared at 15 weeks after FMT [58]. Several reasons may be responsible for these observations. First, small-sample sizes may have contributed to the different results. Second, age may be a factor affecting FMT results, as outlined in some studies [59, 60]. The patients in the study by Sohn et al. were older (median age was 74.7 vs. 51 years in Bilinski et al. vs. 48 years in Battipaglia et al. vs. 11.4 years in Merli et al.). In a prospective comparative study, Dinh et al. observed that VRE clearance after FMT appeared to be quicker than CRE clearance (87.5% vs. 50%)[61]. In addition to factors discussed by these authors, the age differences between the CRE and VRE groups (median age was 66 years for VRE vs. 73.5 years for CRE) may also have contributed to the different results. This may have been due to longer hospitalization and more underlying significant comorbidities in elderly patients. Other factors including stool donors, administration methods, antibiotic use before or after FMT, and the number and frequency of administrations may have impacted FMT outcomes. As a consequence, multi-center and randomized-controlled trials are ongoing to evaluate the true impact of FMT for MDRB eradication; NCT04181112 (fecal transplant for MDRO decolonization) and NCT04759001 (FMT for the decolonization of carbapenem-resistant Enterobacteriaceae).
In our case, AEs were not observed; however, FMT-related AEs have been previously reported in other studies. Recently, a systematic review summarized the global incidence of FMT-related AEs between 2000 and 2020 [62]. Most were mild, moderate, and self-limiting, and the most frequently reported AEs were diarrhea (10%) and abdominal discomfort/pain/cramping (7%), which may have been due to most patients receiving FMT with impaired intestinal mucosal barriers and severe inflammation. FMT-related serious adverse events (SAEs), including infections and deaths were reported in 1.4% of patients, all of whom had mucosal barrier injuries. For MDRB decolonization in patients with hematologic malignancies, the main AEs were mild and transient gastro-intestinal symptoms, including diarrhea, abdominal discomfort, nausea, bloating, and constipation, with no major AEs reported [63]. We have summarized all recently reported FMT-related AEs in allo-HSCT patients (Table 1). In line with the literature, most AEs were mild, transient, and self-limiting, and the most frequently reported AEs were diarrhea (22.79%) and abdominal pain/discomfort/bloating/urgency (7.35%). The diarrhea incidence was higher in allo-HSCT patients, especially in those with neutropenia. Other AEs including nausea, vomiting, and pharyngolaryngeal pain were reported in 2.21% of FMT procedures, respectively. Overall, the FMT has shown an excellent safety profile. However, in a most recent study by Bilinski et al., higher rate of SAEs, including septic shock, sepsis, and norovirus-mediated GI tract infection were observed, which may have been due to the poor general performance status of study patients [64]. Moreover, it was observed that a worse general performance status tended to correlate with more frequent complications. Importantly, none of these events resulted in death. In addition, several reports have indicated no significant differences in SAE rates between immunocompromised and immunocompetent patients [65, 66]. Thus, immunosuppression may not be a contraindication for FMT; however, the procedure still should be used with caution, especially in patients with a low-performance status.
Table 1
Studies of FMT in allo-HSCT patients
Authors
Study type
Number of patients
Age
Sex
Number of allo-HSCT patients
Immunocompromission
Outcome
Route of FMT Administration
Times of FMT
FMT-related adverse events (number of times)
FMT for GVHD treatment
 Kakihana, 2016 Japan [14]
Pilot study
4
46 (42–64)
2 M 2F
1
No mention
3 complete response ,1 partial response
Nasoduodenal tube
7
Abdominal pain (4)
Diarrhea (3)
Pharyngolaryngeal pain (3)
Nausea (1) Belch (1)
 Spindelboeck, 2017 Austria [17]
Retrospective case series
3
60 (53–61)
1 M 2F
3
No mention
2 complete resolution, 1 partial resolution
Colonoscopy
9
None
 Qi, 2018 China [15]
Pilot study
8
35.6 (20–48)
3 M 5F
8
No mention
All the patients achieved clinical symptomatic remission
Nasoduodenal tube
12
None
 Kaito, 2018 Japan [16]
Case report
1
21
F
1
No mention
Bacterial diversity was restored, with improvement of diarrhea
Oral capsule
 
Transient fever Herpes zoster
 Mao, 2020 China [67]
Case report
1
31
M
1
No mention
Intestinal aGVHD was controlled and did not recur again
Oral capsule
2
None
 Bilinski, 2021 Poland [63]
Prospective multicenter study
13
41.5 (23–66)
9 M 4F
13
No mention
Overall response rate reached 62.5% (10/16)
