Skip to main content
Erschienen in: Medical Oncology 6/2024

01.06.2024 | Review Article

Role of the STING pathway in myeloid neoplasms: a prospero-registered systematic review of principal hurdles of STING on the road to the clinical practice

verfasst von: Leticia Rodrigues Sampaio, Ricardo Dyllan Barbosa Dias, João Vitor Caetano Goes, Renata Pinheiro Martins de Melo, Daniela de Paula Borges, Mayara Magna de Lima Melo, Roberta Taiane Germano de Oliveira, Howard Lopes Ribeiro-Júnior, Silvia Maria Meira Magalhães, Ronald Feitosa Pinheiro

Erschienen in: Medical Oncology | Ausgabe 6/2024

Einloggen, um Zugang zu erhalten

Abstract

Myeloid neoplasms are a group of bone marrow diseases distinguished by disruptions in the molecular pathways that regulate the balance between hematopoietic stem cell (HSC) self-renewal and the generation of specialized cells. Cytokines and chemokines, two important components of the inflammatory process, also influence hematological differentiation. In this scenario, immunological dysregulation plays a pivotal role in the pathogenesis of bone marrow neoplasms. The STING pathway recognizes DNA fragments in the cell cytoplasm and triggers an immune response by type I interferons. The role of STING in cancer has not yet been established; however, both actions, as an oncogene or tumor suppressor, have been documented in other types of cancer. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42023407512) to discuss the role of STING pathway in the advancement of pathogenesis and/or prognosis for different myeloid neoplasms. In brief, scientific evidence supports investigations that primarily use cell lines from myeloid neoplasms, such as leukemia. More high-quality research and clinical trials are needed to understand the role of the STING pathway in the pathology of hematological malignancies. Finally, the STING pathway suggests being a promising therapeutic molecular target, particularly when combined with current drug therapies.

Graphical abstract

Findings of the STING pathway in hematological malignancies. CML Chronic myeloid leukemia, MDS Myelodysplastic neoplasms, AML Acute myeloid leukemia, BV173 Human chronic myeloid leukemia cell line with Philadelphia chromosome (Ph1) + , RU.521 cGAS inhibitor, dsDNA double-stranded DNA, KO Knock-out. SHR1032 STING agonist, DMXAA STING agonist
Literatur
1.
Zurück zum Zitat Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12(10):584–96.PubMedCrossRef Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12(10):584–96.PubMedCrossRef
2.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
4.
Zurück zum Zitat Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.PubMedCrossRef Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.PubMedCrossRef
5.
Zurück zum Zitat Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer. 2022;22(7):397–413.PubMedCrossRef Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer. 2022;22(7):397–413.PubMedCrossRef
6.
7.
Zurück zum Zitat Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501–21.PubMedCrossRef Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501–21.PubMedCrossRef
8.
Zurück zum Zitat Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J Immunol. 2017;199(2):397–402.PubMedCrossRef Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J Immunol. 2017;199(2):397–402.PubMedCrossRef
9.
Zurück zum Zitat Ng KW, Marshall EA, Bell JC, Lam WL. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 2018;39(1):44–54.PubMedCrossRef Ng KW, Marshall EA, Bell JC, Lam WL. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 2018;39(1):44–54.PubMedCrossRef
11.
12.
Zurück zum Zitat Lemos H, Huang L, McGaha TL, Mellor AL. Cytosolic DNA sensing via the stimulator of interferon genes adaptor: Yin and Yang of immune responses to DNA. Eur J Immunol. 2014;44(10):2847–53.PubMedPubMedCentralCrossRef Lemos H, Huang L, McGaha TL, Mellor AL. Cytosolic DNA sensing via the stimulator of interferon genes adaptor: Yin and Yang of immune responses to DNA. Eur J Immunol. 2014;44(10):2847–53.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.PubMedCrossRef Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.PubMedCrossRef
14.
15.
Zurück zum Zitat Ran Y, Shu HB, Wang YY. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev. 2014;25(6):631–9.PubMedPubMedCentralCrossRef Ran Y, Shu HB, Wang YY. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev. 2014;25(6):631–9.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol. 2014;88(10):5328–41.PubMedPubMedCentralCrossRef Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol. 2014;88(10):5328–41.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, Duran M, Pauli C, Shaw C, Chadalavada K, Rajasekhar VK, Genovese G, Venkatesan S, Birkbak NJ, McGranahan N, Lundquist M, LaPlant Q, Healey JH, Elemento O, Chung CH, Lee NY, Imielenski M, Nanjangud G, Pe’er D, Cleveland DW, Powell SN, Lammerding J, Swanton C, Cantley LC. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.PubMedPubMedCentralCrossRef Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, Duran M, Pauli C, Shaw C, Chadalavada K, Rajasekhar VK, Genovese G, Venkatesan S, Birkbak NJ, McGranahan N, Lundquist M, LaPlant Q, Healey JH, Elemento O, Chung CH, Lee NY, Imielenski M, Nanjangud G, Pe’er D, Cleveland DW, Powell SN, Lammerding J, Swanton C, Cantley LC. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J, Ji H, Li S, Yang S, Xu D, Li Z, Wang T, He Y, Zhang L, Yang W, Zhao R, Hao D, Li X. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Ther Nucleic Acids. 2019;14:80–9.PubMedCrossRef An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J, Ji H, Li S, Yang S, Xu D, Li Z, Wang T, He Y, Zhang L, Yang W, Zhao R, Hao D, Li X. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Ther Nucleic Acids. 2019;14:80–9.PubMedCrossRef
19.
