Intravascular Imaging-Guided Versus Coronary Angiography-Guided Complex PCI: A Meta-Analysis of Randomized Controlled Trials

Mohamed Hamed, MD ^a, Sheref Mohamed, MD ^b, Mohamed Mahmoud, MD ^c, Jonathan Kahan, MD ^a, Amr Mohsen, MD ^d, Faisal Rahman, MD ^e, Waleed Kayani, MD ^f, Fernando Alfonso, MD PhD ^g, Emmanuel S. Brilakis, MD PhD ^h, Islam Y. Elgendy, MD ⁱ, Mamas A. Mamas, MD ^j, Ayman Elbadawi, MD PhD ^{k,l}

- ^a Division of Cardiology, Florida Atlantic University, Boca Raton, FL, USA
- b Department of Cardiology, Ain Shams University, Cairo, Egypt
- Division of Cardiology, University of Texas Health Science Center at Houston, Houston, TX, USA
- d Division of Cardiology, Loma Linda University, Loma Linda, CA, USA
- e Division of Cardiology, John Hopkins University, Baltimore, MD, USA
- f Division of Cardiology, Baylor College of Medicine, Houston, TX, USA
- ⁹ Department of Cardiology, Hospital Universitario de La Princesa, IIS-IP, CIBER-CV, Madrid, Spain
- ^h Division of Cardiology, Minneapolis Heart Institute, Minneapolis, MN, USA.
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
- Keele Cardiovascular Research Group, Keele University, Keele, UK
- ^k Division of Cardiology, Christus Good Shepherd Medical Center, Longview, TX.
- Texas A&M School of Medicine, Bryan, TX

Correspondence to:

Ayman Elbadawi, MD PhD MSc FACC

Division of Cardiology

Texas A&M School of Medicine,

Christus Good Shepherd Medical Center, Longview, TX.

Email: aymangalal24@hotmail.com

Supplemental Table 1

PRISMA 2020 CHECKLIST

Section and Topic	Ite m#	Checklist item	Pages where item is reported
TITLE			
Title	1	Identify the report as a systematic review .	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION			
Overview	3	Overview on the recent data and current evidence	3
Rationale	4	Describe the rationale for the review in the context of existing know ledge.	3
Objectives	5	Provide a clear statement of the objectives of the review	3
METHODS			
Data sources and Search strategy	6	Provide the full search strategies that includes all databases, w ebsites and prior meta-analyses including search terms used.	3-4
Eligibility criteria	7	Specify the inclusion and exclusion criteria for the review and how studies w ere grouped for the syntheses.	4
Data extraction	8	Specify the number of investigators and how the data w as extracted, w hether they w ork independently, and the process of confirming data from study investigators	4
Outcomes	9	Identify the primary and secondary outcomes including definition of endpoints	4
Study risk of bias assessment	10	Provides how risk of bias w as evaluated in the included studies and the criteria used in the evaluation	4-5
Statistical analysis	11	Describe methods used to synthesize results, assess the presence and degree of heterogenicity and the software package used in the analysis	5
Certainty assessment	12	Describe methods used to assess certainty for outcomes	5
RESULTS			
Study selection	13	Describe the study selection process from the number of identified from the search to the number of studies included in the review using a flow diagram	Page 5, Figure 1
Study characteristics	14	Cite each included study and present its characteristics	5-6
Risk of bias in included studies	15	Provides assessments of risk of bias for each included study	6
outcomes	16	Provides primary and secondary outcomes using appropriate structured tables or plots.	6-7

PRISMA 2020 CHECKLIST

Section and Topic	Item #	Checklist item	Location where item is reported
DISCUSSION			
Discussion	17a	Provide a general interpretation of the results	7
	17b	Compare the review to previously published review s and their limitations. It also provides an explanation on the importance of this review in overcoming those limitations.	7
	17c	Provide possible reasons of the review outcomes by providing previous evidence.	8
	17d	Discuss implications of the review results in current practice and future research.	8
LIMITATIONS			
Limitations	18	Discuss certain limitations of this review and w ays to overcome those limitations	8-9
CONCLUSION			
Conclusion	19	Summarize review outcome by draw ing conclusions	9
OTHER INFORMAT	ION		
Registration and protocol	19	Provided registration information of the review and how to assess review protocol	4