Nasoduodenal tube
16
Septic shock (1)
Sepsis (1)
Norovirus-mediated GI tract infection (1)
FMT for MDRB decolonization
 Bilinski, 2017 Poland [51]
Prospective single-center study
20
51 (22–77)
14 M 6F
6
8 patients with neutropenia (< 1.8 × 109 neutrophils/L), but not severe neutropenia (< 0.5 × 109 /L)
15/20 (75%) decolonization
Nasoduodenal tube
25
Vomiting (1)
Diarrhea (25)
 Innes, 2017 UK [68]
Case report
1
63
M
1
FMT was administrated 2 weeks before allo-HSCT
All kinds of MRD were decolonized
Nasogastric tube
1
Mild, self-limited nausea, loose stool and abdominal discomfort
 Battipaglia, 2019 France [52]
Retrospective single-center study
10
48 (16–64)
4 M 6F
6 (4 patients before allo-HSCT)
Neutrophil count was > 1 × 109 /L in all patients but one who had a neutrophil count of 0.17 × 109 /L
7/10 (70%) decolonization
Enema (10)
Nasogastric tube (3)
13
Constipation (1) Diarrhea (2)
FMT for rCDI treatment
 Webb, 2016 USA [69]
Retrospective case series
7
43 (33–51)
4 M 3F
7
No mention
7/7 (100%) without rCDI
Nasojejunal tube (6) Colonoscopy (2)
8
Mild self-limited GI discomfort/bloating (2) Self-limited chills (1)
Bloating and urgency (2)
(one patient was suspected of having small intestinal bacterial overgrowth)
Self-limited right upper quadrant pain (1)
 Moss, 2017 USA [70]
Retrospective, case series
8
56 (38–71)
3 M 5F
6 (two patients after auto-HSCT)
No mention
8/8 (100%) patients with resolution of rCDI
Oral capsule
8
Vomiting (1)
 Bluestone, 2018 USA [71]
Retrospective, case series
3
8 (2–12)
2 M 1F
3
No mention
1/3 (33.3%) patient without rCDI
Gastric tube (6) Colonoscopy (1) Gastrojejunal tube (1)
8
Nausea and retching (1) Vomiting (1)
FMT for intestinal microbiome reconstruction
 DeFilipp, 2018 USA [72]
Open-label single-group pilot study
13
63 (26–71)
6 M 7F
13
FMT capsules were administered no later than 4 weeks after neutrophil engraftment
FMT led to early expansion of microbiome diversity
Oral capsule
13
Severe abdominal pain (1)
 Taur, 2019 USA [73]
Randomized-controlled clinical trial
14
52.5 (32–71)
6 M 8F
14
FMT was administrated a median of 18 (8–27) days after engraftment
Diversity and composition of gut microbiota were restored
Enema
14
None
 The total number of FMT times
136
Diarrhea
n = 31 (22.79%)
Abdominal pain/discomfort/bloating/urgency
n = 10 (7.35%)
Nausea
n = 3 (2.21%)
Vomiting
n = 3 (2.21%)
Pharyngolaryngeal pain
n = 3 (2.21%)
Others (belch/fever/herpes zoster/septic shock/sepsis/norovirus-mediated GI tract infection/constipation/chills/right upper quadrant pain)
n = 9 (6.62%)
allo-HSCT allogeneic hematopoietic stem cell transplantation, FMT fecal microbiota transplantation, GVHD graft-versus-host disease, M male, F female, aGVHD acute graft-versus-host disease, GI gastrointestinal, MDRB multidrug-resistant bacteria, rCDI recurrent Clostridium difficile infection, auto-HSCT autogeneic hematopoietic stem cell transplantation
DeFilipp et al. described two immunocompromised recipients with bacteremia from drug-resistant Escherichia coli in donor stool; one recipient with hematologic malignancy who had received FMT capsules on day 3 and day 4 before allo-HSCT died [74]. This study generated an SAE safety alert due to MDRB transmission via FMT, especially in immunocompromised patients. Therefore, standardized donor-screening protocols, included MDRB detection, are urgently required in the field. To avoid potential risks from FMT, probiotic cocktails could be used as alternative strategies. Nagpal et al. developed a novel human-origin probiotic cocktail containing five Lactobacillus and five Enterococcus strains from healthy infant gut which modulated the fecal microbiome and enhanced SCFAs in mouse gut and human feces [75]. Similarly, Ahmadi et al., in an aged mouse model, showed the probiotic cocktail counteracted metabolic syndrome, and deeply reshaped the gut microbiota [76]. However, according to our literature review, this novel strategy has not been used to decolonize MDRB, and therefore, further study is warranted.
In our case, tandem FMT cycles resulted in successful CRE decolonization of the gut, and a concomitant improvement in quality of life. As we observed only one patient, limited conclusions may be drawn; however, these data suggest that multiple FMTs may be viable options for CRE decolonization. Additionally, our 26-month follow-up was longer than all previous studies. Many aspects of FMT remain unknown and the long-term consequences are unclear, and therefore, standardized and harmonized studies are required to properly evaluate FMT as a promising clinical strategy for microbiome-related disorders.

Acknowledgements

We thank the patient and the donor for provision of clinical data.

