Skip to main content

Open Access 09.05.2024 | Original Communication

Low-intensity vestibular noise stimulation improves postural symptoms in progressive supranuclear palsy

verfasst von: Max Wuehr, Daniela Peto, Urban M. Fietzek, Sabrina Katzdobler, Georg Nübling, Mirlind Zaganjori, Matthias Brendel, Johannes Levin, Günter U. Höglinger, Andreas Zwergal

Erschienen in: Journal of Neurology

Abstract

Background

Postural imbalance and falls are an early disabling symptom in patients with progressive supranuclear palsy (PSP) of multifactorial origin that may involve abnormal vestibulospinal reflexes. Low-intensity noisy galvanic vestibular stimulation (nGVS) is a non-invasive treatment to normalize deficient vestibular function and attenuate imbalance in Parkinson’s disease. The presumed therapeutic mode of nGVS is stochastic resonance (SR), a mechanism by which weak sensory noise stimulation can enhance sensory information processing.

Objective

To examine potential treatment effects of nGVS on postural instability in 16 patients with PSP with a clinically probable and [18F]PI-2620 tau-PET-positive PSP.

Methods

Effects of nGVS of varying intensity (0–0.7 mA) on body sway were examined, while patients were standing with eyes closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal sway reductions at intermediate nGVS intensities to be indicative of SR. An established SR-curve model was fitted on individual patient outcomes and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR.

Results

We found nGVS-induced reductions of body sway compatible with SR in 9 patients (56%) with optimal improvements of 31 ± 10%. In eight patients (50%), nGVS-induced sway reductions exceeded the minimal clinically important difference (improvement: 34 ± 5%), indicative of strong SR.

Conclusion

nGVS yielded clinically relevant reductions in body sway compatible with the exhibition of SR in vestibular sensorimotor pathways in at least half of the assessed patients. Non-invasive vestibular noise stimulation may be thus a well-tolerated treatment strategy to ameliorate postural symptoms in PSP.

Introduction

Progressive supranuclear palsy (PSP) is a rare and rapidly progressing neurodegenerative disease that clinically belongs to the group of atypical parkinsonian syndromes and is characterized by cerebral aggregation of tau protein [7, 53]. Early postural instability and unexplained recurrent falls are central to the clinical presentation of PSP and a diagnostic criterium to differentiate the disease from idiopathic Parkinson’s disease [24, 35]. Postural symptoms are a major disabling factor of PSP and a determinant of survival due to the associated risk of secondary injuries and immobilization [9, 42]. Balance deficits in PSP are likely of multifactorial origin and may involve axial rigidity, supranuclear gaze palsy, and deficient central sensorimotor balance regulation including abnormal vestibular balance reflexes [9, 36, 69]. As of yet, there is no disease-modifying therapy available for PSP, and existing medical and non-medical approaches to improve balance and prevent falls in patients yield moderate and transient improvements, if any [7, 9, 11, 51, 52].
A vestibular origin of postural symptoms and falls in PSP has been repeatedly discussed [5, 36, 56, 69]. There is, albeit conflicting, clinical evidence for abnormal peripheral vestibular function related to otolith pathways in PSP [5, 21, 36, 41, 56]. Vestibular deficits could be an accompanying age-related symptom, as PSP is a late-onset disease, or disease-specific directly associated with the pathophysiology of PSP. Brain imaging studies in patients with Parkinson’s disease and PSP further point to a common dysfunction within central cholinergic networks that transmit vestibular afferent inputs to the thalamus and basal ganglia, which closely correlates with postural deficits and falls in afflicted patients [6, 40, 69]. A key node within this network is the pedunculopontine nucleus (PPN) that provides excitatory cholinergic input to the thalamus and undergoes substantial neuronal loss early in the course of PSP [68]. Previous attempts using deep brain stimulation in PSP have already identified the PPN as a potential therapeutic target, however, without yielding clear and consistent benefit in tested patients [47]. A non-invasive method to modulate PPN activity is galvanic vestibular stimulation (GVS) [10]—a technique to activate vestibular afferents by weak electric current [13]. Delivered as a low-intensity and imperceptible random noise stimulus (called noisy GVS; nGVS), it has been previously shown to improve postural imbalance and a range of motor and non-motor symptoms in patients with Parkinson’s disease [34, 43, 44, 46, 55, 66, 67]. The presumed therapeutic mode underlying treatment effects of nGVS is stochastic resonance (SR)—a mechanism by which sensory information processing becomes enhanced at the presence of a particular non-zero amount of sensory noise [12, 37, 62].
The aim of this study was to examine potential treatment effects of vestibular neuromodulation via nGVS on postural instability in patients with PSP. It is known from previous studies that treatment effects of nGVS critically depend on the stimulation intensity. Intermediate noise intensities improve vestibular signal transfer whereas low or high stimulation intensities either not affect or even disturb signal processing [18, 38]. Accordingly, the characteristic signature indicating nGVS-induced SR and a positive treatment response is a bell-shaped performance curve, where the performance metric (i.e., postural balance) becomes optimally enhanced at a specific intermediate level of noise (Fig. 1). To identify nGVS-induced balance improvements in patients with PSP, we therefore studied postural responses to nGVS across a broad range of stimulation intensities and used different established criteria to determine whether stimulation-induced modulations of postural instability are compatible with the exhibition of SR. We further studied whether demographic or disease-related characteristics (e.g., duration of disease, severity of symptoms, or tau-deposition pattern) are associated with potential treatment responses.

