Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 2, 2013

Stressed to death – mechanisms of ER stress-induced cell death

  • Natalia Sovolyova , Sandra Healy , Afshin Samali and Susan E. Logue EMAIL logo
From the journal Biological Chemistry

Abstract

The endoplasmic reticulum (ER) is a highly dynamic organelle of fundamental importance present in all eukaryotic cells. The majority of synthesized structural and secreted proteins undergo post-translational modification, folding and oligomerization in the ER lumen, enabling proteins to carry out their physiological functions. Therefore, maintenance of ER homeostasis and function is imperative for proper cellular function. Physiological and pathological conditions can disturb ER homeostasis and thus negatively impact upon protein folding, resulting in an accumulation of unfolded proteins. Examples include hypoxia, hypo- and hyperglycemia, acidosis, and fluxes in calcium levels. Increased levels of unfolded/misfolded proteins within the ER lumen triggers a condition commonly referred to as ‘ER stress’. To combat ER stress, cells have evolved a highly conserved adaptive stress response referred to as the unfolded protein response (UPR). UPR signaling affords the cell a ‘window of opportunity’ for stress resolution however, if prolonged or excessive the UPR is insufficient and ER stress-induced cell death ensues. This review discusses the role of ER stress sensors IRE1, PERK and ATF6, describing their role in ER stress-induced death signaling with specific emphasis placed upon the importance of the intrinsic cell death pathway and Bcl-2 family regulation.


Corresponding author: Susan E. Logue, Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland, e-mail:

Our research is supported by grants from Science Foundation Ireland (09/RFP/BIC2371; 09/RFP/BMT2153), Breast Cancer Campaign (2010NovPR13; 2008NovPhD21) and Belspo.

Conflict of interest declaration: A.S. is the co-founder and director of Aquila Bioscience Limited.

References

Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N.H., Arias, C., Lennon, C.J., Kluger, Y., and Dynlacht, B.D. (2007). XBP1 Controls diverse Cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66.10.1016/j.molcel.2007.06.011Search in Google Scholar PubMed

Asada, R., Kanemoto, S., Kondo, S., Saito, A., and Imaizumi, K. (2011). The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J. Biochem. 149, 507–518.10.1093/jb/mvr041Search in Google Scholar PubMed

Atkins, C., Liu, Q., Minthorn, E., Zhang, S.Y., Figueroa, D.J., Moss, K., Stanley, T.B., Sanders, B., Goetz, A., Gaul, N., et al. (2013). Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002.10.1158/0008-5472.CAN-12-3109Search in Google Scholar PubMed

Bailly-Maitre, B., Fondevila, C., Kaldas, F., Droin, N., Luciano, F., Ricci, J.E., Croxton, R., Krajewska, M., Zapata, J.M., Kupiec-Weglinski, et al. (2006). Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 103, 2809–2814.10.1073/pnas.0506854103Search in Google Scholar PubMed PubMed Central

Bassik, M.C., Scorrano, L., Oakes, S.A., Pozzan, T., and Korsmeyer, S.J. (2004). Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J. 23, 1207–1216.10.1038/sj.emboj.7600104Search in Google Scholar PubMed PubMed Central

Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332.10.1038/35014014Search in Google Scholar PubMed

Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., et al. (2005). ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481.10.1038/sj.emboj.7600777Search in Google Scholar PubMed PubMed Central

Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Ma, D., Coen, D.M., Ron, D., et al. (2005). A selective inhibitor of elF2α dephosphorylation protects cells from ER stress. Science 307, 935–939.10.1126/science.1101902Search in Google Scholar PubMed

Bravo, R., Vicencio, J.M., Parra, V., Troncoso, R., Munoz, J.P., Bui, M., Quiroga, C., Rodriguez, A.E., Verdejo, H.E., Ferreira, J., et al. (2011). Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152.10.1242/jcs.080762Search in Google Scholar PubMed PubMed Central