FROM: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic review s. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

Supplemental Table 2: Complex artery lesion classification

Studies	Complex artery lesions
HOME DES IVUS	Defined as lesion type B2 and C according to the American Heart Association, proximal left anterior descending artery, left main disease, reference vessel diameter <2.5 mm, lesion length >20 mm and in-stent restenosis
Kim et al.	Long lesion requiring a stent ≥28 mm in length
AVIO	Complex lesions which were defined as one of the following: long lesions (>28 mm); chronic total occlusion, ie, a total occlusion of duration more than 3-months; lesions involving a bifurcation; small vessels (≤2.5mm) and patients requiring 4 or more stents.
AIR-CTO	Patients with at least one CTO lesion (defined as TIMI grade 0 and occlusion duration >3 months) that had been successfully recanalized (defined as a wire-crossed CTO lesion and at the distal true lumen according to angiograms)
Tan et al.	Unprotected left main coronary artery lesion
CTO-IVUS	Complex lesions were defined as chronic total occlusion
Liu et al.	Defined as unprotected left main coronary artery lesions (defined as at least 50% stenosis in the left main coronary artery from visual assessment)
IVUS-XPL	Complex coronary lesions were defined as long coronary lesion (implanted stent ≥28 mm in length)
ULTIMATE	Unprotected left main disease, long lesions, chronic total occlusion, and complex bifurcation lesions
RENOVATE- COMPLEX- PCI	Complex coronary-artery lesions were defined as true bifurcation lesions according to the Medina classification system with a side-branch diameter of at least 2.5 mm; a chronic total occlusion; unprotected left main coronary artery disease; long coronary-artery lesions that would involve an expected stent length of at least 38 mm; multivessel PCI involving at least two major epicardial coronary arteries being treated at the same time; a lesion that would necessitate the use of multiple stents (at least three planned stents); a lesion involving in-stent restenosis; a severely calcified lesion; or ostial lesions of a major epicardial coronary artery.

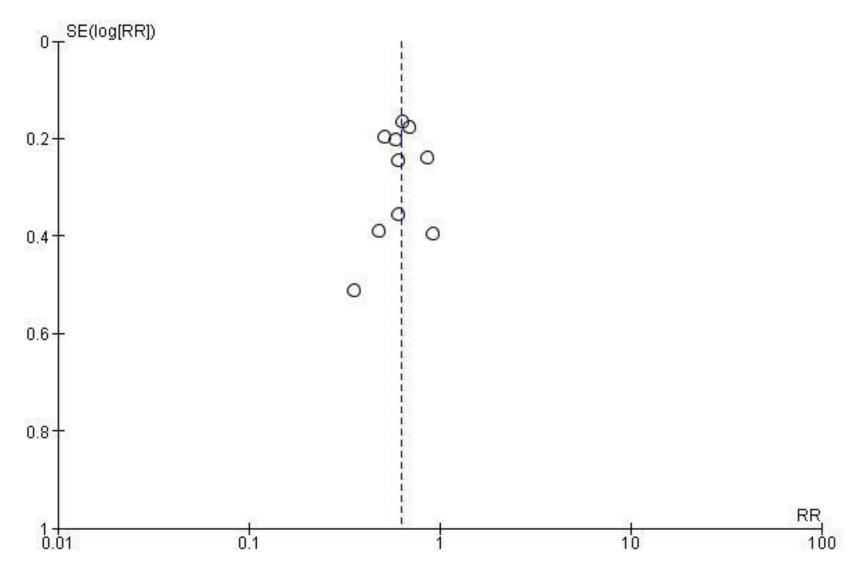
Supplemental Table 3: Major adverse cardiac events (MACE) per each study

