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SUPPLEMENTARY MATERIAL 

 

A. Model architecture, training, and inference details 

Preprocessing 

PET image intensities were converted to standardized uptake values (SUV) normalized to body weight. 

Based on previous experiments, we found that irregularities in the intensity distribution can potentially 

confound the learning task as the GAN may overweight or even overfit to these deviations. We 

therefore performed intensity normalization steps that helped to regularize the intensity distribution 

of each image resulting in a more stable training and higher quality results. We found that background 

noise in air (outside the body contour) was often leading to image artifacts as individual signal-

containing voxels in air - that are mainly surrounded by signalless-voxels - would increase the 

complexity of the image generation learning task. We suppressed this background noise by applying a 

global threshold to the SUV images of 0.1 SUV units, effectively setting all intensities below this 

threshold to zero. Furthermore, we found that very high intensity peaks in individual voxels, typically 

observed at the injection site or in the bladder, can also cause artifacts in the generated output images. 

We treated those intensity peaks as outliers and bypassed them by clipping the image intensities to 

the 99.9-th percentile of all intensities found in the foreground voxels, which are defined as all voxels 

with an intensity greater than zero. The resulting image intensities were then rescaled from SUV units 

to be in a range of [-1, +1] using a linear transformation. All preprocessing steps were performed on a 

per image level. 

 

Training details 

We trained our network from scratch for 1000 epochs as a trade-off between runtime and reward 

based on previous experiments. Since the training is unsupervised, no direct stopping criterion was 



used. We set the batch size to 1 in favor of increased patch sizes during training as we wanted the 

contextual information to be maximized. The network's weights were updated by stochastic gradient 

descent using the Adam optimization algorithm with exponential decay rates of β1 = 0.5 and β2 =

0.999. We started training with an initial learning rate of 0.0002 and linearly decayed it to zero after 

reaching 500 epochs. In contrast to Zhu et al., we did not initialize weights from a Gaussian distribution. 

The adversarial loss was defined as the mean squared error (Supplementary S2 Equation 3), while 

cycle-consistency and identity loss were ensured by the residual error between the input image 𝑦 and 

the generated output image �̂�: 
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No data augmentation techniques were performed to avoid interfering effects on the site-specific 

intensity distributions. 

 

Inference and post-processing 

Images at test time were transformed from SUV units to a scale between [-1, +1], and predicted using 

a sliding window with the same size as the patch size used during training. After the prediction, images 

were transformed back to SUV units. 

 



B. Image quality metrics 

We calculated the following metrics between the input image 𝑦 and the generated output image �̂�  to 

assess the image quality after harmonization: 

 

Structural similarity index measure (SSIM) 

The SSIM is a perceptual-based image quality metric that not only considers image degradation as a 

perceived change in structural information 𝑠(𝑦, �̂�), but also as a change in luminance 𝑙(𝑦, �̂�) and 

contrast 𝑐(𝑦, �̂�): 

SSIM(𝑦, �̂�) = l(𝑦, �̂�)α ⋅ 𝑐(𝑦, �̂�)β ⋅ 𝑠(𝑦, �̂�)𝛾,  

where α, β and γ are factors to weight the importance of each component. We calculated the mean 

SSIM, defined as the average SSIM over multiple patches using a window size of 7 and weighting factors 

of α, β, γ = 1. A comprehensive explanation on the calculation of each component of the SSIM can be 

found in [1]. 

 

Normalized root mean squared error (NRMSE) 
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Peak signal to noise ratio (PSNR) 

PSNR = 10 ⋅   log10 (
𝑅2

𝑀𝑆𝐸
)  

 

All metrics were computed using scikit-image 0.19.3 [2]. 

  



Supplementary Fig. 1 Deep learning architecture. (a) Generator and (b) Discriminator 

  



Supplementary Fig. 2 Feature distribution overlap. The overlap of two feature distributions (same feature but drawn from 

two different centers) is used as a measure of agreement. An overlap of 1 implies perfect agreement and thus high 

reproducibility, while an overlap of 0 corresponds to perfect disagreement and thus low reproducibility across the two centers 



Supplementary Table 1 Radiomics reporting table 

 Head and Neck dataset Lung dataset 

Region of interest Largest lesion Healthy liver tissue 

Segmentation see Vallières et al. (1) Manually by a nuclear medicine 

physician using 3DSlicer software. 

VOI definition see Vallières et al. (1) Spherical VOI with 3cm diameter 

placed in the upper right lobe of the 

healthy liver, refer to EANM procedure 

guideline version 2.0 (2) 

Minimum VOI size 64 voxels as recommended in (3) 

Data type Standardized uptake values normalized to body weight (SUV) 

Bin width 0.5 

Intensity discretization Starting with zero (0 SUV) 

Interpolation method B-Spline (PET image), Nearest-neighbor (Segmentation mask) 

Voxel size (mm3) 1.5 × 1.5 × 1.5 3 × 3 × 3 

Software package PyRadiomics 3.0.1 (4) 

Features First-order – First-order statistics (n=18) 

GLCM – Gray Level Cooccurrence Matrix (n=24) 

GLRLM – Gray Level Run Length Matrix (n=16) 

GLSZM – Gray Level Size Zone Matrix (n=16) 

GLDM – Gray Level Dependence Matrix (n=14) 

NGTDM – Neighbouring Gray Tone Difference Matrix (n=5) 

 



Supplementary Table 2 Quantitative results for image similarity and image quality metrics between the original input images 

and their GAN-harmonized counterparts for the head and neck dataset. The reported metrics are computed globally from 

the entire body. Data are reported as mean values ± one standard deviation over all samples in a center. SSIM – Structural 

similarity, NRMSE – Normalized root mean squared error, PSNR – Peak signal to noise ratio 

Dataset Harmonization direction SSIM NRMSE PSNR 

Head and Neck HGJ 0.969 ± 0.005 0.070 ± 0.026 35.894 ± 3.411 

 
CHUM-HMR 0.954 ± 0.033 0.085 ± 0.042 35.301 ± 3.709 

 
  



Supplementary Table 3 Top 10 most contributing features as calculated from the mean feature importances over 100-folds. 