Zurück zum Zitat Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14(2):282–97.PubMedCrossRef Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14(2):282–97.PubMedCrossRef
20.
Zurück zum Zitat Bhatelia K, Singh A, Tomar D, Singh K, Sripada L, Chagtoo M, Prajapati P, Singh R, Godbole MM, Singh R. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death. Biochim Biophys Acta. 2014;1842(2):144–53.PubMedCrossRef Bhatelia K, Singh A, Tomar D, Singh K, Sripada L, Chagtoo M, Prajapati P, Singh R, Godbole MM, Singh R. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death. Biochim Biophys Acta. 2014;1842(2):144–53.PubMedCrossRef
21.
Zurück zum Zitat Takayanagi-Hara R, Sawada Y, Sugino H, Minokawa Y, Kawahara-Nanamori H, Itamura M, Tashiro T, Kaneoka A, Saito-Sasaki N, Yamamoto K, Okada E. STING expression is an independent prognostic factor in patients with mycosis fungoides. Sci Rep. 2022;12(1):12739.PubMedPubMedCentralCrossRef Takayanagi-Hara R, Sawada Y, Sugino H, Minokawa Y, Kawahara-Nanamori H, Itamura M, Tashiro T, Kaneoka A, Saito-Sasaki N, Yamamoto K, Okada E. STING expression is an independent prognostic factor in patients with mycosis fungoides. Sci Rep. 2022;12(1):12739.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, Chen W, Chen X, Chng WJ, Choi JK, Colmenero I, Coupland SE, Cross NCP, De Jong D, Elghetany MT, Takahashi E, Emile JF, Ferry J, Fogelstrand L, Fontenay M, Germing U, Gujral S, Haferlach T, Harrison C, Hodge JC, Hu S, Jansen JH, Kanagal-Shamanna R, Kantarjian HM, Kratz CP, Li XQ, Lim MS, Loeb K, Loghavi S, Marcogliese A, Meshinchi S, Michaels P, Naresh KN, Natkunam Y, Nejati R, Ott G, Padron E, Patel KP, Patkar N, Picarsic J, Platzbecker U, Roberts I, Schuh A, Sewell W, Siebert R, Tembhare P, Tyner J, Verstovsek S, Wang W, Wood B, Xiao W, Yeung C, Hochhaus A. The 5th edition of the world health organization classification of haematolymphoid tumours myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.PubMedPubMedCentralCrossRef Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, Chen W, Chen X, Chng WJ, Choi JK, Colmenero I, Coupland SE, Cross NCP, De Jong D, Elghetany MT, Takahashi E, Emile JF, Ferry J, Fogelstrand L, Fontenay M, Germing U, Gujral S, Haferlach T, Harrison C, Hodge JC, Hu S, Jansen JH, Kanagal-Shamanna R, Kantarjian HM, Kratz CP, Li XQ, Lim MS, Loeb K, Loghavi S, Marcogliese A, Meshinchi S, Michaels P, Naresh KN, Natkunam Y, Nejati R, Ott G, Padron E, Patel KP, Patkar N, Picarsic J, Platzbecker U, Roberts I, Schuh A, Sewell W, Siebert R, Tembhare P, Tyner J, Verstovsek S, Wang W, Wood B, Xiao W, Yeung C, Hochhaus A. The 5th edition of the world health organization classification of haematolymphoid tumours myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012;12:304.PubMedPubMedCentralCrossRef Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012;12:304.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Lockwood C, Munn Z, Porritt K. Qualitative research synthesis: methodological guidance for systematic reviewers utilizing meta-aggregation. Int J Evid Based Healthc. 2015;13(3):179–87.PubMedCrossRef Lockwood C, Munn Z, Porritt K. Qualitative research synthesis: methodological guidance for systematic reviewers utilizing meta-aggregation. Int J Evid Based Healthc. 2015;13(3):179–87.PubMedCrossRef
25.
Zurück zum Zitat Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.PubMedPubMedCentralCrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93(3):442–59.PubMedCrossRef Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93(3):442–59.PubMedCrossRef
28.
Zurück zum Zitat Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.PubMedCrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.PubMedCrossRef
29.