Materials and methods

Participants

Sixteen patients (age 70.7 ± 7.8 years, 6 females) with a probable PSP according to the MDS-PSP criteria [24] participated in the study (for detailed patient characteristics, see Table 1). [18F]PI-2620 PET imaging was performed to depict tau-deposits as an in vivo biomarker supporting the clinical diagnosis [8]. Each patient underwent a complete physical, neurological and neuro-otological examination by an expert neurologist, including a clinical assessment of vestibuloocular (head impulse test) and vestibulospinal (Romberg’s test) function (AZ). Symptom severity was scored using the Progressive Supranuclear Palsy Rating Scale (PSPRS) [20], while patients were taking their regular medication (i.e., L-dopa at a mean daily dose of 518 ± 254 mg in 10 patients). Patients had a mild-to-moderate disease severity with a PSPRS of 29.8 ± 11.8. Fourteen age-matched healthy controls (age 68.9 ± 6.5 years, 9 females) were included in the study to establish normative data. All participants gave written informed consent prior to study inclusion.
Table 1
Clinical characteristics and global stimulation effects of patients
ID
Gender
Age (y)
Disease duration (y)
PSP type
Laterality
L-dopa (mg)
PSPRS
Relevant comorbidities
Exhibition of SR
P1
M
59
2
PSP-RS
Symmetric
L-dopa (300)
17
D
Strong
P2
M
78
4
PSP-RS
Left-dominant
L-dopa (800)
44
CI, D
None
P3
F
75
3
PSP-FTD
Left-dominant
 
37
CI
None
P4
M
80
3
PSP-P
Symmetric
L-dopa (300)
26
 
None
P5
M
63
4
PSP-P
Right-dominant
L-dopa (600)
20
 
Strong
P6
M
73
2
PSP-RS
Symmetric
 
26
 
None
P7
F
76
1
PSP-RS
Symmetric
 
30
CI
None
P8
M
75
3
PSP-P
Left-dominant
L-dopa (900)
45
D, PS, CC
Strong
P9
F
82
7
PSP-PAGF
Right-dominant
L-dopa (400)
34
 
Strong
P10
F
64
1.5
PSP-RS
Symmetric
L-dopa (600)
31
D
None
P11
M
80
5
PSP-RS
Symmetric
L-dopa (1000)
52
 
Strong
P12
M
61
5
PSP-RS
Symmetric
 
15
 
None
P13
F
60
4
PSP-P
Left-dominant
L-dopa (375)
19
PS
Weak
P14
F
71
3
PSP-RS
Left-dominant
 
33
 
Strong
P15
M
65
1
PSP-RS
Right-dominant
 
10
 
Strong
P16
M
69
1
PSP-RS
Left-dominant
L-dopa (400)
38
 
Strong
PSP progressive supranuclear palsy, PSPRS PSP rating scale, RS Richardson’s syndrome, P parkinsonism, PAGF pure akinesia and gait freezing, FTD frontotemporal dysfunction, D depression, CI cognitive impairment, CC camptocormia, PS Pisa syndrome, SR stochastic resonance

PET imaging and data analysis

[18F]PI-2620 PET imaging was performed in a full dynamic setting (0–60 min post injection) with a Siemens Biograph or mCT PET/CT scanner (Siemens Healthineers, Erlangen, Germany) at the Department of Nuclear Medicine, LMU Munich as described earlier [8, 57]. The multilinear reference tissue model 2 (MRTM2) in PMOD version 3.9 (PMOD Inc) was used to calculate distribution volume ratio images (DVR; DVR = non-displaceable binding potential + 1) of each full dynamic data set. The cerebellum excluding the dentate nucleus and the central cerebellar white matter as well as the superior and the posterior cerebellar layers (thickness in z direction = 1.5 cm each) served as a reference region.
Two expert readers (M.B. and M.Z.) performed a dichotomous visual read of DVR maps. In addition, [18F]PI-2620 DVR values were obtained in the following PSP target regions predefined by Brainnetome atlas [14]: frontal lobe, thalamus, globus pallidus, and putamen (left- and right-sided, respectively). Patient data were compared to a normative in-house data set derived from a matched healthy control group of the same scanners.

Galvanic vestibular stimulation

Vestibular noise stimulation (i.e., nGVS) was applied via a pair of 4.0 cm × 6.0 cm Ag–AgCl electrodes attached bilaterally over the left and right mastoid process. Zero-mean Gaussian white noise stimulation with a frequency range of 0–30 Hz and varying peak amplitudes of 0–0.7 mA was delivered by a mobile constant current stimulator (neuroConn®, Illmenau, Germany).

Experimental procedures

Body sway was recorded for 30 s on a posturographic force plate (Kistler, 9261A, Kistler Group, Winterthur, Switzerland) at 40 Hz while patients were standing with their eyes closed (Fig. 1A). This procedure was repeated eight times, while patients were stimulated with a different amplitude of nGVS (ranging from 0 to 0.7 mA, in a randomized order) in each trial. Patients were blinded to the exact stimulation order. Between trials, patients were given a short break to recover.