Byrd, A.E., Aragon, I.V., and Brewer, J.W. (2012). MicroRNA-30c-2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J. Cell Biol. 196, 689–698.10.1083/jcb.201201077Search in Google Scholar PubMed PubMed Central

Cawley, K., Logue, S.E., Gorman, A.M., Zeng, Q., Patterson, J., Gupta, S., Samali, A. (2013). Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 8, e73870.10.1371/journal.pone.0073870Search in Google Scholar PubMed PubMed Central

Cazanave, S.C., Elmi, N.A., Akazawa, Y., Bronk, S.F., Mott, J.L., and Gores, G.J. (2010). CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G236–G243.10.1152/ajpgi.00091.2010Search in Google Scholar PubMed PubMed Central

Chae, H.J., Kim, H.R., Xu, C., Bailly-Maitre, B., Krajewska, M., Krajewski, S., Banares, S., Cui, J., Digicaylioglu, M., Ke, N., et al. (2004). BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol. Cell 15, 355–366.10.1016/j.molcel.2004.06.038Search in Google Scholar PubMed

Chami, M., Oulès, B., Szabadkai, G., Tacine, R., Rizzuto, R. and Paterlini-Bréchot, P. (2008). Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell 32, 641–651.10.1016/j.molcel.2008.11.014Search in Google Scholar PubMed PubMed Central

Chen, R., Valencia, I., Zhong, F., McColl, K.S., Roderick, H.L., Bootman, M.D., Berridge, M.J., Conway, S.J., Holmes, A.B., Mignery, G.A., et al. (2004). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol. 166, 193–203.10.1083/jcb.200309146Search in Google Scholar PubMed PubMed Central

Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., and Green, D.R. (2010). The BCL-2 family reunion. Mol. Cell 37, 299–310.10.1016/j.molcel.2010.01.025Search in Google Scholar PubMed PubMed Central

Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047–1058.10.1016/j.cell.2007.11.028Search in Google Scholar PubMed

Connor, J.H., Weiser, D.C., Li, S., Hallenbeck, J.M., and Shenolikar, S. (2001). Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell. Biol. 21, 6841–6850.10.1128/MCB.21.20.6841-6850.2001Search in Google Scholar PubMed PubMed Central

Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., and Walter, P. (2005). On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 18773–18784.10.1073/pnas.0509487102Search in Google Scholar PubMed PubMed Central

Cullinan, S.B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R.J., and Diehl, J.A. (2003). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209.10.1128/MCB.23.20.7198-7209.2003Search in Google Scholar PubMed PubMed Central

de Brito, O.M. and Scorrano, L. (2010). An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29, 2715–2723.10.1038/emboj.2010.177Search in Google Scholar PubMed PubMed Central

Deng, J., Lu, P.D., Zhang, Y., Scheuner, D., Kaufman, R.J., Sonenberg, N., Harding, H.P., and Ron, D. (2004). Translational repression mediates activation of nuclear factor κB by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–10168.10.1128/MCB.24.23.10161-10168.2004Search in Google Scholar PubMed PubMed Central

Donnelly, N., Gorman, A.M., Gupta, S., and Samali, A. (2013). The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493–3511.10.1007/s00018-012-1252-6Search in Google Scholar PubMed

Donovan, N., Becker, E.B.E., Konishi, Y., and Bonni, A. (2002). JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J. Biol. Chem. 277, 40944–40949.10.1074/jbc.M206113200Search in Google Scholar PubMed

Dremina, E.S., Sharov, V.S., Kumar, K., Zaidi, A., Michaelis, E.K., and Schoneich, C. (2004). Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem. J. 383, 361–370.10.1042/BJ20040187Search in Google Scholar PubMed PubMed Central

Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N., and Krause, K.H. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 97, 5723–5728.10.1073/pnas.97.11.5723Search in Google Scholar PubMed PubMed Central