Zurück zum Zitat An X, Tiwari AK, Sun Y, Ding PR, Ashby CR Jr, Chen ZS. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res. 2010;34(10):1255–68.PubMedCrossRef An X, Tiwari AK, Sun Y, Ding PR, Ashby CR Jr, Chen ZS. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res. 2010;34(10):1255–68.PubMedCrossRef
30.
Zurück zum Zitat Hiroki H, Ishii Y, Piao J, Namikawa Y, Masutani M, Honda H, Akahane K, Inukai T, Morio T, Takagi M. Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep. 2023;13(1):7588.PubMedPubMedCentralCrossRef Hiroki H, Ishii Y, Piao J, Namikawa Y, Masutani M, Honda H, Akahane K, Inukai T, Morio T, Takagi M. Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep. 2023;13(1):7588.PubMedPubMedCentralCrossRef
31.
33.
Zurück zum Zitat Li H, Hu F, Gale RP, Sekeres MA, Liang Y. Myelodysplastic syndromes. Nat Rev Dis Primers. 2022;8(1):74.PubMedCrossRef Li H, Hu F, Gale RP, Sekeres MA, Liang Y. Myelodysplastic syndromes. Nat Rev Dis Primers. 2022;8(1):74.PubMedCrossRef
34.
Zurück zum Zitat de Sousa JC, da Nóbrega IM, Costa MB, Farias IR, de Paula BD, de Oliveira RT, Fukutani KF, Thomé CH, da Silva Martinelli CM, Myajima F, Vidal DO, Magalhães SMM, Figueiredo-Pontes LL, Pinheiro RF. Dysregulation of interferon regulatory genes reinforces the concept of chronic immune response in myelodysplastic syndrome pathogenesis. Hematol Oncol. 2019;37(4):523–6.PubMedCrossRef de Sousa JC, da Nóbrega IM, Costa MB, Farias IR, de Paula BD, de Oliveira RT, Fukutani KF, Thomé CH, da Silva Martinelli CM, Myajima F, Vidal DO, Magalhães SMM, Figueiredo-Pontes LL, Pinheiro RF. Dysregulation of interferon regulatory genes reinforces the concept of chronic immune response in myelodysplastic syndrome pathogenesis. Hematol Oncol. 2019;37(4):523–6.PubMedCrossRef
35.
Zurück zum Zitat de Matos AG, Ribeiro Junior HL, de Paula BD, Okubo BM, de Sousa JC, Barbosa MC, de Castro MF, Gonçalves RP, Pinheiro RF, Magalhães SMM. Interleukin-8 and nuclear factor kappa B are increased and positively correlated in myelodysplastic syndrome. Med Oncol. 2017;34(10):168.PubMedCrossRef de Matos AG, Ribeiro Junior HL, de Paula BD, Okubo BM, de Sousa JC, Barbosa MC, de Castro MF, Gonçalves RP, Pinheiro RF, Magalhães SMM. Interleukin-8 and nuclear factor kappa B are increased and positively correlated in myelodysplastic syndrome. Med Oncol. 2017;34(10):168.PubMedCrossRef
36.
Zurück zum Zitat Wang C, Yang Y, Gao S, Chen J, Yu J, Zhang H, Li M, Zhan X, Li W. Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol. 2018;122:123–32.PubMedCrossRef Wang C, Yang Y, Gao S, Chen J, Yu J, Zhang H, Li M, Zhan X, Li W. Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies. Crit Rev Oncol Hematol. 2018;122:123–32.PubMedCrossRef
37.
Zurück zum Zitat Winter S, Shoaie S, Kordasti S, Platzbecker U. Integrating the “Immunome” in the stratification of myelodysplastic syndromes and future clinical trial design. J Clin Oncol. 2020;38(15):1723–35.PubMedCrossRef Winter S, Shoaie S, Kordasti S, Platzbecker U. Integrating the “Immunome” in the stratification of myelodysplastic syndromes and future clinical trial design. J Clin Oncol. 2020;38(15):1723–35.PubMedCrossRef
38.
Zurück zum Zitat de Oliveira RTG, Cordeiro JVA, Vitoriano BF, de Lima Melo MM, Sampaio LR, de Paula BD, Magalhães SMM, Pinheiro RF. ERVs-TLR3-IRF axis is linked to myelodysplastic syndrome pathogenesis. Med Oncol. 2021;38(3):27.PubMedCrossRef de Oliveira RTG, Cordeiro JVA, Vitoriano BF, de Lima Melo MM, Sampaio LR, de Paula BD, Magalhães SMM, Pinheiro RF. ERVs-TLR3-IRF axis is linked to myelodysplastic syndrome pathogenesis. Med Oncol. 2021;38(3):27.PubMedCrossRef
39.