Declarations

Ethics approval

The study protocol was approved by the Clinical Research Ethics Committee of the First Affiliated Hospital of Zhejiang University School of Medicine and passed the Chinese Clinical Trial Registration Certification (ChiCTR1800016182, this patient has both CRE colonization and GVHD). Written informed consent was obtained from both the donor and the patient according to the policies of the committee.
Informed consent was obtained from the patient and the donor.
Consent for publication was obtained from all participants to the study. Data were published anonymously.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Girmenia C, Rossolini GM, Piciocchi A, Bertaina A, Pisapia G, Pastore D, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015;50(2):282–8.PubMed Girmenia C, Rossolini GM, Piciocchi A, Bertaina A, Pisapia G, Pastore D, et al. Infections by carbapenem-resistant Klebsiella pneumoniae in SCT recipients: a nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015;50(2):282–8.PubMed
2.
Zurück zum Zitat Zhang L, Zhai W, Lin Q, Zhu X, Xiao Z, Yang R, et al. Carbapenem-resistant Enterobacteriaceae in hematological patients: outcome of patients with carbapenem-resistant Enterobacteriaceae infection and risk factors for progression to infection after rectal colonization. Int J Antimicrob Agents. 2019;54(4):527–59.PubMed Zhang L, Zhai W, Lin Q, Zhu X, Xiao Z, Yang R, et al. Carbapenem-resistant Enterobacteriaceae in hematological patients: outcome of patients with carbapenem-resistant Enterobacteriaceae infection and risk factors for progression to infection after rectal colonization. Int J Antimicrob Agents. 2019;54(4):527–59.PubMed
3.
Zurück zum Zitat Bilinski J, Robak K, Peric Z, Marchel H, Karakulska-Prystupiuk E, Halaburda K, et al. Impact of gut colonization by antibiotic-resistant bacteria on the outcomes of allogeneic hematopoietic stem cell transplantation: a retrospective, single-center study. Biol Blood Marrow Transplant. 2016;22(6):1087–93.PubMed Bilinski J, Robak K, Peric Z, Marchel H, Karakulska-Prystupiuk E, Halaburda K, et al. Impact of gut colonization by antibiotic-resistant bacteria on the outcomes of allogeneic hematopoietic stem cell transplantation: a retrospective, single-center study. Biol Blood Marrow Transplant. 2016;22(6):1087–93.PubMed
4.
Zurück zum Zitat Trecarichi EM, Pagano L, Martino B, Candoni A, Di Blasi R, Nadali G, et al. Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: clinical impact of carbapenem resistance in a multicentre prospective survey. Am J Hematol. 2016;91(11):1076–81.PubMed Trecarichi EM, Pagano L, Martino B, Candoni A, Di Blasi R, Nadali G, et al. Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients: clinical impact of carbapenem resistance in a multicentre prospective survey. Am J Hematol. 2016;91(11):1076–81.PubMed
5.
Zurück zum Zitat Pagano L, Caira M, Trecarichi EM, Spanu T, Di Blasi R, Sica S, et al. Carbapenemase-producing Klebsiella pneumoniae and hematologic malignancies. Emerg Infect Dis. 2014;20(7):1235–6.PubMedPubMedCentral Pagano L, Caira M, Trecarichi EM, Spanu T, Di Blasi R, Sica S, et al. Carbapenemase-producing Klebsiella pneumoniae and hematologic malignancies. Emerg Infect Dis. 2014;20(7):1235–6.PubMedPubMedCentral
6.
Zurück zum Zitat van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.PubMed van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.PubMed
7.
Zurück zum Zitat McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1-48.PubMedPubMedCentral McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1-48.PubMedPubMedCentral
8.
Zurück zum Zitat Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–80.PubMed Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–80.PubMed
9.
Zurück zum Zitat Haifer C, Kelly CR, Paramsothy S, Andresen D, Papanicolas LE, McKew GL, et al. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut. 2020;69(5):801–10.PubMed Haifer C, Kelly CR, Paramsothy S, Andresen D, Papanicolas LE, McKew GL, et al. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut. 2020;69(5):801–10.PubMed
10.
Zurück zum Zitat Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321(2):156–64.PubMedPubMedCentral Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321(2):156–64.PubMedPubMedCentral
11.
Zurück zum Zitat Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075):1218–28.PubMed Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075):1218–28.PubMed
12.
Zurück zum Zitat Johnsen PH, Hilpüsch F, Cavanagh JP, Leikanger IS, Kolstad C, Valle PC, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3(1):17–24.PubMed Johnsen PH, Hilpüsch F, Cavanagh JP, Leikanger IS, Kolstad C, Valle PC, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3(1):17–24.PubMed
13.
Zurück zum Zitat El-Salhy M, Hatlebakk JG, Gilja OH, Kristoffersen AB, Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020;69(5):859–67.PubMed El-Salhy M, Hatlebakk JG, Gilja OH, Kristoffersen AB, Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020;69(5):859–67.PubMed
14.
Zurück zum Zitat Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128(16):2083–8.PubMedPubMedCentral Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128(16):2083–8.PubMedPubMedCentral
15.