Results are shown for the harmonization from CHUM-HMR to HGJ (reference site: HGJ) 

Harmonization method Feature class Feature name Mean SD 

None GLSZM GrayLevelNonUniformity 6.96 0.68 

 First-order statistics Entropy 4.53 0.49 

 GLDM DependenceVariance 4.17 0.42 

 First-order statistics Skewness 3.78 0.42 

 First-order statistics Maximum 3.45 0.44 

 NGTDM Complexity 3.42 0.4 

 GLSZM GrayLevelVariance 3.17 0.39 

 First-order statistics Range 3.15 0.41 

 GLDM DependenceNonUniformity 2.87 0.39 

 First-order statistics Median 2.77 0.36 

GAN GLSZM GrayLevelNonUniformity 7.78 0.7 

 First-order statistics Maximum 5.08 0.55 

 First-order statistics Range 4.92 0.53 

 GLCM InverseVariance 4.38 0.45 

 GLDM SmallDependenceHighGrayLevelEmphasis 4.16 0.45 

 GLCM MaximumProbability 3.43 0.37 

 GLSZM ZoneEntropy 3.14 0.37 

 GLSZM SmallAreaHighGrayLevelEmphasis 3.05 0.37 

 GLSZM SizeZoneNonUniformity 2.77 0.36 

 GLDM GrayLevelNonUniformity 2.56 0.37 

ComBat GLSZM GrayLevelNonUniformity 6.34 0.73 

 GLDM DependenceVariance 4.17 0.47 

 First-order statistics Entropy 4.0 0.5 

 NGTDM Complexity 3.76 0.46 

 GLCM MaximumProbability 3.09 0.39 

 GLDM GrayLevelNonUniformity 3.07 0.45 



 First-order statistics Maximum 3.03 0.42 

 First-order statistics Range 3.0 0.42 

 GLRLM GrayLevelNonUniformity 2.81 0.49 

 GLDM DependenceNonUniformity 2.45 0.39 

GAN and ComBat First-order statistics Maximum 5.33 0.63 

 First-order statistics Range 4.6 0.58 

 NGTDM Complexity 3.97 0.52 

 First-order statistics RobustMeanAbsoluteDeviation 3.84 0.49 

 GLDM GrayLevelNonUniformity 3.52 0.53 

 GLCM DifferenceVariance 3.26 0.45 

 GLDM LargeDependenceLowGrayLevelEmphasis 3.06 0.53 

 GLSZM GrayLevelNonUniformity 3.0 0.49 

 First-order statistics Entropy 2.95 0.45 

 GLSZM GrayLevelNonUniformityNormalized 2.83 0.41 

 



Supplementary Table 4 Top 10 most contributing features as calculated from the mean feature importances over 100-folds. 

Results are shown for the harmonization from HGJ to CHUM-HMR (reference site: CHUM-HMR) 

Harmonization method Feature class Feature name Mean SD 

None GLSZM GrayLevelNonUniformity 6.96 0.68 

 First-order statistics Entropy 4.53 0.49 

 GLDM DependenceVariance 4.17 0.42 

 First-order statistics Skewness 3.78 0.42 

 First-order statistics Maximum 3.45 0.44 

 NGTDM Complexity 3.42 0.4 

 GLSZM GrayLevelVariance 3.17 0.39 

 First-order statistics Range 3.15 0.41 

 GLDM DependenceNonUniformity 2.87 0.39 

 First-order statistics Median 2.77 0.36 

GAN GLSZM GrayLevelNonUniformity 5.17 0.62 

 GLDM DependenceVariance 4.44 0.47 

 First-order statistics Entropy 3.94 0.49 

 First-order statistics Maximum 3.51 0.46 

 NGTDM Complexity 3.4 0.43 

 First-order statistics Skewness 3.33 0.41 

 First-order statistics Range 3.13 0.42 

 GLSZM GrayLevelNonUniformityNormalized 2.76 0.37 

 GLDM LargeDependenceLowGrayLevelEmphasis 2.51 0.47 

 GLRLM ShortRunLowGrayLevelEmphasis 2.39 0.37 

ComBat GLSZM GrayLevelNonUniformity 6.32 0.73 

 GLDM DependenceVariance 4.19 0.47 

 First-order statistics Entropy 3.99 0.5 

 NGTDM Complexity 3.76 0.46 

 GLCM MaximumProbability 3.06 0.39 

 GLDM GrayLevelNonUniformity 3.02 0.45 



 First-order statistics Maximum 3.0 0.42 

 First-order statistics Range 2.96 0.41 

 GLRLM GrayLevelNonUniformity 2.8 0.5 

 GLDM DependenceNonUniformity 2.47 0.39 

GAN and ComBat GLSZM GrayLevelNonUniformity 8.23 0.88 

 GLDM SmallDependenceHighGrayLevelEmphasis 4.1 0.53 

 GLCM MaximumProbability 4.01 0.49 

 First-order statistics Range 3.56 0.49 

 First-order statistics Maximum 3.26 0.47 

 GLSZM SizeZoneNonUniformity 3.2 0.47 

 GLDM GrayLevelNonUniformity 2.7 0.47 

 GLDM DependenceNonUniformity 2.38 0.38 

 First-order statistics RobustMeanAbsoluteDeviation 2.32 0.35 

 NGTDM Complexity 2.16 0.34 
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