Data and statistical analysis

For each stance trial, mean sway velocity was calculated as the primary output measures based on the recorded radial center-of-pressure (CoP) trajectory using the formula \(SV = 1/T \times {\sum }_{i}\left|{r}_{i+1}-{r}_{i}\right|, [{\text{mm}}/{\text{s}}]\), where \(T\) is the total trial duration (i.e., 30 s) and \({r}_{i}\) is the radial CoP distance of the ith sample. For further analysis, sway velocity measures from the eight stance trials were normalized to sway velocity obtained during 0 mA stimulation (i.e., baseline condition).
To determine whether SR-like dynamics were present in the balance responses of patients to varying nGVS levels, we tested three increasingly rigorous criteria that built on one another: (1) The first criterion tested whether body sway of patients improved for at least one particular nGVS level compared to baseline condition (i.e., 0 mA nGVS). (2) The second criterion was based on a visual inspection of response dynamics of body sway across increasing nGVS level by three experienced human raters (i.e., MW, DP, and AZ). Each rater had to evaluate whether (in addition to the fulfillment of the first criterion) nGVS-amplitude-dependent changes of body sway in individual patients were further compatible with a bell-shaped response curve with improvements of performance at intermediate stimulation intensities that is indicative of the presence of SR. This evaluation was based on a plot of the normalized nGVS-dependent changes in body sway and a concomitant plot of a theoretical SR curve that was fit on the data using a goodness-of-fit statistic [2, 18] (Fig. 1B). The applied equation fit represents an adapted version of the originally proposed SR model by Benzi [3], including a piecewise, linear masking effect to model cases where nGVS effects at high amplitudes may have detrimental effects on the performance metric [58]. The criterion was met if at least two of the raters identified the presence of SR-like dynamics. (3) The third criterion additionally evaluated whether improvements at intermediate nGVS levels were greater than the minimal clinically important difference (MCID; defined as half the standard deviation for normative data [60]) for changes in body sway velocity. MCID for sway velocity was 2.3 mm/s calculated based on the posturographic recordings of the 14 age-matched healthy individuals standing with eyes closed for 30 s.
Based on the three criteria, patients were classified as showing solely optimal improvement and no SR (criterion 1), exhibiting weak SR (criterion 1 & 2) or showing strong SR (criterion 1 & 2 & 3). Potential correlations between SR classification and age, gender, disease duration, disease severity (i.e., PSPRS), and baseline body sway were analyzed using Spearman's rank correlation. Extent of Tau deposition in predefined regions of interest was compared between patients with weak/strong SR and no SR using multivariate analysis of variance including age and sex as covariates and Bonferroni adjustment for multiple comparisons. Descriptive statistics are reported as mean ± SD. All results were considered significant at p < 0.05. Statistical analysis was performed using SPSS (Version 26.0, IBM Corp., USA).

Results

Application of nGVS at intensities ranging from 0.1 to 0.7 mA was well tolerated and did not cause apparent disequilibrium in any of the examined patients. In a first step of analysis, we evaluated whether body sway velocity was decreased by at least one particular nGVS intensity compared to sham stimulation (i.e., nGVS at 0 mA). This criterion was met by 12 patients (75%) with an optimal mean improvement magnitude of 25% (range 2–45%) at an average intensity of 0.4 mA (range 0.1–0.7 mA).
In a second step, an established SR model was fit to the individual modulations of body sway velocity in dependence of nGVS intensity (Fig. 2). Three experts were asked to independently rate for each patient by visual inspection of individual sway velocity modulations and corresponding model fits, whether body sway responses follow a bell-shaped performance curve or not. Based on their judgments, SR-like treatment responses to nGVS were present in nine patients (56%) with optimal improvements of 31% (range 7–45%) at an average intensity of 0.3 mA (range 0.1–0.5 mA). Analogous bell-shaped performance modulations with optimal improvement at intermediate noise intensities were found on the group average response level of these patients (Fig. 3). In the remaining patients (44%), body sway velocity either randomly fluctuated (3 patients) or was generally increased (4 patients) across the range of tested nGVS intensities.
We subsequently identified those patients that in addition to SR-like response dynamics showed a clinically meaningful improvement of static balance (i.e., a reduction of body sway velocity greater than the MCID, Fig. 2). This criterion for the exhibition of strong SR was met by 8 patients (50%) with a mean optimal improvement of 34% (range 28–45%) at an average intensity of 0.3 mA (range 0.1–0.5 mA). Considerable SR-like performance improvements were also apparent on the group average level of patients exhibiting strong SR (Fig. 3).
In a final step, we explored demographic and disease-related factors that may potentially promote or hamper the exhibition of weak or strong SR in response to nGVS treatment. We did not find any correlation between age, gender, disease duration, PSPRS, or body sway at baseline and nGVS treatment responses of individual patients. In addition, mean DVR in the left and right frontal lobe, thalamus, putamen, and globus pallidus were not statistically different for patients with and without SR. Expectedly, whole-brain DVR and mean DVR in the bilateral thalamus, putamen, and globus pallidus were significantly higher in both PSP subgroups compared to the control group (Fig. 4).