Zurück zum Zitat Qi X, Li X, Zhao Y, Wu X, Chen F, Ma X, et al. Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study. Front Immunol. 2018;9:2195.PubMedPubMedCentral Qi X, Li X, Zhao Y, Wu X, Chen F, Ma X, et al. Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study. Front Immunol. 2018;9:2195.PubMedPubMedCentral
16.
Zurück zum Zitat Kaito S, Toya T, Yoshifuji K, Kurosawa S, Inamoto K, Takeshita K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv. 2018;2(22):3097–101.PubMedPubMedCentral Kaito S, Toya T, Yoshifuji K, Kurosawa S, Inamoto K, Takeshita K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv. 2018;2(22):3097–101.PubMedPubMedCentral
17.
Zurück zum Zitat Spindelboeck W, Schulz E, Uhl B, Kashofer K, Aigelsreiter A, Zinke-Cerwenka W, et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease. Haematologica. 2017;102(5):e210–3.PubMedPubMedCentral Spindelboeck W, Schulz E, Uhl B, Kashofer K, Aigelsreiter A, Zinke-Cerwenka W, et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease. Haematologica. 2017;102(5):e210–3.PubMedPubMedCentral
18.
Zurück zum Zitat Davido B, Batista R, Michelon H, Lepainteur M, Bouchand F, Lepeule R, et al. Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? J Hosp Infect. 2017;95(4):433–7.PubMed Davido B, Batista R, Michelon H, Lepainteur M, Bouchand F, Lepeule R, et al. Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? J Hosp Infect. 2017;95(4):433–7.PubMed
19.
Zurück zum Zitat Saïdani N, Lagier JC, Cassir N, Million M, Baron S, Dubourg G, et al. Faecal microbiota transplantation shortens the colonisation period and allows re-entry of patients carrying carbapenamase-producing bacteria into medical care facilities. Int J Antimicrob Agents. 2019;53(4):355–61.PubMed Saïdani N, Lagier JC, Cassir N, Million M, Baron S, Dubourg G, et al. Faecal microbiota transplantation shortens the colonisation period and allows re-entry of patients carrying carbapenamase-producing bacteria into medical care facilities. Int J Antimicrob Agents. 2019;53(4):355–61.PubMed
20.
Zurück zum Zitat Crum-Cianflone NF, Sullivan E, Ballon-Landa G. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol. 2015;53(6):1986–9.PubMedPubMedCentral Crum-Cianflone NF, Sullivan E, Ballon-Landa G. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol. 2015;53(6):1986–9.PubMedPubMedCentral
21.
Zurück zum Zitat Manges AR, Steiner TS, Wright AJ. Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review. Infect Dis. 2016;48(8):587–92. Manges AR, Steiner TS, Wright AJ. Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review. Infect Dis. 2016;48(8):587–92.
22.
Zurück zum Zitat Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394(10196):420–31.PubMed Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394(10196):420–31.PubMed
23.
Zurück zum Zitat Fischer M, Sipe B, Cheng YW, Phelps E, Rogers N, Sagi S, et al. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut Microbes. 2017;8(3):289–302.PubMed Fischer M, Sipe B, Cheng YW, Phelps E, Rogers N, Sagi S, et al. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: a promising treatment approach. Gut Microbes. 2017;8(3):289–302.PubMed
24.
Zurück zum Zitat Ianiro G, Masucci L, Quaranta G, Simonelli C, Lopetuso LR, Sanguinetti M, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions. Aliment Pharmacol Ther. 2018;48(2):152–9.PubMed Ianiro G, Masucci L, Quaranta G, Simonelli C, Lopetuso LR, Sanguinetti M, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions. Aliment Pharmacol Ther. 2018;48(2):152–9.PubMed
25.
Zurück zum Zitat Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018;24(12):1809–14.PubMedPubMedCentral Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018;24(12):1809–14.PubMedPubMedCentral
26.
Zurück zum Zitat Samet A, Sledzińska A, Krawczyk B, Hellmann A, Nowicki S, Kur J, et al. Leukemia and risk of recurrent Escherichia coli bacteremia: genotyping implicates E. coli translocation from the colon to the bloodstream. Eur J Clin Microbiol Infect Dis. 2013;32(11):1393–400.PubMedPubMedCentral Samet A, Sledzińska A, Krawczyk B, Hellmann A, Nowicki S, Kur J, et al. Leukemia and risk of recurrent Escherichia coli bacteremia: genotyping implicates E. coli translocation from the colon to the bloodstream. Eur J Clin Microbiol Infect Dis. 2013;32(11):1393–400.PubMedPubMedCentral
27.
Zurück zum Zitat Cui B, Li P, Xu L, Zhao Y, Wang H, Peng Z, et al. Step-up fecal microbiota transplantation strategy: a pilot study for steroid-dependent ulcerative colitis. J Transl Med. 2015;12(13):298. Cui B, Li P, Xu L, Zhao Y, Wang H, Peng Z, et al. Step-up fecal microbiota transplantation strategy: a pilot study for steroid-dependent ulcerative colitis. J Transl Med. 2015;12(13):298.