Gardner, B.M. and Walter, P. (2011). Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894.10.1126/science.1209126Search in Google Scholar PubMed PubMed Central

Giacomello, M., Drago, I., Bortolozzi, M., Scorzeto, M., Gianelle, A., Pizzo, P., and Pozzan, T. (2010). Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38, 280–290.10.1016/j.molcel.2010.04.003Search in Google Scholar PubMed

Giacomello, M., Drago, I., Pizzo, P., and Pozzan, T. (2007). Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ. 14, 1267–1274.10.1038/sj.cdd.4402147Search in Google Scholar PubMed

Giorgi, C., Ito, K., Lin, H.K., Santangelo, C., Wieckowski, M.R., Lebiedzinska, M., Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., et al. (2010). PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251.10.1126/science.1189157Search in Google Scholar PubMed PubMed Central

Grimm, S. (2012). The ER-mitochondria interface: the social network of cell death. BBA-Mol Cell Res. 1823, 327–334.10.1016/j.bbamcr.2011.11.018Search in Google Scholar

Gupta, S., Cuffe, L., Szegezdi, E., Logue, S.E., Neary, C., Healy, S., and Samali, A. (2010). Mechanisms of ER Stress-mediated mitochondrial membrane permeabilization. Int. J. Cell Biol. 2010, 170215.10.1155/2010/170215Search in Google Scholar

Gupta, S., Read, D.E., Deepti, A., Cawley, K., Gupta, A., Oommen, D., Verfaillie, T., Matus, S., Smith, M.A., Mott, J.L., et al. (2012). Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis. 3, e333.10.1038/cddis.2012.74Search in Google Scholar

Han, D., Lerner, A.G., Vande Walle, L., Upton, J.P., Xu, W., Hagen, A., Backes, B.J., Oakes, S.A., and Papa, F.R. (2009). IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575.10.1016/j.cell.2009.07.017Search in Google Scholar

Han, J., Back, S.H., Hur, J., Lin, Y.H., Gildersleeve, R., Shan, J., Yuan, C.L., Krokowski, D., Wang, S., Hatzoglou, M., et al. (2013). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490.10.1038/ncb2738Search in Google Scholar

Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase. Nature 397, 271–274.10.1038/16729Search in Google Scholar

Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000a). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108.10.1016/S1097-2765(00)00108-8Search in Google Scholar

Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H., Ron, D. (2000b). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904.10.1016/S1097-2765(00)80330-5Search in Google Scholar

Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633.10.1016/S1097-2765(03)00105-9Search in Google Scholar

Hayashi, T. and Su, T.P. (2007). Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131, 596–610.10.1016/j.cell.2007.08.036Search in Google Scholar PubMed

Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell. 10, 3787–3799.10.1091/mbc.10.11.3787Search in Google Scholar PubMed PubMed Central

Hollien, J. and Weissman, J.S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107.10.1126/science.1129631Search in Google Scholar PubMed

Jiang, C.C., Lucas, K., Avery-Kiejda, K.A., Wade, M., deBock, C.E., Thorne, R.F., Allen, J., Hersey, P., and Zhang, X.D. (2008). Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Res. 68, 6708–6717.10.1158/0008-5472.CAN-08-0349Search in Google Scholar PubMed

Kaneko, M., Niinuma, Y., and Nomura, Y. (2003). Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol. Pharm. Bull. 26, 931–935.10.1248/bpb.26.931Search in Google Scholar PubMed

Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030.10.1038/nrd2755Search in Google Scholar PubMed

Kiviluoto, S., Luyten, T., Schneider, L., Lisak, D., Rojas-Rivera, D., Welkenhuyzen, K., Missaen, L., De Smedt, H., Parys, J.B., Hetz, C., et al. (2013). Bax Inhibitor-1-mediated Ca leak is decreased by cytosolic acidosis. Cell Calcium.10.1016/j.ceca.2013.06.002Search in Google Scholar PubMed