Discussion

In this study, we examined the effects of a weak vestibular neuromodulation by nGVS on postural instability in patients with PSP. The purported mode of action of nGVS is SR, by which sensory-(motor) processing can become enhanced at the presence of low-intensity additive sensory noise below the sensory detection threshold [12, 37, 62]. In half of the assessed patients with PSP, we found robust stimulation responses compatible with SR that were linked to clinically meaningful improvements in static balance regulation, i.e., 28–45% reduction in sway velocity—a measure that has been closely linked to the frequency of falls in afflicted patients [69]. The observed response rate to treatment is higher compared to healthy individuals, where nGVS-induced balance responses compatible with SR were only rarely reported [2]. Consistent with previous reports [18, 66], the average nGVS intensity that optimally improved postural sway was found at 0.3 mA, which corresponds to approximately 60% of the estimated detection threshold of vestibular afferent responses to GVS [33]. Previous studies provide accumulating evidence that nGVS can attenuate postural imbalance and other motor and autonomic symptoms in patients with Parkinson’s disease [34, 43, 44, 46, 55, 66, 67]. To our knowledge, this is the first study suggesting that nGVS treatment effects may extend to postural symptoms in patients with PSP.
Multifaceted reasons for postural imbalance and falls in PSP are currently discussed that point to at least two distinct mechanisms of action by which nGVS could impact postural symptoms in afflicted patients. First, there is, however not uncontroversial, evidence that links disequilibrium and falls in PSP to vestibular dysfunction [5, 21, 36, 41, 56]. Accordingly, the previous reports suggest that in particular otolith-mediated ocular-motor and balance reflexes can be impaired in patients with PSP [5, 36, 56]. In this context, nGVS-induced facilitation of vestibular signal processing has been shown to not only sensitize vestibular perception as such [18, 31, 32, 63], but to also enhance the responsiveness of vestibulospinal balance reflexes in healthy individuals and patients with chronic vestibular hypofunction [48, 61]. Improved vestibulospinal function by nGVS has further been associated with a stabilization of balance during standing and walking under vestibular-challenging circumstances in both cohorts [15, 17, 19, 2528, 39, 64, 65]. Hence, nGVS could attenuate postural imbalance in PSP by restoring deficient vestibular-related balance responses in afflicted patients.
Alternatively, nGVS treatment in PSP could take effect along ascending pathways that connect vestibular afferents to the thalamus and basal ganglia [10, 54]. The PPN, a central neuronal hub along this pathway, provides the primary cholinergic input to the thalamus. Natural vestibular input as well as vestibular neuromodulation via nGVS were shown to directly modulate PPN activity in animal models and humans [1, 10, 49]. In PSP, neuronal loss in the PPN and the thalamus is a common and early neurodegenerative sign in the course of disease [22, 29, 59, 68], which entails a substantial reduction of thalamic cholinergic activity in afflicted patients [23]. PSP-associated neurodegeneration within this mesencephalic brainstem–thalamus loop appears to be further closely associated with patients’ postural imbalance and frequency of falling as suggested by functional brain imaging [9, 69]. Hence, nGVS may attenuate postural instability in PSP via an activation of tegmental brainstem nuclei that restores excitatory cholinergic input to the thalamus.
It is eventually also conceivable that nGVS treatment effects on posture in PSP may be rather unrelated to the primary PSP pathophysiology. The average age of disease onset in PSP is in the sixth decade of life [45] corresponding to mean disease onset at 67 years (range 49–77 years) in our cohort of patients. Vestibular sensitive capacity and related motor functions are known to gradually decline above the age of 40 [4]. A close association between postural imbalance and age-related decline in vestibular–perceptual thresholds has been previously reported [30]. This may explain why beneficial responses of vestibular perceptual and sensorimotor function to nGVS treatment become more frequent and pronounced in the elderly compared to the young healthy population [16, 25, 50]. Age rather than disease-related impairments in vestibular balance control could therefore also be the source of nGVS-induced balance improvements in patients with PSP. The latter assumption is supported by the lack of correlation between treatment responses and disease duration, disease severity scores, or the extent of tau load in PSP target regions derived from [18F]PI-2620 PET.
In summary, we found that vestibular neuromodulation via nGVS yielded clinically meaningful reductions of postural instability in half of the assessed patients with PSP. Long-term application of nGVS in patients has previously shown to be safe with negligible side effects. Non-invasive vestibular noise stimulation in PSP may therefore be a well-tolerated treatment option to attenuate postural symptoms, reduce the risk of falling, and preserve mobility in afflicted patients. A re-evaluation of the observed effects in a larger sample of patients is required to clarify whether and how the treatment response may depend on clinical characteristics of patients, including instrumented assessment of vestibular semicircular canal and otolith function, and whether long-term treatment in respondent patients can effectively facilitate mobility and reduce their risk of falling.

Acknowledgements

The authors would like to thank Lorenz Assländer for providing resources for data analysis. The study was supported by the German Federal Ministry for Education and Science (BMBF, 01EO1401 & 13GW0490B).

Declarations

Conflicts of interest

MW received funding from the neuroConn GmbH (DC stimulator).

Ethical approval

The ethics committee of the medical faculty of the Ludwig-Maximilians-University approved the study protocol (20–1137), which was conducted in accordance with the Declaration of Helsinki.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Neuer Inhalt