Studies	MACE
HOME DES IVUS	Not defined
Kim et al.	Composite of cardiac death, MI, stent thrombosis, or ischemia driven repeat revascularization
AVIO	Composite of any cardiac death, MI or ischemia driven repeat revascularization.
AIR-CTO	Composite of cardiac death, MI, or ischemia driven repeat revascularization
Tan et al.	Composite of death, non-fatal MI, and ischemia driven repeat revascularization
CTO-IVUS	Composite of death, MI, or ischemia driven repeat revascularization
Liu et al.	Composite of cardiac death, MI, or ischemia driven repeat revascularization
IVUS-XPL	Composite of cardiac death, target lesion–related MI, or ischemia driven repeat revascularization
ULTIMATE	Composite of cardiac death, target-vessel related MI or ischemia driven repeat revascularization
RENOVATE- COMPLEX-	Composite of cardiac death, target-vessel MI, or ischemia
PCI	driven repeat revascularization

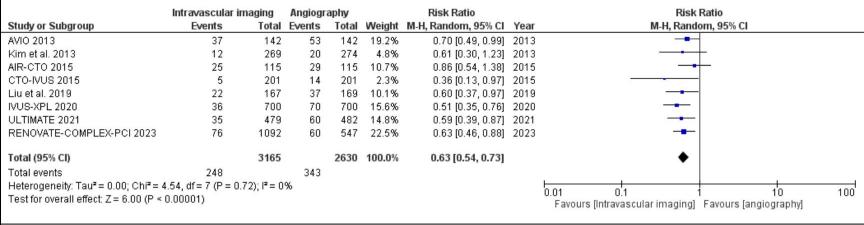
MI: myocardial infarction

Supplemental Table 4: Myocardial infarction (MI) definition per each study

HOME DES	
IVUS	Not defined
1105	Myocardial infarction was defined as the presence of clinical symptoms,
	electrocardiographic changes, or abnormal imaging findings of myocardial
	infarction combined with an increase in creatine kinase myocardial band fraction
	to greater than 3X the upper limit of the normal range or an increase in troponin
	T/troponin I to more than the 99th percentile of the upper normal limit, unrelated
Kim et al.	to an interventional procedure
AVIO Trial	Not defined
	Periprocedural MI (PMI) was diagnosed when the plasma level of troponin I/T
AIR-CTO	increased to >3 times the upper reference limit (URL) in no fewer than two blood samples. Subsequent MI was defined as CK-MB >threefold the URL
Tan et al.	non-fatal myocardial infarction
CTO-IVUS	MI was defined as the presence of clinical symptoms, electrocardiographic changes, or abnormal imaging findings associated with MI combined with an increase in creatine kinase-MB above the upper normal limit or troponin T/I greater than the 99th percentile of the upper normal limit, unrelated to an interventional procedure
	Periprocedural MI was confirmed if creatine kinase–myocardial band (CK-MB) increased >10× the upper reference limit (URL) or presenting with any of the following symptoms:
	 (1) newly appeared pathological Q waves in ≥2 contiguous leads or left bundle branch block (2) imaging evidence indicating new loss of viable myocardium, or
	(3) CK-MB increased >5× the URL only but presented with new occlusion or
Liu et al.	severe stenosis proven by angiography.
IVUS-XPL	MI was defined as presence of clinical symptoms, electrocardiographic changes, or abnormal imaging findings of MI, combined with an increase in the creatine kinase-MB fraction above the upper normal limits or an increase in troponin T or troponin I to a level greater than the 99th percentile of the upper normal limit
	Protocol-defined peri-procedural MI was defined as a peak creatine kinase-MB
	≥10 times the upper limit of normal measured within 72 h after the procedure or
	≥5 times the upper limit of normal plus:
	1) new pathological Q waves in 2 or more contiguous leads or new left bundle
	branch block;
	2) angiographically documented coronary artery or graft occlusion or new severe
ULTIMATE	stenosis with thrombosis; or 3) imaging evidence of new regional wall motion abnormality or new loss of
	viable myocardium.
	Spontaneous MI (after 72 h) was defined as a clinical syndrome consistent with
	MI with CK-MB or troponin >1 time the URL and new ST-segment elevation or
	depression, or other findings as mentioned earlier in the text. All MIs were
	considered to be target-vessel MI unless there was clear evidence that they were
	attributable to a nontarget vessel
RENOVATE	Target-vessel-related MI, spontaneous myocardial infarction, Procedure-related
COMPLEXPCI	myocardial infarction and non-target-vessel-related myocardial infarction