28.
Zurück zum Zitat Zhang T, Lu G, Zhao Z, Liu Y, Shen Q, Li P, et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell. 2020;11(4):251–66.PubMedPubMedCentral Zhang T, Lu G, Zhao Z, Liu Y, Shen Q, Li P, et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell. 2020;11(4):251–66.PubMedPubMedCentral
29.
Zurück zum Zitat Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.PubMedPubMedCentral Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.PubMedPubMedCentral
30.
Zurück zum Zitat Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and Diseases. Microorganisms. 2019;7(1):14.PubMedCentral Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and Diseases. Microorganisms. 2019;7(1):14.PubMedCentral
31.
Zurück zum Zitat Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120(12):4332–41.PubMedPubMedCentral Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120(12):4332–41.PubMedPubMedCentral
32.
Zurück zum Zitat Biagi E, Zama D, Nastasi C, Consolandi C, Fiori J, Rampelli S, et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant. 2015;50(7):992–8.PubMed Biagi E, Zama D, Nastasi C, Consolandi C, Fiori J, Rampelli S, et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant. 2015;50(7):992–8.PubMed
33.
Zurück zum Zitat Doki N, Suyama M, Sasajima S, Ota J, Igarashi A, Mimura I, et al. Clinical impact of pre-transplant gut microbial diversity on outcomes of allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2017;96(9):1517–23.PubMed Doki N, Suyama M, Sasajima S, Ota J, Igarashi A, Mimura I, et al. Clinical impact of pre-transplant gut microbial diversity on outcomes of allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2017;96(9):1517–23.PubMed
34.
Zurück zum Zitat Lee YJ, Arguello ES, Jenq RR, Littmann E, Kim GJ, Miller LC, et al. Protective factors in the intestinal microbiome against Clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J Infect Dis. 2017;215(7):1117–23.PubMedPubMedCentral Lee YJ, Arguello ES, Jenq RR, Littmann E, Kim GJ, Miller LC, et al. Protective factors in the intestinal microbiome against Clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J Infect Dis. 2017;215(7):1117–23.PubMedPubMedCentral
36.
Zurück zum Zitat Staffas A, da Silva MB, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129(8):927–33.PubMedPubMedCentral Staffas A, da Silva MB, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129(8):927–33.PubMedPubMedCentral
37.
Zurück zum Zitat Lee JJ, Yong D, Suk KT, Kim DJ, Woo HJ, Lee SS, et al. Alteration of gut microbiota in carbapenem-resistant Enterobacteriaceae carriers during fecal microbiota transplantation according to decolonization periods. Microorganisms. 2021;9(2):352.PubMedPubMedCentral Lee JJ, Yong D, Suk KT, Kim DJ, Woo HJ, Lee SS, et al. Alteration of gut microbiota in carbapenem-resistant Enterobacteriaceae carriers during fecal microbiota transplantation according to decolonization periods. Microorganisms. 2021;9(2):352.PubMedPubMedCentral
38.
Zurück zum Zitat Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82.PubMedPubMedCentral Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82.PubMedPubMedCentral
39.
Zurück zum Zitat Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89.PubMedPubMedCentral Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89.PubMedPubMedCentral
40.
Zurück zum Zitat Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer. 2018;18(5):283–95.PubMedPubMedCentral Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer. 2018;18(5):283–95.PubMedPubMedCentral
41.
Zurück zum Zitat Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90–105.PubMedPubMedCentral Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90–105.PubMedPubMedCentral
42.
Zurück zum Zitat Davido B, Moussiegt A, Dinh A, Bouchand F, Matt M, Senard O, et al. Germs of thrones—spontaneous decolonization of carbapenem-Resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococci (VRE) in western Europe: is this myth or reality? Antimicrob Resist Infect Control. 2018;13(7):100. Davido B, Moussiegt A, Dinh A, Bouchand F, Matt M, Senard O, et al. Germs of thrones—spontaneous decolonization of carbapenem-Resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococci (VRE) in western Europe: is this myth or reality? Antimicrob Resist Infect Control. 2018;13(7):100.
43.
Zurück zum Zitat Haverkate MR, Weiner S, Lolans K, Moore NM, Weinstein RA, Bonten MJ, et al. Duration of colonization with Klebsiella pneumoniae carbapenemase-producing bacteria at long-term acute care hospitals in Chicago, Illinois. Open Forum Infect Dis. 2016;3(4):ofw178.PubMedPubMedCentral Haverkate MR, Weiner S, Lolans K, Moore NM, Weinstein RA, Bonten MJ, et al. Duration of colonization with Klebsiella pneumoniae carbapenemase-producing bacteria at long-term acute care hospitals in Chicago, Illinois. Open Forum Infect Dis. 2016;3(4):ofw178.PubMedPubMedCentral
44.