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Aravamuthan BR, Angelaki DE (2012) Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 223:183–199CrossRefPubMed Aravamuthan BR, Angelaki DE (2012) Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 223:183–199CrossRefPubMed
2.
Zurück zum Zitat Asslander L, Giboin LS, Gruber M, Schniepp R, Wuehr M (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:12327PubMedCentralCrossRefPubMed Asslander L, Giboin LS, Gruber M, Schniepp R, Wuehr M (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:12327PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A: Math Gen Appl Entomol 14:L453CrossRef Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A: Math Gen Appl Entomol 14:L453CrossRef
4.
Zurück zum Zitat Bermúdez Rey MC, Clark TK, Wang W, Leeder T, Bian Y, Merfeld DM (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:162–162PubMedCentralCrossRefPubMed Bermúdez Rey MC, Clark TK, Wang W, Leeder T, Bian Y, Merfeld DM (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:162–162PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Bisdorff AR, Bronstein AM, Wolsley C, Lees AJ (1997) Torticollis due to disinhibition of the vestibulo-collic reflex in a patient with Steele–Richardson–Olszewski syndrome. Mov Disord 12:328–336CrossRefPubMed Bisdorff AR, Bronstein AM, Wolsley C, Lees AJ (1997) Torticollis due to disinhibition of the vestibulo-collic reflex in a patient with Steele–Richardson–Olszewski syndrome. Mov Disord 12:328–336CrossRefPubMed
6.
Zurück zum Zitat Bohnen NI, Müller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676PubMedCentralCrossRefPubMed Bohnen NI, Müller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, Albin RL (2009) History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73:1670–1676PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Hoglinger GU (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 16:552–563PubMedCentralCrossRefPubMed Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Hoglinger GU (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 16:552–563PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, Palleis C, Gehmeyr M, Fietzek U, Respondek G, Sauerbeck J, Nitschmann A, Zach C, Hammes J, Barbe MT, Onur O, Jessen F, Saur D, Schroeter ML, Rumpf JJ, Rullmann M, Schildan A, Patt M, Neumaier B, Barret O, Madonia J, Russell DS, Stephens A, Roeber S, Herms J, Botzel K, Classen J, Bartenstein P, Villemagne V, Levin J, Hoglinger GU, Drzezga A, Seibyl J, Sabri O (2020) Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 77:1408–1419CrossRefPubMed Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M, Palleis C, Gehmeyr M, Fietzek U, Respondek G, Sauerbeck J, Nitschmann A, Zach C, Hammes J, Barbe MT, Onur O, Jessen F, Saur D, Schroeter ML, Rumpf JJ, Rullmann M, Schildan A, Patt M, Neumaier B, Barret O, Madonia J, Russell DS, Stephens A, Roeber S, Herms J, Botzel K, Classen J, Bartenstein P, Villemagne V, Levin J, Hoglinger GU, Drzezga A, Seibyl J, Sabri O (2020) Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 77:1408–1419CrossRefPubMed
9.
Zurück zum Zitat Brown FS, Rowe JB, Passamonti L, Rittman T (2020) Falls in progressive supranuclear palsy. Mov Disord Clin Pract 7:16–24CrossRefPubMed Brown FS, Rowe JB, Passamonti L, Rittman T (2020) Falls in progressive supranuclear palsy. Mov Disord Clin Pract 7:16–24CrossRefPubMed
10.
Zurück zum Zitat Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A, Kim D, Wang ZJ, McKeown MJ (2018) Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson’s disease: fMRI effects of different stimuli. Front Neurosci 12:101PubMedCentralCrossRefPubMed Cai J, Lee S, Ba F, Garg S, Kim LJ, Liu A, Kim D, Wang ZJ, McKeown MJ (2018) Galvanic vestibular stimulation (GVS) augments deficient pedunculopontine nucleus (PPN) connectivity in mild Parkinson’s disease: fMRI effects of different stimuli. Front Neurosci 12:101PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Clerici I, Ferrazzoli D, Maestri R, Bossio F, Zivi I, Canesi M, Pezzoli G, Frazzitta G (2017) Rehabilitation in progressive supranuclear palsy: effectiveness of two multidisciplinary treatments. PLoS ONE 12:e0170927PubMedCentralCrossRefPubMed Clerici I, Ferrazzoli D, Maestri R, Bossio F, Zivi I, Canesi M, Pezzoli G, Frazzitta G (2017) Rehabilitation in progressive supranuclear palsy: effectiveness of two multidisciplinary treatments. PLoS ONE 12:e0170927PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Collins J, Chow CC, Imhoff TT (1995) Stochastic resonance without tuning. Nature 376:236–238CrossRefPubMed Collins J, Chow CC, Imhoff TT (1995) Stochastic resonance without tuning. Nature 376:236–238CrossRefPubMed
13.
Zurück zum Zitat Dlugaiczyk J, Wuehr M, Straka H (2020) Electrical stimulation of vestibular endorgans. In: Fritzsch B (ed) The senses: a comprehensive reference, 2nd edn. Elsevier, Oxford, pp 635–671CrossRef Dlugaiczyk J, Wuehr M, Straka H (2020) Electrical stimulation of vestibular endorgans. In: Fritzsch B (ed) The senses: a comprehensive reference, 2nd edn. Elsevier, Oxford, pp 635–671CrossRef
14.
Zurück zum Zitat Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526PubMedCentralCrossRefPubMed Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, Iwasaki S (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:900PubMedCentralCrossRefPubMed Fujimoto C, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, Iwasaki S (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:900PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Fujimoto C, Kinoshita M, Kamogashira T, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, Iwasaki S (2019) Noisy galvanic vestibular stimulation has a greater ameliorating effect on posture in unstable subjects: a feasibility study. Sci Rep 9:17189PubMedCentralCrossRefPubMed Fujimoto C, Kinoshita M, Kamogashira T, Egami N, Kawahara T, Uemura Y, Yamamoto Y, Yamasoba T, Iwasaki S (2019) Noisy galvanic vestibular stimulation has a greater ameliorating effect on posture in unstable subjects: a feasibility study. Sci Rep 9:17189PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, Togo F, Yamasoba T, Iwasaki S (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:37575PubMedCentralCrossRefPubMed Fujimoto C, Yamamoto Y, Kamogashira T, Kinoshita M, Egami N, Uemura Y, Togo F, Yamasoba T, Iwasaki S (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:37575PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722CrossRefPubMed Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722CrossRefPubMed