Zurück zum Zitat McLemore AF, Hou HA, Meyer BS, Lam NB, Ward GA, Aldrich AL, Rodrigues MA, Vedder A, Zhang L, Padron E, Vincelette ND, Sallman DA, Abdel-Wahab O, List AF, McGraw KL. Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes. JCI Insight. 2022;7(15): e159430.PubMedPubMedCentralCrossRef McLemore AF, Hou HA, Meyer BS, Lam NB, Ward GA, Aldrich AL, Rodrigues MA, Vedder A, Zhang L, Padron E, Vincelette ND, Sallman DA, Abdel-Wahab O, List AF, McGraw KL. Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS/STING/NLRP3 axis in myelodysplastic syndromes. JCI Insight. 2022;7(15): e159430.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136–52.PubMedCrossRef Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136–52.PubMedCrossRef
42.
Zurück zum Zitat Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, Gojo I, Hall AC, Jonas BA, Kishtagari A, Lancet J, Maness L, Mangan J, Mannis G, Marcucci G, Mims A, Moriarty K, Mustafa Ali M, Neff J, Nejati R, Olin R, Percival ME, Perl A, Przespolewski A, Rao D, Ravandi F, Shallis R, Shami PJ, Stein E, Stone RM, Sweet K, Thota S, Uy G, Vachhani P, Cassara CJ, Freedman-Cass DA, Stehman K. Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2023;21(5):503–13.PubMedCrossRef Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, Gojo I, Hall AC, Jonas BA, Kishtagari A, Lancet J, Maness L, Mangan J, Mannis G, Marcucci G, Mims A, Moriarty K, Mustafa Ali M, Neff J, Nejati R, Olin R, Percival ME, Perl A, Przespolewski A, Rao D, Ravandi F, Shallis R, Shami PJ, Stein E, Stone RM, Sweet K, Thota S, Uy G, Vachhani P, Cassara CJ, Freedman-Cass DA, Stehman K. Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2023;21(5):503–13.PubMedCrossRef
43.
Zurück zum Zitat Lee JB, Khan DH, Hurren R, Xu M, Na Y, Kang H, Mirali S, Wang X, Gronda M, Jitkova Y, MacLean N, Arruda A, Alaniz Z, Konopleva MY, Andreeff M, Minden MD, Zhang L, Schimmer AD. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood. 2021;138(3):234–45.PubMedPubMedCentralCrossRef Lee JB, Khan DH, Hurren R, Xu M, Na Y, Kang H, Mirali S, Wang X, Gronda M, Jitkova Y, MacLean N, Arruda A, Alaniz Z, Konopleva MY, Andreeff M, Minden MD, Zhang L, Schimmer AD. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood. 2021;138(3):234–45.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci USA. 2022;119(27): e2123227119.PubMedPubMedCentralCrossRef Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci USA. 2022;119(27): e2123227119.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 2022;39(8): 110856.PubMedPubMedCentralCrossRef Singh RS, Vidhyasagar V, Yang S, Arna AB, Yadav M, Aggarwal A, Aguilera AN, Shinriki S, Bhanumathy KK, Pandey K, Xu A, Rapin N, Bosch M, DeCoteau J, Xiang J, Vizeacoumar FJ, Zhou Y, Misra V, Matsui H, Ross SR, Wu Y. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep. 2022;39(8): 110856.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Song C, Liu D, Liu S, Li D, Horecny I, Zhang X, Li P, Chen L, Miller M, Chowdhury R, Issa M, Shen R, Yan Y, Zhang F, Zhang L, Zhang L, Bai C, Feng J, Zhuang L, Zhang R, Li J, Wilkinson H, Liu J, Tao W. SHR1032, a novel STING agonist, stimulates anti-tumor immunity and directly induces AML apoptosis. Sci Rep. 2022;12(1):8579.PubMedPubMedCentralCrossRef Song C, Liu D, Liu S, Li D, Horecny I, Zhang X, Li P, Chen L, Miller M, Chowdhury R, Issa M, Shen R, Yan Y, Zhang F, Zhang L, Zhang L, Bai C, Feng J, Zhuang L, Zhang R, Li J, Wilkinson H, Liu J, Tao W. SHR1032, a novel STING agonist, stimulates anti-tumor immunity and directly induces AML apoptosis. Sci Rep. 2022;12(1):8579.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Curran E, Chen X, Corrales L, Kline DE, Dubensky TW Jr, Duttagupta P, Kortylewski M, Kline J. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. 2016;15(11):2357–66.PubMedPubMedCentralCrossRef Curran E, Chen X, Corrales L, Kline DE, Dubensky TW Jr, Duttagupta P, Kortylewski M, Kline J. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. 2016;15(11):2357–66.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–86.PubMedPubMedCentralCrossRef Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–86.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, O’Brien C, De Carvalho DD. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162(5):961–73.PubMedPubMedCentralCrossRef Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, O’Brien C, De Carvalho DD. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162(5):961–73.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Saini SK, Ørskov AD, Bjerregaard AM, Unnikrishnan A, Holmberg-Thydén S, Borch A, Jensen KV, Anande G, Bentzen AK, Marquard AM, Tamhane T, Treppendahl MB, Gang AO, Dufva IH, Szallasi Z, Ternette N, Pedersen AG, Eklund AC, Pimanda J, Grønbæk K, Hadrup SR. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat Commun. 2020;11(1):5660.PubMedPubMedCentralCrossRef Saini SK, Ørskov AD, Bjerregaard AM, Unnikrishnan A, Holmberg-Thydén S, Borch A, Jensen KV, Anande G, Bentzen AK, Marquard AM, Tamhane T, Treppendahl MB, Gang AO, Dufva IH, Szallasi Z, Ternette N, Pedersen AG, Eklund AC, Pimanda J, Grønbæk K, Hadrup SR. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat Commun. 2020;11(1):5660.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol. 2019;17(6):355–70.PubMedCrossRef Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol. 2019;17(6):355–70.PubMedCrossRef
53.