Zurück zum Zitat Bar-Yoseph H, Hussein K, Braun E, Paul M. Natural history and decolonization strategies for ESBL/carbapenem-resistant Enterobacteriaceae carriage: systematic review and meta-analysis. J Antimicrob Chemother. 2016;71(10):2729–39.PubMed Bar-Yoseph H, Hussein K, Braun E, Paul M. Natural history and decolonization strategies for ESBL/carbapenem-resistant Enterobacteriaceae carriage: systematic review and meta-analysis. J Antimicrob Chemother. 2016;71(10):2729–39.PubMed
45.
Zurück zum Zitat Saidel-Odes L, Polachek H, Peled N, Riesenberg K, Schlaeffer F, Trabelsi Y, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.PubMed Saidel-Odes L, Polachek H, Peled N, Riesenberg K, Schlaeffer F, Trabelsi Y, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.PubMed
46.
Zurück zum Zitat Lambelet P, Tascini C, Fortunato S, Stefanelli A, Simonetti F, Vettori C, et al. Oral gentamicin therapy for carbapenem-resistant Klebsiella pneumoniae gut colonization in hematologic patients: a single center experience. New Microbiol. 2017;40(3):161–4.PubMed Lambelet P, Tascini C, Fortunato S, Stefanelli A, Simonetti F, Vettori C, et al. Oral gentamicin therapy for carbapenem-resistant Klebsiella pneumoniae gut colonization in hematologic patients: a single center experience. New Microbiol. 2017;40(3):161–4.PubMed
47.
Zurück zum Zitat Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A, Hussein K, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infect Control. 2013;41(12):1167–72.PubMed Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A, Hussein K, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infect Control. 2013;41(12):1167–72.PubMed
48.
Zurück zum Zitat Zuckerman T, Benyamini N, Sprecher H, Fineman R, Finkelstein R, Rowe JM, et al. SCT in patients with carbapenem resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant. 2011;46(9):1226–30.PubMed Zuckerman T, Benyamini N, Sprecher H, Fineman R, Finkelstein R, Rowe JM, et al. SCT in patients with carbapenem resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant. 2011;46(9):1226–30.PubMed
49.
Zurück zum Zitat Oostdijk EA, de Smet AM, Blok HE, Thieme Groen ES, van Asselt GJ, Benus RF, et al. Ecological effects of selective decontamination on resistant gram-negative bacterial colonization. Am J Respir Crit Care Med. 2010;181(5):452–7.PubMed Oostdijk EA, de Smet AM, Blok HE, Thieme Groen ES, van Asselt GJ, Benus RF, et al. Ecological effects of selective decontamination on resistant gram-negative bacterial colonization. Am J Respir Crit Care Med. 2010;181(5):452–7.PubMed
50.
Zurück zum Zitat Halaby T, Al Naiemi N, Kluytmans J, van der Palen J, Vandenbroucke-Grauls CM. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother. 2013;57(7):3224–9.PubMedPubMedCentral Halaby T, Al Naiemi N, Kluytmans J, van der Palen J, Vandenbroucke-Grauls CM. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother. 2013;57(7):3224–9.PubMedPubMedCentral
51.
Zurück zum Zitat Feldman N, Adler A, Molshatzki N, Navon-Venezia S, Khabra E, Cohen D, et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect. 2013;19(4):E190–6.PubMed Feldman N, Adler A, Molshatzki N, Navon-Venezia S, Khabra E, Cohen D, et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect. 2013;19(4):E190–6.PubMed
52.
Zurück zum Zitat Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infect Dis. 2017;65(3):364–70.PubMed Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infect Dis. 2017;65(3):364–70.PubMed
53.
Zurück zum Zitat Battipaglia G, Malard F, Rubio MT, Ruggeri A, Mamez AC, Brissot E, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica. 2019;104(8):1682–8.PubMedPubMedCentral Battipaglia G, Malard F, Rubio MT, Ruggeri A, Mamez AC, Brissot E, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica. 2019;104(8):1682–8.PubMedPubMedCentral
54.
Zurück zum Zitat Merli P, Putignani L, Ruggeri A, Del Chierico F, Gargiullo L, Galaverna F, et al. Decolonization of multi-drug resistant bacteria by fecal microbiota transplantation in five pediatric patients before allogeneic hematopoietic stem cell transplantation: gut microbiota profiling, infectious and clinical outcomes. Haematologica. 2020;105(11):2686–90.PubMedPubMedCentral Merli P, Putignani L, Ruggeri A, Del Chierico F, Gargiullo L, Galaverna F, et al. Decolonization of multi-drug resistant bacteria by fecal microbiota transplantation in five pediatric patients before allogeneic hematopoietic stem cell transplantation: gut microbiota profiling, infectious and clinical outcomes. Haematologica. 2020;105(11):2686–90.PubMedPubMedCentral
55.
Zurück zum Zitat Millan B, Park H, Hotte N, Mathieu O, Burguiere P, Tompkins TA, et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis. 2016;62(12):1479–86.PubMedPubMedCentral Millan B, Park H, Hotte N, Mathieu O, Burguiere P, Tompkins TA, et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis. 2016;62(12):1479–86.PubMedPubMedCentral
56.