Kiviluoto, S., Schneider, L., Luyten, T., Vervliet, T., Missiaen, L., De Smedt, H., Parys, J.B., Methner, A., and Bultynck, G. (2012). Bax inhibitor-1 is a novel IP(3) receptor-interacting and -sensitizing protein. Cell Death Disease 3, e367.10.1038/cddis.2012.103Search in Google Scholar PubMed PubMed Central

Kortuem, K.M. and Stewart, A.K. (2013). Carfilzomib. Blood 121, 893–897.10.1182/blood-2012-10-459883Search in Google Scholar PubMed

Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J., and Sambrook, J. (1988). The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464.10.1038/332462a0Search in Google Scholar PubMed

Lee, A.H., Iwakoshi, N.N., and Glimcher L.H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459.10.1128/MCB.23.21.7448-7459.2003Search in Google Scholar PubMed PubMed Central

Lei, K. and Davis, R.J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl. Acad. Sci. USA 100, 2432–2437.10.1073/pnas.0438011100Search in Google Scholar PubMed PubMed Central

Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I. (2009). Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell. Biol. 186, 783–792.10.1083/jcb.200904060Search in Google Scholar PubMed PubMed Central

Li, G., Scull, C., Ozcan, L., and Tabas, I. (2010). NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J. Cell. Biol. 191, 1113–1125.10.1083/jcb.201006121Search in Google Scholar PubMed PubMed Central

Li, J., Lee, B., and Lee, A.S. (2006). Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-UP-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281, 7260–7270.10.1074/jbc.M509868200Search in Google Scholar PubMed

Lin, J.H., Li, H., Yasumura, D., Cohen, H.R., Zhang, C., Panning, B., Shokat, K.M., LaVail, M.M., and Walter, P. (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949.10.1126/science.1146361Search in Google Scholar PubMed PubMed Central

Lin, S.S., Bassik, M.C., Suh, H., Nishino, M., Arroyo, J.D., Hahn, W.C., Korsmeyer, S.J., and Roberts, T.M. (2006). PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J. Biol. Chem. 281, 23003–23012.10.1074/jbc.M602648200Search in Google Scholar PubMed

Lin, W.-C., Chuang, Y.-C., Chang, Y.-S., Lai, M.-D., Teng, Y.-N., Su, I.-J., Wang, C.C.C., Lee, K.-H., and Hung, J.-H. (2012). Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS ONE 7, e39120.10.1371/journal.pone.0039120Search in Google Scholar PubMed PubMed Central

Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077.10.1101/gad.1250704Search in Google Scholar PubMed PubMed Central

Maundrell, K., Antonsson, B., Magnenat, E., Camps, M., Muda, M., Chabert, C., Gillieron, C., Boschert, U., Vial-Knecht, E., Martinou, J.-C., et al. (1997). Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J. Biol. Chem. 272, 25238–25242.10.1074/jbc.272.40.25238Search in Google Scholar PubMed

McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249–1259.10.1128/MCB.21.4.1249-1259.2001Search in Google Scholar PubMed PubMed Central

Mimura, N., Fulciniti, M., Gorgun, G., Tai, Y.T., Cirstea, D., Santo, L., Hu, Y., Fabre, C., Minami, J., Ohguchi, H., et al. (2012). Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781.10.1182/blood-2011-07-366633Search in Google Scholar PubMed PubMed Central

Moenner, M., Pluquet, O., Bouchecareilh, M., and Chevet, E. (2007). Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634.10.1158/0008-5472.CAN-07-1705Search in Google Scholar PubMed

Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., Hori, S., Kakizuka, A., and Ichijo, H. (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355.10.1101/gad.992302Search in Google Scholar PubMed PubMed Central

Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1021.10.1083/jcb.153.5.1011Search in Google Scholar PubMed PubMed Central