Zurück zum Zitat Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol. 2019;110(2):161–9.PubMedCrossRef Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol. 2019;110(2):161–9.PubMedCrossRef
54.
Zurück zum Zitat Kordella C, Lamprianidou E, Kotsianidis I. Mechanisms of action of hypomethylating agents: endogenous retroelements at the epicenter. Front Oncol. 2021;11: 650473.PubMedPubMedCentralCrossRef Kordella C, Lamprianidou E, Kotsianidis I. Mechanisms of action of hypomethylating agents: endogenous retroelements at the epicenter. Front Oncol. 2021;11: 650473.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Liu J, Min S, Kim D, Park J, Park E, Koh Y, Shin DY, Kim TK, Byun JM, Yoon SS, Hong J. Epigenetic priming improves salvage chemotherapy in diffuse large B-cell lymphoma via endogenous retrovirus-induced cGAS-STING activation. Clin Epigenetics. 2023;15(1):75.PubMedPubMedCentralCrossRef Liu J, Min S, Kim D, Park J, Park E, Koh Y, Shin DY, Kim TK, Byun JM, Yoon SS, Hong J. Epigenetic priming improves salvage chemotherapy in diffuse large B-cell lymphoma via endogenous retrovirus-induced cGAS-STING activation. Clin Epigenetics. 2023;15(1):75.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Falahat R, Berglund A, Perez-Villarroel P, Putney RM, Hamaidi I, Kim S, Pilon-Thomas S, Barber GN, Mulé JJ. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat Commun. 2023;14(1):1573.PubMedPubMedCentralCrossRef Falahat R, Berglund A, Perez-Villarroel P, Putney RM, Hamaidi I, Kim S, Pilon-Thomas S, Barber GN, Mulé JJ. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat Commun. 2023;14(1):1573.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Abel HJ, Oetjen KA, Miller CA, Ramakrishnan SM, Day RB, Helton NM, Fronick CC, Fulton RS, Heath SE, Tarnawsky SP, Nonavinkere Srivatsan S, Duncavage EJ, Schroeder MC, Payton JE, Spencer DH, Walter MJ, Westervelt P, DiPersio JF, Ley TJ, Link DC. Genomic landscape of TP53-mutated myeloid malignancies. Blood Adv. 2023;7(16):4586–98.PubMedPubMedCentralCrossRef Abel HJ, Oetjen KA, Miller CA, Ramakrishnan SM, Day RB, Helton NM, Fronick CC, Fulton RS, Heath SE, Tarnawsky SP, Nonavinkere Srivatsan S, Duncavage EJ, Schroeder MC, Payton JE, Spencer DH, Walter MJ, Westervelt P, DiPersio JF, Ley TJ, Link DC. Genomic landscape of TP53-mutated myeloid malignancies. Blood Adv. 2023;7(16):4586–98.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Hiwase D, Hahn C, Tran ENH, Chhetri R, Baranwal A, Al-Kali A, Sharplin K, Ladon D, Hollins R, Greipp P, Kutyna M, Alkhateeb H, Badar T, Wang P, Ross DM, Singhal D, Shanmuganathan N, Bardy P, Beligaswatte A, Yeung D, Litzow MR, Mangaonkar A, Giri P, Lee C, Yong A, Horvath N, Singhal N, Gowda R, Hogan W, Gangat N, Patnaik M, Begna K, Tiong IS, Wei A, Kumar S, Brown A, Scott H, Thomas D, Kok CH, Tefferi A, Shah MV. TP53 mutation in therapy-related myeloid neoplasm defines a distinct molecular subtype. Blood. 2023;141(9):1087–91.PubMedCrossRef Hiwase D, Hahn C, Tran ENH, Chhetri R, Baranwal A, Al-Kali A, Sharplin K, Ladon D, Hollins R, Greipp P, Kutyna M, Alkhateeb H, Badar T, Wang P, Ross DM, Singhal D, Shanmuganathan N, Bardy P, Beligaswatte A, Yeung D, Litzow MR, Mangaonkar A, Giri P, Lee C, Yong A, Horvath N, Singhal N, Gowda R, Hogan W, Gangat N, Patnaik M, Begna K, Tiong IS, Wei A, Kumar S, Brown A, Scott H, Thomas D, Kok CH, Tefferi A, Shah MV. TP53 mutation in therapy-related myeloid neoplasm defines a distinct molecular subtype. Blood. 2023;141(9):1087–91.PubMedCrossRef
60.