Supplemental Table 5: Risk of bias of the individual studies by Cochrane risk assessment tool

	HOME DES	KIM ET AL.	AVIO	AIR-CTO	TAN ET	CTO-IVUS	LIU ET AL.		_	RENOVATE-COMPLEX-
	IVUS 2010	2013	2013	2015	AL. 2015	2015	2019	2020	2021	PCI 2023
Random sequence generation (Selection bias)	•	•	•	•	•	•	•	•	•	•
Allocation concealment (Selection bias)	•	•	•	•	?	•	•	•	•	•
Blinding of participants and personnel (Performance bias)	•	•	•		•	•	•	•		•
Blinding of outcome assessment (Detection bias)	?	•	•	•	?	•	•	•	•	•
Incomplete outcome data (Attrition bias)	•	•	•	•	•	•	•	•	•	•
Selective reporting (Reporting bias)	•	•	•	•	•	•	•	•	•	•
Other sources of bias	•	•	•	•	•	•	•	•	•	•



Supplemental Figure 1: Funnel plot for MACE

Supplemental Figure 2

Major adverse cardiac events (MACE) excluding studies with high risk of bias

MACE excluding studies using OCT

	Intravascular ima	aging	Angiogra	aphy		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
HOME DES IVUS 2009	11	105	12	105	4.6%	0.92 [0.42, 1.98]	2009	
AVIO 2013	37	142	53	142	22.4%	0.70 [0.49, 0.99]	2013	-
RESET 2013	12	269	20	274	5.7%	0.61 [0.30, 1.23]	2013	
CTO-IVUS 2015	5	201	14	201	2.7%	0.36 [0.13, 0.97]	2015	-
Tan et al. 2015	8	61	17	62	4.7%	0.48 [0.22, 1.03]	2015	*
AIR-CTO 2015	25	115	29	115	12.5%	0.86 [0.54, 1.38]	2015	
Liu et al. 2019	22	167	37	169	11.8%	0.60 [0.37, 0.97]	2019	•
IVUS-XPL 2020	36	700	70	700	18.2%	0.51 [0.35, 0.76]	2020	
ULTIMATE 2021	35	479	60	482	17.4%	0.59 [0.39, 0.87]	2021	-
RENOVATE-COMPLEX-PCI 2023	76	1092	60	547	0.0%	0.63 [0.46, 0.88]	2023	
Total (95% CI)		2239		2250	100.0%	0.63 [0.53, 0.74]		•
Total events	191		312					***
Heterogeneity: Tau ² = 0.00; Chi ² = 5	3.95, df = 8 (P = 0.6)	$(5); I^2 = 0$	1%					1001
Test for overall effect: Z = 5.53 (P < 0	0.00001)	10.0						0.01 0.1 1 10 100 Favours [Intravascluar Imaging] Favours [Angiography]

MACE including studies with consistent MACE definitions

	Intravascular im	aging	Angiogra	aphy		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
AVIO 2013	37	142	53	142	20.6%	0.70 [0.49, 0.99]	2013	
AIR-CTO 2015	25	115	29	115	11.5%	0.86 [0.54, 1.38]	2015	
Liu et al. 2019	22	167	37	169	10.8%	0.60 [0.37, 0.97]	2019	-
IVUS-XPL 2020	36	700	70	700	16.8%	0.51 [0.35, 0.76]	2020	
ULTIMATE 2021	35	479	60	482	16.0%	0.59 [0.39, 0.87]	2021	
RENOVATE-COMPLEX-PCI 2023	76	1092	60	547	24.3%	0.63 [0.46, 0.88]	2023	-
Total (95% CI)		2695		2155	100.0%	0.64 [0.54, 0.74]		•
Total events	231		309					
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 3.28$, $df = 5$ ($P = 0.66$); $I^2 = 0\%$			%					0.01 0.1 1 10 100
Test for overall effect: Z = 5.59 (P < 1	0.00001)							Favours [Intravascular imaging] Favours [Angiography]