19.
Zurück zum Zitat Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS ONE 10:e0136335PubMedCentralCrossRefPubMed Goel R, Kofman I, Jeevarajan J, De Dios Y, Cohen HS, Bloomberg JJ, Mulavara AP (2015) Using low levels of stochastic vestibular stimulation to improve balance function. PLoS ONE 10:e0136335PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565CrossRefPubMed Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130:1552–1565CrossRefPubMed
21.
Zurück zum Zitat Goldschagg N, Bremova-Ertl T, Bardins S, Dinca N, Feil K, Krafczyk S, Lorenzl S, Strupp M (2019) No evidence of a contribution of the vestibular system to frequent falls in progressive supranuclear palsy. J Clin Neurol 15:339–346PubMedCentralCrossRefPubMed Goldschagg N, Bremova-Ertl T, Bardins S, Dinca N, Feil K, Krafczyk S, Lorenzl S, Strupp M (2019) No evidence of a contribution of the vestibular system to frequent falls in progressive supranuclear palsy. J Clin Neurol 15:339–346PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(Pt 7):1410–1421CrossRefPubMed Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000) Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(Pt 7):1410–1421CrossRefPubMed
23.
Zurück zum Zitat Hirano S, Shinotoh H, Shimada H, Aotsuka A, Tanaka N, Ota T, Sato K, Ito H, Kuwabara S, Fukushi K, Irie T, Suhara T (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 133:2058–2068CrossRefPubMed Hirano S, Shinotoh H, Shimada H, Aotsuka A, Tanaka N, Ota T, Sato K, Ito H, Kuwabara S, Fukushi K, Irie T, Suhara T (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 133:2058–2068CrossRefPubMed
24.
Zurück zum Zitat Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Muller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD, Seppi K, van Eimeren T, Wenning GK, Boxer AL, Golbe LI, Litvan I, Movement Disorder Society-endorsed PSPSG (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864PubMedCentralCrossRefPubMed Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Muller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD, Seppi K, van Eimeren T, Wenning GK, Boxer AL, Golbe LI, Litvan I, Movement Disorder Society-endorsed PSPSG (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Inukai Y, Masaki M, Otsuru N, Saito K, Miyaguchi S, Kojima S, Onishi H (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: a randomised controlled trial. J Neuroeng Rehabil 15:63–63PubMedCentralCrossRefPubMed Inukai Y, Masaki M, Otsuru N, Saito K, Miyaguchi S, Kojima S, Onishi H (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: a randomised controlled trial. J Neuroeng Rehabil 15:63–63PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Inukai Y, Otsuru N, Masaki M, Saito K, Miyaguchi S, Kojima S, Onishi H (2018) Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul 11:85–93CrossRefPubMed Inukai Y, Otsuru N, Masaki M, Saito K, Miyaguchi S, Kojima S, Onishi H (2018) Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul 11:85–93CrossRefPubMed
27.
Zurück zum Zitat Iwasaki S, Fujimoto C, Egami N, Kinoshita M, Togo F, Yamamoto Y, Yamasoba T (2018) Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul 11:709–715CrossRefPubMed Iwasaki S, Fujimoto C, Egami N, Kinoshita M, Togo F, Yamamoto Y, Yamasoba T (2018) Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul 11:709–715CrossRefPubMed
28.
Zurück zum Zitat Iwasaki S, Yamamoto Y, Togo F, Kinoshita M, Yoshifuji Y, Fujimoto C, Yamasoba T (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975CrossRefPubMed Iwasaki S, Yamamoto Y, Togo F, Kinoshita M, Yoshifuji Y, Fujimoto C, Yamasoba T (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975CrossRefPubMed
29.
Zurück zum Zitat Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543PubMedCentralCrossRefPubMed Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Karmali F, Bermudez Rey MC, Clark TK, Wang W, Merfeld DM (2017) Multivariate analyses of balance test performance, vestibular thresholds, and age. Front Neurol 8:578PubMedCentralCrossRefPubMed Karmali F, Bermudez Rey MC, Clark TK, Wang W, Merfeld DM (2017) Multivariate analyses of balance test performance, vestibular thresholds, and age. Front Neurol 8:578PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception. Neuroscience 399:161–166CrossRefPubMed Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception. Neuroscience 399:161–166CrossRefPubMed
33.
Zurück zum Zitat Kwan A, Forbes PA, Mitchell DE, Blouin J-S, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10:1904PubMedCentralCrossRefPubMed Kwan A, Forbes PA, Mitchell DE, Blouin J-S, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10:1904PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Levin J, Kurz A, Arzberger T, Giese A, Hoglinger GU (2016) The differential diagnosis and treatment of atypical parkinsonism. Dtsch Arztebl Int 113:61–69PubMedCentralPubMed Levin J, Kurz A, Arzberger T, Giese A, Hoglinger GU (2016) The differential diagnosis and treatment of atypical parkinsonism. Dtsch Arztebl Int 113:61–69PubMedCentralPubMed
36.
Zurück zum Zitat Liao K, Wagner J, Joshi A, Estrovich I, Walker MF, Strupp M, Leigh RJ (2008) Why do patients with PSP fall? Evidence for abnormal otolith responses. Neurology 70:802–809CrossRefPubMed Liao K, Wagner J, Joshi A, Estrovich I, Walker MF, Strupp M, Leigh RJ (2008) Why do patients with PSP fall? Evidence for abnormal otolith responses. Neurology 70:802–809CrossRefPubMed
37.
Zurück zum Zitat McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426CrossRefPubMed McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426CrossRefPubMed
38.
Zurück zum Zitat Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281CrossRefPubMed Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281CrossRefPubMed