Zurück zum Zitat Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, Yoshizato T, Shiozawa Y, Saiki R, Malcovati L, Levine MF, Arango JE, Zhou Y, Solé F, Cargo CA, Haase D, Creignou M, Germing U, Zhang Y, Gundem G, Sarian A, van de Loosdrecht AA, Jädersten M, Tobiasson M, Kosmider O, Follo MY, Thol F, Pinheiro RF, Santini V, Kotsianidis I, Boultwood J, Santos FPS, Schanz J, Kasahara S, Ishikawa T, Tsurumi H, Takaori-Kondo A, Kiguchi T, Polprasert C, Bennett JM, Klimek VM, Savona MR, Belickova M, Ganster C, Palomo L, Sanz G, Ades L, Della Porta MG, Elias HK, Smith AG, Werner Y, Patel M, Viale A, Vanness K, Neuberg DS, Stevenson KE, Menghrajani K, Bolton KL, Fenaux P, Pellagatti A, Platzbecker U, Heuser M, Valent P, Chiba S, Miyazaki Y, Finelli C, Voso MT, Shih LY, Fontenay M, Jansen JH, Cervera J, Atsuta Y, Gattermann N, Ebert BL, Bejar R, Greenberg PL, Cazzola M, Hellström-Lindberg E, Ogawa S, Papaemmanuil E. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549–56.PubMedPubMedCentralCrossRef Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, Yoshizato T, Shiozawa Y, Saiki R, Malcovati L, Levine MF, Arango JE, Zhou Y, Solé F, Cargo CA, Haase D, Creignou M, Germing U, Zhang Y, Gundem G, Sarian A, van de Loosdrecht AA, Jädersten M, Tobiasson M, Kosmider O, Follo MY, Thol F, Pinheiro RF, Santini V, Kotsianidis I, Boultwood J, Santos FPS, Schanz J, Kasahara S, Ishikawa T, Tsurumi H, Takaori-Kondo A, Kiguchi T, Polprasert C, Bennett JM, Klimek VM, Savona MR, Belickova M, Ganster C, Palomo L, Sanz G, Ades L, Della Porta MG, Elias HK, Smith AG, Werner Y, Patel M, Viale A, Vanness K, Neuberg DS, Stevenson KE, Menghrajani K, Bolton KL, Fenaux P, Pellagatti A, Platzbecker U, Heuser M, Valent P, Chiba S, Miyazaki Y, Finelli C, Voso MT, Shih LY, Fontenay M, Jansen JH, Cervera J, Atsuta Y, Gattermann N, Ebert BL, Bejar R, Greenberg PL, Cazzola M, Hellström-Lindberg E, Ogawa S, Papaemmanuil E. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549–56.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Csizmar CM, Saliba AN, Swisher EM, Kaufmann SH. PARP inhibitors and myeloid neoplasms: a double-edged sword. Cancers (Basel). 2021;13(24):6385.PubMedCrossRef Csizmar CM, Saliba AN, Swisher EM, Kaufmann SH. PARP inhibitors and myeloid neoplasms: a double-edged sword. Cancers (Basel). 2021;13(24):6385.PubMedCrossRef
62.
Zurück zum Zitat Marmouset V, Decroocq J, Garciaz S, Etienne G, Belhabri A, Bertoli S, Gastaud L, Simand C, Chantepie S, Uzunov M, Genthon A, Berthon C, Chiche E, Dumas PY, Vargaftig J, Salmeron G, Lemasle E, Tavernier E, Delage J, Loirat M, Morineau N, Blanc-Durand F, Pautier P, Vergé V, Auger N, Thomas M, Stefani L, Lepelley M, Boyer T, Thepot S, Gourin MP, Bourquard P, Duchmann M, Morice PM, Michallet M, Adès L, Fenaux P, Récher C, Dombret H, Pagès A, Marzac C, Leary A, Micol JB; UNIHEM, French Network of Pharmacovigilance Centers, ALFA, FILO, and GFM. 2022 Therapy-related Myeloid Neoplasms Following PARP Inhibitors: Real-life Experience. Clin Cancer Res. 28(23): 5211–5220. Marmouset V, Decroocq J, Garciaz S, Etienne G, Belhabri A, Bertoli S, Gastaud L, Simand C, Chantepie S, Uzunov M, Genthon A, Berthon C, Chiche E, Dumas PY, Vargaftig J, Salmeron G, Lemasle E, Tavernier E, Delage J, Loirat M, Morineau N, Blanc-Durand F, Pautier P, Vergé V, Auger N, Thomas M, Stefani L, Lepelley M, Boyer T, Thepot S, Gourin MP, Bourquard P, Duchmann M, Morice PM, Michallet M, Adès L, Fenaux P, Récher C, Dombret H, Pagès A, Marzac C, Leary A, Micol JB; UNIHEM, French Network of Pharmacovigilance Centers, ALFA, FILO, and GFM. 2022 Therapy-related Myeloid Neoplasms Following PARP Inhibitors: Real-life Experience. Clin Cancer Res. 28(23): 5211–5220.