MACE at 1 year follow-up

	Intravascular im	naging	Angiogra	aphy		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI		
Kim et al. 2013	12	269	20	274	18.5%	0.61 [0.30, 1.23]	2013			
AIR-CTO 2015	21	115	26	115	34.0%	0.81 [0.48, 1.35]	2015			
CTO-IVUS 2015	5	201	14	201	8.9%	0.36 [0.13, 0.97]	2015	-		
Liu et al. 2019	22	167	37	169	38.5%	0.60 [0.37, 0.97]	2019			
Total (95% CI)		752		759	100.0%	0.64 [0.47, 0.86]		•		
Total events	60		97							
Heterogeneity: Tau² =	: 0.00; Chi² = 2.19,	, df = 3 (P	= 0.53); F	4= 0%				0.01 0.1 1 10 1	100	
Test for overall effect:	Z = 2.96 (P = 0.00)	3)						Favours [Intravascular imaging] Favours [Angiography]	,00	

MACE at 2 years follow-up

	Intravascular im	naging	Angiogra	aphy		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI		
AVIO 2013	37	142	53	142	56.6%	0.70 [0.49, 0.99]	2013	-		
Tan et al. 2015	8	61	17	62	11.9%	0.48 [0.22, 1.03]	2015			
AIR-CTO 2015	25	115	29	115	31.5%	0.86 [0.54, 1.38]	2015			
Total (95% CI)		318	}	319	100.0%	0.71 [0.55, 0.93]		◆		
Total events	70		99							
Heterogeneity: Tau ² = Test for overall effect:		= 0.43); [*	²= 0%				0.01 0.1 10 100 Favours [Intravascular imaging] Favours [Angiograhy]			

MACE including studies exclusively using second generation DES

Intravascular imaging Angiography

	inu avascular ili	laging	Angiogra	apriy		KISK KAUU		KISK KAUO	,
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	
Kim et al. 2013	12	269	20	274	8.1%	0.61 [0.30, 1.23]	2013		
CTO-IVUS 2015	5	201	14	201	3.9%	0.36 [0.13, 0.97]	2015	-	7
IVUS-XPL 2020	36	700	70	700	25.9%	0.51 [0.35, 0.76]	2020	-	7
ULTIMATE 2021	35	479	60	482	24.7%	0.59 [0.39, 0.87]	2021	-	7
RENOVATE-COMPLEX-PCI 2023	76	1092	60	547	37.5%	0.63 [0.46, 0.88]	2023	-	,
Total (95% CI)		2741		2204	100.0%	0.57 [0.47, 0.70]		•	
Total events	164		224						~
Heterogeneity: Tau² = 0.00; Chi² = 1	.59, $df = 4 (P = 0.8)$	81); $I^2 = 0'$	<i>i</i> %					0.01 0.1 1 10	100
Test for overall effect: Z = 5.50 (P < 0	0.00001)							Favours (Intravascular imaging) Favours (Angiography)	100
								r avours [muavascular imaging] - r avours [miglography]	

Rick Ratio

Rick Ratio

Supplemental Figure 3

Major adverse cardiac events (MACE) including studies reporting left main coronary artery (LMCA) PCI