Zurück zum Zitat Hourigan SK, Ahn M, Gibson KM, Pérez-Losada M, Felix G, Weidner M, et al. Fecal transplant in children with Clostridioides difficile gives sustained reduction in antimicrobial resistance and potential pathogen burden. Open Forum Infect Dis. 2019;6(10):ofz379.PubMedPubMedCentral Hourigan SK, Ahn M, Gibson KM, Pérez-Losada M, Felix G, Weidner M, et al. Fecal transplant in children with Clostridioides difficile gives sustained reduction in antimicrobial resistance and potential pathogen burden. Open Forum Infect Dis. 2019;6(10):ofz379.PubMedPubMedCentral
57.
Zurück zum Zitat Langdon A, Schwartz DJ, Bulow C, Sun X, Hink T, Reske KA, et al. Microbiota restoration reduces antibiotic-resistant bacteria gut colonization in patients with recurrent Clostridioides difficile infection from the open-label PUNCH CD study. Genome Med. 2021;13(1):28.PubMedPubMedCentral Langdon A, Schwartz DJ, Bulow C, Sun X, Hink T, Reske KA, et al. Microbiota restoration reduces antibiotic-resistant bacteria gut colonization in patients with recurrent Clostridioides difficile infection from the open-label PUNCH CD study. Genome Med. 2021;13(1):28.PubMedPubMedCentral
58.
Zurück zum Zitat Sohn KM, Cheon S, Kim YS. Can fecal microbiota transplantation (fmt) eradicate fecal colonization with vancomycin-resistant Enterococci (VRE)? Infect Control Hosp Epidemiol. 2016;37(12):1519–21.PubMed Sohn KM, Cheon S, Kim YS. Can fecal microbiota transplantation (fmt) eradicate fecal colonization with vancomycin-resistant Enterococci (VRE)? Infect Control Hosp Epidemiol. 2016;37(12):1519–21.PubMed
59.
Zurück zum Zitat Li YT, Cai HF, Wang ZH, Xu J, Fang JY. Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol Ther. 2016;43(4):445–57.PubMed Li YT, Cai HF, Wang ZH, Xu J, Fang JY. Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol Ther. 2016;43(4):445–57.PubMed
60.
Zurück zum Zitat Lee CH, Belanger JE, Kassam Z, Smieja M, Higgins D, Broukhanski G, et al. The outcome and long-term follow-up of 94 patients with recurrent and refractory Clostridium difficile infection using single to multiple fecal microbiota transplantation via retention enema. Eur J Clin Microbiol Infect Dis. 2014;33(8):1425–8.PubMed Lee CH, Belanger JE, Kassam Z, Smieja M, Higgins D, Broukhanski G, et al. The outcome and long-term follow-up of 94 patients with recurrent and refractory Clostridium difficile infection using single to multiple fecal microbiota transplantation via retention enema. Eur J Clin Microbiol Infect Dis. 2014;33(8):1425–8.PubMed
61.
Zurück zum Zitat Dinh A, Fessi H, Duran C, Batista R, Michelon H, Bouchand F, et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant Enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect. 2018;99(4):481–6.PubMed Dinh A, Fessi H, Duran C, Batista R, Michelon H, Bouchand F, et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant Enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect. 2018;99(4):481–6.PubMed
62.
Zurück zum Zitat Marcella C, Cui B, Kelly CR, Ianiro G, Cammarota G, Zhang F. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther. 2021;53(1):33–42.PubMed Marcella C, Cui B, Kelly CR, Ianiro G, Cammarota G, Zhang F. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther. 2021;53(1):33–42.PubMed
63.
Zurück zum Zitat Alagna L, Palomba E, Mangioni D, Bozzi G, Lombardi A, Ungaro R, et al. Multidrug-resistant gram-negative bacteria decolonization in immunocompromised patients: a focus on fecal microbiota transplantation. Int J Mol Sci. 2020;21(16):5619.PubMedCentral Alagna L, Palomba E, Mangioni D, Bozzi G, Lombardi A, Ungaro R, et al. Multidrug-resistant gram-negative bacteria decolonization in immunocompromised patients: a focus on fecal microbiota transplantation. Int J Mol Sci. 2020;21(16):5619.PubMedCentral
64.
Zurück zum Zitat Bilinski J, Lis K, Tomaszewska A, Grzesiowski P, Dzieciatkowski T, Tyszka M, et al. Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile. Results from a prospective, multicenter study. Am J Hematol. 2021;96(3):E88-91.PubMed Bilinski J, Lis K, Tomaszewska A, Grzesiowski P, Dzieciatkowski T, Tyszka M, et al. Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile. Results from a prospective, multicenter study. Am J Hematol. 2021;96(3):E88-91.PubMed
65.