63.
Zurück zum Zitat Ribeiro HL Jr, Maia ARS, de Oliveira RTG, Dos Santos AWA, Costa MB, Farias IR, Borges DP, Magalhães SMM, Pinheiro RF. Expression of DNA repair genes is important molecular findings in CD34 + stem cells of myelodysplastic syndrome. Eur J Haematol. 2018;100(1):108–9.PubMedCrossRef Ribeiro HL Jr, Maia ARS, de Oliveira RTG, Dos Santos AWA, Costa MB, Farias IR, Borges DP, Magalhães SMM, Pinheiro RF. Expression of DNA repair genes is important molecular findings in CD34 + stem cells of myelodysplastic syndrome. Eur J Haematol. 2018;100(1):108–9.PubMedCrossRef
64.
Zurück zum Zitat Kontandreopoulou CN, Diamantopoulos PT, Tiblalexi D, Giannakopoulou N, Viniou NA. PARP1 as a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood Adv. 2021;5(22):4794–805.PubMedPubMedCentralCrossRef Kontandreopoulou CN, Diamantopoulos PT, Tiblalexi D, Giannakopoulou N, Viniou NA. PARP1 as a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood Adv. 2021;5(22):4794–805.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Jiang Y, Zhu Y, Liu ZJ, Ouyang S. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell. 2017;8(2):83–9.PubMedCrossRef Jiang Y, Zhu Y, Liu ZJ, Ouyang S. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell. 2017;8(2):83–9.PubMedCrossRef
67.
68.
Zurück zum Zitat Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, Momozawa Y, Best S, Krishnamurthy P, Yoshizato T, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, Shiraishi Y, Nagata Y, Kakiuchi N, Onizuka M, Chiba K, Tanaka H, Kon A, Ochi Y, Nakagawa MM, Okuda R, Mori T, Yoda A, Itonaga H, Miyazaki Y, Sanada M, Ishikawa T, Chiba S, Tsurumi H, Kasahara S, Müller-Tidow C, Takaori-Kondo A, Ohyashiki K, Kiguchi T, Matsuda F, Jansen JH, Polprasert C, Blombery P, Kamatani Y, Miyano S, Malcovati L, Haferlach T, Kubo M, Cazzola M, Kulasekararaj AG, Godley LA, Maciejewski JP, Ogawa S. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood. 2023;141(5):534–49.PubMedCrossRef Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, Takeda J, Momozawa Y, Best S, Krishnamurthy P, Yoshizato T, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, Shiraishi Y, Nagata Y, Kakiuchi N, Onizuka M, Chiba K, Tanaka H, Kon A, Ochi Y, Nakagawa MM, Okuda R, Mori T, Yoda A, Itonaga H, Miyazaki Y, Sanada M, Ishikawa T, Chiba S, Tsurumi H, Kasahara S, Müller-Tidow C, Takaori-Kondo A, Ohyashiki K, Kiguchi T, Matsuda F, Jansen JH, Polprasert C, Blombery P, Kamatani Y, Miyano S, Malcovati L, Haferlach T, Kubo M, Cazzola M, Kulasekararaj AG, Godley LA, Maciejewski JP, Ogawa S. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood. 2023;141(5):534–49.PubMedCrossRef
69.
Zurück zum Zitat Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, Zaver SA, Schenk M, Zeng S, Zhong W, Liu ZJ, Modlin RL, Liu YJ, Cheng G. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012;13(12):1155–61.PubMedPubMedCentralCrossRef Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, Zaver SA, Schenk M, Zeng S, Zhong W, Liu ZJ, Modlin RL, Liu YJ, Cheng G. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol. 2012;13(12):1155–61.PubMedPubMedCentralCrossRef
70.
71.
Zurück zum Zitat Lara PN Jr, Douillard JY, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo DS, Fan X, Fandi A, Scagliotti G. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(22):2965–71.PubMedCrossRef Lara PN Jr, Douillard JY, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo DS, Fan X, Fandi A, Scagliotti G. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(22):2965–71.PubMedCrossRef
72.
Zurück zum Zitat Aggarwal C, Somaiah N, Simon G. Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther. 2012;13(5):247–63.PubMedPubMedCentralCrossRef Aggarwal C, Somaiah N, Simon G. Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther. 2012;13(5):247–63.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat McKeage MJ. The potential of DMXAA (ASA404) in combination with docetaxel in advanced prostate cancer. Expert Opin Investig Drugs. 2008;17(1):23–9.PubMedCrossRef McKeage MJ. The potential of DMXAA (ASA404) in combination with docetaxel in advanced prostate cancer. Expert Opin Investig Drugs. 2008;17(1):23–9.PubMedCrossRef
74.