	Intravascular im	naging Angiography		aphy	Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI		
1.1.1 Studies reporting LMCA PCI										
HOME DES IVUS 2009	11	105	12	105	3.6%	0.92 [0.42, 1.98]	2009			
Tan et al. 2015	5	201	14	201	2.2%	0.36 [0.13, 0.97]	2015	-		
Liu et al. 2019	22	167	37	169	9.3%	0.60 [0.37, 0.97]	2019			
ULTIMATE 2021	35	479	60	482	13.8%	0.59 [0.39, 0.87]	2021			
RENOVATE-COMPLEX-PCI 2023 Subtotal (95% CI)	76	1092 2044		547 1504	20.9% 49.7 %	0.63 [0.46, 0.88] 0.62 [0.50, 0.76]	2023	<u>+</u>		
Total events	149	2044	183	1304	401170	0.02 [0.30, 0.70]		▼		
Heterogeneity: Tau² = 0.00; Chi² = 2		80) · P = 0								
Test for overall effect: Z = 4.55 (P < 1		3),1 - 0	70							
1.1.2 Studies not reporting LMCA F	PCI									
AVIO 2013	37	142	53	142	17.8%	0.70 [0.49, 0.99]	2013			
Kim et al. 2013	12	269	20	274	4.5%	0.61 [0.30, 1.23]	2013			
AIR-CTO 2015	8	61	17	62	3.7%	0.48 [0.22, 1.03]	2015			
CTO-IVUS 2015	25	115	29	115	9.9%	0.86 [0.54, 1.38]	2015			
IVUS-XPL 2020	36	700	70	700	14.4%	0.51 [0.35, 0.76]	2020			
Subtotal (95% CI)		1287		1293	50.3%	0.64 [0.52, 0.79]		◆		
Total events	118		189							
Heterogeneity: Tau² = 0.00; Chi² = 3.63, df = 4 (P = 0.46); l² = 0%										
Test for overall effect: Z = 4.20 (P <	0.0001)									
Total (95% CI)		3331		2797	100.0%	0.63 [0.54, 0.73]		♦		
Total events	267		372							
Heterogeneity: Tau ² = 0.00; Chi ² = 5.95, df = 9 (P = 0.75); I ² = 0% 0.01 0.1 1 10 100										
Test for overall effect: Z = 6.18 (P < 0.00001) Favours (Intravascular imaging) Favours (Angiography)										
Test for subgroup differences: Chi²	= 0.07, df $= 1$ (P $=$	0.80), I ² :	= 0%							

MACE including studies reporting chronic total occlusion (CTO) PCI

	Intravascular imaging		Angiography		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.2.1 Studies including CTO PCI								
AVIO 2013	37	142	53	142	18.0%	0.70 [0.49, 0.99]	2013	
AIR-CTO 2015	25	115	29	115	10.1%	0.86 [0.54, 1.38]	2015	_
CTO-IVUS 2015	5	201	14	201	2.2%	0.36 [0.13, 0.97]	2015	
ULTIMATE 2021	35	479	60	482	14.0%	0.59 [0.39, 0.87]	2021	
RENOVATE-COMPLEX-PCI 2023 Subtotal (95% CI)	76	1092 2029		547 1487	21.2% 65.4 %	0.63 [0.46, 0.88]	2023	*
Total events	178		216					
Heterogeneity: Tau² = 0.00; Chi² = 3	3.21, df = 4 (P = 0.7	.52); l² = 0	J%					
Test for overall effect: Z = 4.46 (P <	0.00001)							
1.2.2 Studies not including CTO PC	CI							
HOME DES IVUS 2009	11	105	12	105	3.7%	0.92 [0.42, 1.98]	2009	
Kim et al. 2013	12	269		274	4.6%	0.61 [0.30, 1.23]	2013	
Tan et al. 2015	5	201	14	201	2.2%	0.36 [0.13, 0.97]	2015	
Liu et al. 2019	22	167	37	169				State of the state
IVUS-XPL 2020	36	700		700	14.6%			- <u> </u>
Subtotal (95% CI)		1442		1449	34.6%	0.57 [0.44, 0.73]		•
Total events	86		153					
Heterogeneity: Tau² = 0.00; Chi² = 2		.62); $I^2 = 0$	1%					
Test for overall effect: Z = 4.35 (P < 1	0.0001)							
Total (95% CI)		3471		2936	100.0%	0.63 [0.54, 0.73]		★
Total events	264		369					20 00
Heterogeneity: Tau² = 0.00; Chi² = 6		.67); $I^2 = 0$	1%					0.01 0.1 1 10 100
Test for overall effect: Z = 6.16 (P <	0.00001)							Favours [Intravascular imaging] Favours [Angiography]
Test for subgroup differences: Chi²	'= 0.81, df = 1 (P =	= 0.37), I ²	= 0%					Tarouto [milaraconal magnig] Tarouto [migrograph]