39.
Zurück zum Zitat Mulavara AP, Kofman IS, De Dios YE, Miller C, Peters BT, Goel R, Galvan-Garza R, Bloomberg JJ (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:117PubMedCentralCrossRefPubMed Mulavara AP, Kofman IS, De Dios YE, Miller C, Peters BT, Goel R, Galvan-Garza R, Bloomberg JJ (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:117PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Müller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136:3282–3289PubMedCentralCrossRefPubMed Müller ML, Albin RL, Kotagal V, Koeppe RA, Scott PJ, Frey KA, Bohnen NI (2013) Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain 136:3282–3289PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Murdin L, Bronstein AM (2009) Head deviation in progressive supranuclear palsy: enhanced vestibulo-collic reflex or loss of resetting head movements? J Neurol 256:1143–1145CrossRefPubMed Murdin L, Bronstein AM (2009) Head deviation in progressive supranuclear palsy: enhanced vestibulo-collic reflex or loss of resetting head movements? J Neurol 256:1143–1145CrossRefPubMed
42.
Zurück zum Zitat O’Sullivan SS, Massey LA, Williams DR, Silveira-Moriyama L, Kempster PA, Holton JL, Revesz T, Lees AJ (2008) Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131:1362–1372CrossRefPubMed O’Sullivan SS, Massey LA, Williams DR, Silveira-Moriyama L, Kempster PA, Holton JL, Revesz T, Lees AJ (2008) Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131:1362–1372CrossRefPubMed
43.
Zurück zum Zitat Pal S, Rosengren SM, Colebatch JG (2009) Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease. J Vestib Res 19:137–142CrossRefPubMed Pal S, Rosengren SM, Colebatch JG (2009) Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease. J Vestib Res 19:137–142CrossRefPubMed
44.
Zurück zum Zitat Pan W, Soma R, Kwak S, Yamamoto Y (2008) Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol 255:1657–1661CrossRefPubMed Pan W, Soma R, Kwak S, Yamamoto Y (2008) Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol 255:1657–1661CrossRefPubMed
45.
Zurück zum Zitat Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ, van Swieten JC, Troakes C, Al Sarraj S, Gelpi E, Gaig C, Tolosa E, Oertel WH, Giese A, Roeber S, Arzberger T, Wagenpfeil S, Hoglinger GU, Movement Disorder Society-endorsed PSPSG (2014) The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 29:1758–1766CrossRefPubMed Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ, van Swieten JC, Troakes C, Al Sarraj S, Gelpi E, Gaig C, Tolosa E, Oertel WH, Giese A, Roeber S, Arzberger T, Wagenpfeil S, Hoglinger GU, Movement Disorder Society-endorsed PSPSG (2014) The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 29:1758–1766CrossRefPubMed
46.
Zurück zum Zitat Samoudi G, Jivegard M, Mulavara AP, Bergquist F (2015) Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson’s disease. Brain Stimul 8:474–480CrossRefPubMed Samoudi G, Jivegard M, Mulavara AP, Bergquist F (2015) Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson’s disease. Brain Stimul 8:474–480CrossRefPubMed
47.
Zurück zum Zitat Scelzo E, Lozano AM, Hamani C, Poon YY, Aldakheel A, Zadikoff C, Lang AE, Moro E (2017) Peduncolopontine nucleus stimulation in progressive supranuclear palsy: a randomised trial. J Neurol Neurosurg Psychiatry 88:613–616CrossRefPubMed Scelzo E, Lozano AM, Hamani C, Poon YY, Aldakheel A, Zadikoff C, Lang AE, Moro E (2017) Peduncolopontine nucleus stimulation in progressive supranuclear palsy: a randomised trial. J Neurol Neurosurg Psychiatry 88:613–616CrossRefPubMed
48.
Zurück zum Zitat Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62CrossRefPubMed Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62CrossRefPubMed
49.
Zurück zum Zitat Seemungal B, Yousif N, Bronstein AM, Naushahi J, Nandi D (2010) POD06 Human pedunculopontine nucleus displays vestibular reactivity. J Neurol Neurosurg Psychiatry 81:e43 Seemungal B, Yousif N, Bronstein AM, Naushahi J, Nandi D (2010) POD06 Human pedunculopontine nucleus displays vestibular reactivity. J Neurol Neurosurg Psychiatry 81:e43
50.
Zurück zum Zitat Serrador JM, Deegan BM, Geraghty MC, Wood SJ (2018) Enhancing vestibular function in the elderly with imperceptible electrical stimulation. Sci Rep 8:336PubMedCentralCrossRefPubMed Serrador JM, Deegan BM, Geraghty MC, Wood SJ (2018) Enhancing vestibular function in the elderly with imperceptible electrical stimulation. Sci Rep 8:336PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Slade SC, Finkelstein DI, McGinley JL, Morris ME (2020) Exercise and physical activity for people with progressive supranuclear palsy: a systematic review. Clin Rehabil 34:23–33CrossRefPubMed Slade SC, Finkelstein DI, McGinley JL, Morris ME (2020) Exercise and physical activity for people with progressive supranuclear palsy: a systematic review. Clin Rehabil 34:23–33CrossRefPubMed
52.
Zurück zum Zitat Slade SC, Underwood M, McGinley JL, Morris ME (2019) Exercise and progressive supranuclear palsy: the need for explicit exercise reporting. BMC Neurol 19:305PubMedCentralCrossRefPubMed Slade SC, Underwood M, McGinley JL, Morris ME (2019) Exercise and progressive supranuclear palsy: the need for explicit exercise reporting. BMC Neurol 19:305PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Hoglinger GU (2021) Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 17:601–620CrossRefPubMed Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Hoglinger GU (2021) Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 17:601–620CrossRefPubMed
54.
Zurück zum Zitat Stiles L, Smith PF (2015) The vestibular-basal ganglia connection: balancing motor control. Brain Res 1597:180–188CrossRefPubMed Stiles L, Smith PF (2015) The vestibular-basal ganglia connection: balancing motor control. Brain Res 1597:180–188CrossRefPubMed
55.
Zurück zum Zitat Tran S, Shafiee M, Jones CB, Garg S, Lee S, Pasman EP, Carpenter MG, McKeown MJ (2018) Subthreshold stochastic vestibular stimulation induces complex multi-planar effects during standing in Parkinson’s disease. Brain Stimul 11:1180–1182CrossRefPubMed Tran S, Shafiee M, Jones CB, Garg S, Lee S, Pasman EP, Carpenter MG, McKeown MJ (2018) Subthreshold stochastic vestibular stimulation induces complex multi-planar effects during standing in Parkinson’s disease. Brain Stimul 11:1180–1182CrossRefPubMed