Zurück zum Zitat Maynard RS, Hellmich C, Hampton K, Jibril A, Bowles KM, Rushworth SA. Sting agonists activate bone marrow macrophages and synergise with anti-CD47 blockade improving survival in animal models of acute myeloid leukemia. Blood. 2022;140(Supplement 1):9096–6.CrossRef Maynard RS, Hellmich C, Hampton K, Jibril A, Bowles KM, Rushworth SA. Sting agonists activate bone marrow macrophages and synergise with anti-CD47 blockade improving survival in animal models of acute myeloid leukemia. Blood. 2022;140(Supplement 1):9096–6.CrossRef
75.
Zurück zum Zitat Montesinos P, Al-Ali HK, Dominguez JMA, Jentzsch M, Lavrencic M, Martelli MP, Röllig C, Sica S, Riham I, Yablonski K, Wang T, Mahmood Z, Koenen G, Schmidt H, Yang J, Yee K. PB1887: STING agonist for the treatment of relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a first-in-clinic phase 1 study of GSK3745417. Hemasphere. 2023;7(Suppl):e451088e.PubMedCentralCrossRef Montesinos P, Al-Ali HK, Dominguez JMA, Jentzsch M, Lavrencic M, Martelli MP, Röllig C, Sica S, Riham I, Yablonski K, Wang T, Mahmood Z, Koenen G, Schmidt H, Yang J, Yee K. PB1887: STING agonist for the treatment of relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a first-in-clinic phase 1 study of GSK3745417. Hemasphere. 2023;7(Suppl):e451088e.PubMedCentralCrossRef
76.
77.
Zurück zum Zitat Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10(1):26–39.PubMedCrossRef Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10(1):26–39.PubMedCrossRef
78.
Zurück zum Zitat Abuelgasim KA, Albuhayri B, Munshi R, Mugairi AA, Alahmari B, Gmati G, Salama H, Alzahrani M, Alhejazi A, Alaskar A, Damlaj M. Impact of age and induction therapy on outcome of 180 adult patients with acute myeloid leukemia; retrospective analysis and literature review. Leuk Res Rep. 2020;14: 100206.PubMedPubMedCentral Abuelgasim KA, Albuhayri B, Munshi R, Mugairi AA, Alahmari B, Gmati G, Salama H, Alzahrani M, Alhejazi A, Alaskar A, Damlaj M. Impact of age and induction therapy on outcome of 180 adult patients with acute myeloid leukemia; retrospective analysis and literature review. Leuk Res Rep. 2020;14: 100206.PubMedPubMedCentral
79.
Zurück zum Zitat Sekeres MA, Taylor J. Diagnosis and treatment of myelodysplastic syndromes: a review. JAMA. 2022;328(9):872–80.PubMedCrossRef Sekeres MA, Taylor J. Diagnosis and treatment of myelodysplastic syndromes: a review. JAMA. 2022;328(9):872–80.PubMedCrossRef
80.
Zurück zum Zitat Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med. 2021;218(7): e20201544.PubMedPubMedCentralCrossRef Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med. 2021;218(7): e20201544.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol. 2024;S0037–1963(24):00013–21. Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol. 2024;S0037–1963(24):00013–21.
82.
Zurück zum Zitat Liu Y, Bewersdorf JP, Stahl M, Zeidan AM. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Rev. 2019;34:67–83.PubMedCrossRef Liu Y, Bewersdorf JP, Stahl M, Zeidan AM. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era? Blood Rev. 2019;34:67–83.PubMedCrossRef
83.
Zurück zum Zitat Guarnera L, Bravo-Perez C, Visconte V. Immunotherapy in acute myeloid leukemia: a literature review of emerging strategies. Bioengineering (Basel). 2023;10(10):1228.PubMedCrossRef Guarnera L, Bravo-Perez C, Visconte V. Immunotherapy in acute myeloid leukemia: a literature review of emerging strategies. Bioengineering (Basel). 2023;10(10):1228.PubMedCrossRef
Metadaten
Titel
Role of the STING pathway in myeloid neoplasms: a prospero-registered systematic review of principal hurdles of STING on the road to the clinical practice
verfasst von
Leticia Rodrigues Sampaio
Ricardo Dyllan Barbosa Dias
João Vitor Caetano Goes
Renata Pinheiro Martins de Melo
Daniela de Paula Borges
Mayara Magna de Lima Melo
Roberta Taiane Germano de Oliveira
Howard Lopes Ribeiro-Júnior
Silvia Maria Meira Magalhães
Ronald Feitosa Pinheiro
Publikationsdatum
01.06.2024
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 6/2024
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02376-8

Weitere Artikel der Ausgabe 6/2024

Medical Oncology 6/2024 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.