Zurück zum Zitat Mandalia A, Ward A, Tauxe W, Kraft CS, Dhere T. Fecal transplant is as effective and safe in immunocompromised as non-immunocompromised patients for Clostridium difficile. Int J Colorectal Dis. 2016;31(5):1059–60.PubMed Mandalia A, Ward A, Tauxe W, Kraft CS, Dhere T. Fecal transplant is as effective and safe in immunocompromised as non-immunocompromised patients for Clostridium difficile. Int J Colorectal Dis. 2016;31(5):1059–60.PubMed
66.
Zurück zum Zitat Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O, Shogbesan G, et al. A systematic review of the efficacy and safety of fecal microbiota transplant for Clostridium difficile infection in immunocompromised patients. Can J Gastroenterol Hepatol. 2018;2(2018):1394379. Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O, Shogbesan G, et al. A systematic review of the efficacy and safety of fecal microbiota transplant for Clostridium difficile infection in immunocompromised patients. Can J Gastroenterol Hepatol. 2018;2(2018):1394379.
67.
Zurück zum Zitat Mao D, Jiang Q, Sun Y, Mao Y, Guo L, Zhang Y, et al. Treatment of intestinal graft-versus-host disease with unrelated donor fecal microbiota transplantation capsules: a case report. Medicine. 2020;99(38):e22129.PubMedPubMedCentral Mao D, Jiang Q, Sun Y, Mao Y, Guo L, Zhang Y, et al. Treatment of intestinal graft-versus-host disease with unrelated donor fecal microbiota transplantation capsules: a case report. Medicine. 2020;99(38):e22129.PubMedPubMedCentral
68.
Zurück zum Zitat Innes AJ, Mullish BH, Fernando F, Adams G, Marchesi JR, Apperley JF, et al. Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality. Bone Marrow Transplant. 2017;52(10):1452–4.PubMed Innes AJ, Mullish BH, Fernando F, Adams G, Marchesi JR, Apperley JF, et al. Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality. Bone Marrow Transplant. 2017;52(10):1452–4.PubMed
69.
Zurück zum Zitat Webb BJ, Brunner A, Ford CD, Gazdik MA, Petersen FB, Hoda D. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2016;18(4):628–33.PubMed Webb BJ, Brunner A, Ford CD, Gazdik MA, Petersen FB, Hoda D. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2016;18(4):628–33.PubMed
70.
Zurück zum Zitat Moss EL, Falconer SB, Tkachenko E, Wang M, Systrom H, Mahabamunuge J, et al. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS ONE. 2017;12(8):e0182585.PubMedPubMedCentral Moss EL, Falconer SB, Tkachenko E, Wang M, Systrom H, Mahabamunuge J, et al. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS ONE. 2017;12(8):e0182585.PubMedPubMedCentral
71.
Zurück zum Zitat Bluestone H, Kronman MP, Suskind DL. Fecal microbiota transplantation for recurrent Clostridium difficile Infections in pediatric hematopoietic stem cell transplant recipients. J Pediatric Infect Dis Soc. 2018;7(1):e6-8.PubMed Bluestone H, Kronman MP, Suskind DL. Fecal microbiota transplantation for recurrent Clostridium difficile Infections in pediatric hematopoietic stem cell transplant recipients. J Pediatric Infect Dis Soc. 2018;7(1):e6-8.PubMed
72.
Zurück zum Zitat DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2018;2(7):745–53.PubMedPubMedCentral DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2018;2(7):745–53.PubMedPubMedCentral
73.
Zurück zum Zitat Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10(460):eaap9489.PubMedPubMedCentral Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10(460):eaap9489.PubMedPubMedCentral
74.
Zurück zum Zitat DeFilipp Z, Bloom PP, Soto MT, Mansour MK, Sater MRA, Huntley MH, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–50.PubMed DeFilipp Z, Bloom PP, Soto MT, Mansour MK, Sater MRA, Huntley MH, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–50.PubMed
75.
Zurück zum Zitat Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep. 2018;8(1):12649.PubMedPubMedCentral Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S, et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep. 2018;8(1):12649.PubMedPubMedCentral
76.
Zurück zum Zitat Ahmadi S, Wang S, Nagpal R, Wang B, Jain S, Razazan A, et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight. 2020;5(9):e132055.PubMedCentral Ahmadi S, Wang S, Nagpal R, Wang B, Jain S, Razazan A, et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight. 2020;5(9):e132055.PubMedCentral
Metadaten
Titel
Tandem fecal microbiota transplantation cycles in an allogeneic hematopoietic stem cell transplant recipient targeting carbapenem-resistant Enterobacteriaceae colonization: a case report and literature review
verfasst von
Fengqin Su
Yi Luo
Jian Yu
Jimin Shi
Yanmin Zhao
Mengni Yan
He Huang
Yamin Tan
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
European Journal of Medical Research / Ausgabe 1/2021
Elektronische ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-021-00508-8

Weitere Artikel der Ausgabe 1/2021

European Journal of Medical Research 1/2021 Zur Ausgabe