56.
Zurück zum Zitat Venhovens J, Meulstee J, Bloem BR, Verhagen WI (2016) Neurovestibular analysis and falls in Parkinson’s disease and atypical parkinsonism. Eur J Neurosci 43:1636–1646CrossRefPubMed Venhovens J, Meulstee J, Bloem BR, Verhagen WI (2016) Neurovestibular analysis and falls in Parkinson’s disease and atypical parkinsonism. Eur J Neurosci 43:1636–1646CrossRefPubMed
57.
Zurück zum Zitat Volter F, Beyer L, Eckenweber F, Scheifele M, Bui N, Patt M, Barthel H, Katzdobler S, Palleis C, Franzmeier N, Levin J, Perneczky R, Rauchmann BS, Sabri O, Hong J, Cumming P, Rominger A, Shi K, Bartenstein P, Brendel M (2023) Assessment of perfusion deficit with early phases of [(18)F]PI-2620 tau-PET versus [(18)F]flutemetamol-amyloid-PET recordings. Eur J Nucl Med Mol Imaging 50:1384–1394CrossRefPubMed Volter F, Beyer L, Eckenweber F, Scheifele M, Bui N, Patt M, Barthel H, Katzdobler S, Palleis C, Franzmeier N, Levin J, Perneczky R, Rauchmann BS, Sabri O, Hong J, Cumming P, Rominger A, Shi K, Bartenstein P, Brendel M (2023) Assessment of perfusion deficit with early phases of [(18)F]PI-2620 tau-PET versus [(18)F]flutemetamol-amyloid-PET recordings. Eur J Nucl Med Mol Imaging 50:1384–1394CrossRefPubMed
58.
Zurück zum Zitat Voros J, Rise R, Sherman S, Durell A, Anderson AP, Clark TK (2022) A machine learning approach to identify stochastic resonance in human perceptual thresholds. J Neurosci Methods 374:109559CrossRefPubMed Voros J, Rise R, Sherman S, Durell A, Anderson AP, Clark TK (2022) A machine learning approach to identify stochastic resonance in human perceptual thresholds. J Neurosci Methods 374:109559CrossRefPubMed
59.
Zurück zum Zitat Warren NM, Piggott MA, Perry EK, Burn DJ (2005) Cholinergic systems in progressive supranuclear palsy. Brain 128:239–249CrossRefPubMed Warren NM, Piggott MA, Perry EK, Burn DJ (2005) Cholinergic systems in progressive supranuclear palsy. Brain 128:239–249CrossRefPubMed
60.
Zurück zum Zitat Wright A, Hannon J, Hegedus EJ, Kavchak AE (2012) Clinimetrics corner: a closer look at the minimal clinically important difference (MCID). J Man Manip Ther 20:160–166PubMedCentralCrossRefPubMed Wright A, Hannon J, Hegedus EJ, Kavchak AE (2012) Clinimetrics corner: a closer look at the minimal clinically important difference (MCID). J Man Manip Ther 20:160–166PubMedCentralCrossRefPubMed
61.
Zurück zum Zitat Wuehr M, Boerner JC, Pradhan C, Decker J, Jahn K, Brandt T, Schniepp R (2018) Stochastic resonance in the human vestibular system: noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263CrossRefPubMed Wuehr M, Boerner JC, Pradhan C, Decker J, Jahn K, Brandt T, Schniepp R (2018) Stochastic resonance in the human vestibular system: noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263CrossRefPubMed
62.
Zurück zum Zitat Wuehr M, Decker J, Schniepp R (2017) Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 264:81–86CrossRefPubMed Wuehr M, Decker J, Schniepp R (2017) Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 264:81–86CrossRefPubMed
63.
Zurück zum Zitat Wuehr M, Eder J, Keywan A, Jahn K (2022) Noisy galvanic vestibular stimulation improves vestibular perception in bilateral vestibulopathy. J Neurol 270(2):938–943PubMedCentralCrossRefPubMed Wuehr M, Eder J, Keywan A, Jahn K (2022) Noisy galvanic vestibular stimulation improves vestibular perception in bilateral vestibulopathy. J Neurol 270(2):938–943PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Wuehr M, Nusser E, Decker J, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 86:2196–2202CrossRefPubMed Wuehr M, Nusser E, Decker J, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 86:2196–2202CrossRefPubMed
65.
Zurück zum Zitat Wuehr M, Nusser E, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noise-enhanced vestibular input improves dynamic walking stability in healthy subjects. Brain Stimul 9:109–116CrossRefPubMed Wuehr M, Nusser E, Krafczyk S, Straube A, Brandt T, Jahn K, Schniepp R (2016) Noise-enhanced vestibular input improves dynamic walking stability in healthy subjects. Brain Stimul 9:109–116CrossRefPubMed
66.
Zurück zum Zitat Wuehr M, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Zwergal A (2022) Effects of low-intensity vestibular noise stimulation on postural instability in patients with Parkinson’s disease. J Parkinsons Dis 12:1611–1618CrossRefPubMed Wuehr M, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Zwergal A (2022) Effects of low-intensity vestibular noise stimulation on postural instability in patients with Parkinson’s disease. J Parkinsons Dis 12:1611–1618CrossRefPubMed
67.
Zurück zum Zitat Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol 58:175–181CrossRefPubMed Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol 58:175–181CrossRefPubMed
68.
Zurück zum Zitat Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25CrossRefPubMed Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25CrossRefPubMed
69.
Zurück zum Zitat Zwergal A, la Fougere C, Lorenzl S, Rominger A, Xiong G, Deutschenbaur L, Linn J, Krafczyk S, Dieterich M, Brandt T, Strupp M, Bartenstein P, Jahn K (2011) Postural imbalance and falls in PSP correlate with functional pathology of the thalamus. Neurology 77:101–109CrossRefPubMed Zwergal A, la Fougere C, Lorenzl S, Rominger A, Xiong G, Deutschenbaur L, Linn J, Krafczyk S, Dieterich M, Brandt T, Strupp M, Bartenstein P, Jahn K (2011) Postural imbalance and falls in PSP correlate with functional pathology of the thalamus. Neurology 77:101–109CrossRefPubMed
Metadaten
Titel
Low-intensity vestibular noise stimulation improves postural symptoms in progressive supranuclear palsy
verfasst von
Max Wuehr
Daniela Peto
Urban M. Fietzek
Sabrina Katzdobler
Georg Nübling
Mirlind Zaganjori
Matthias Brendel
Johannes Levin
Günter U. Höglinger
Andreas Zwergal
Publikationsdatum
09.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-024-12419-9

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.