Oakes, S.A., Scorrano, L., Opferman, J.T., Bassik, M.C., Nishino, M., Pozzan, T., and Korsmeyer, S.J. (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 105–110.10.1073/pnas.0408352102Search in Google Scholar PubMed PubMed Central

Papandreou, I., Denko, N.C., Olson, M., Van Melckebeke, H., Lust, S., Tam, A., Solow-Cordero, D.E., Bouley, D.M., Offner, F., Niwa, M., et al. (2011). Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314.10.1182/blood-2010-08-303099Search in Google Scholar PubMed PubMed Central

Park, S.W. and Ozcan, U. (2013). Potential for therapeutic manipulation of the UPR in disease. Semin. Immunopathol. 35, 351–373.10.1007/s00281-013-0370-zSearch in Google Scholar PubMed PubMed Central

Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2000). Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell. Biol. 148, 857–862.10.1083/jcb.148.5.857Search in Google Scholar PubMed PubMed Central

Pinton, P. and Rizzuto, R. (2006). Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409–1418.10.1038/sj.cdd.4401960Search in Google Scholar PubMed

Puthalakath, H., O’Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm-Breschkin, J., Motoyama, N., et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349.10.1016/j.cell.2007.04.027Search in Google Scholar PubMed

Reimertz, C., Kögel, D., Rami, A., Chittenden, T., and Prehn, J.H.M. (2003). Gene expression during ER stress-induced apoptosis in neurons: Induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J. Cell. Biol. 162, 587–597.10.1083/jcb.200305149Search in Google Scholar PubMed PubMed Central

Rizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Giorgi, C., Leo, S., Rimessi, A., Siviero, R., et al. (2009). Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787, 1342–1351.10.1016/j.bbabio.2009.03.015Search in Google Scholar PubMed PubMed Central

Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A.-H., Yoshida, H., Mori, K., Glimcher, L.H., Denko, N.C., Giaccia, A.J., et al. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947.10.1158/0008-5472.CAN-04-1606Search in Google Scholar PubMed

Samali, A., Zhivotovsky, B., Jones, D., Nagata, S., and Orrenius, S. (1999). Apoptosis: cell death defined by caspase activation. Cell Death Differ. 6, 495–496.10.1038/sj.cdd.4400520Search in Google Scholar PubMed

Shen, Y., Meunier, L., and Hendershot, L.M. (2002). Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem. 277, 15947–15956.10.1074/jbc.M112214200Search in Google Scholar PubMed

Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., et al. (1999). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell. Biol. 144, 281–292.10.1083/jcb.144.2.281Search in Google Scholar PubMed PubMed Central

Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell. Biol. 175, 901–911.10.1083/jcb.200608073Search in Google Scholar PubMed PubMed Central

Szegezdi, E., Herbert, K.R., Kavanagh, E.T., Samali, A., and Gorman, A.M. (2008). Nerve growth factor blocks thapsigargin-induced apoptosis at the level of the mitochondrion via regulation of Bim. J. Cell. Mol. Med. 12, 2482–2496.10.1111/j.1582-4934.2008.00268.xSearch in Google Scholar PubMed PubMed Central

Timmins, J.M., Ozcan, L., Seimon, T.A., Li, G., Malagelada, C., Backs, J., Backs, T., Bassel-Duby, R., Olson, E.N., Anderson, M.E., et al. (2009). Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J. Clin. Invest. 119, 2925–2941.10.1172/JCI38857Search in Google Scholar PubMed PubMed Central

Tirasophon, W., Welihinda, A.A., and Kaufman, R.J. (1998). A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824.10.1101/gad.12.12.1812Search in Google Scholar PubMed PubMed Central

Upton, J.P., Wang, L., Han, D., Wang, E.S., Huskey, N.E., Lim, L., Truitt, M., McManus, M.T., Ruggero, D., Goga, A., et al. (2012). IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822.10.1126/science.1226191Search in Google Scholar PubMed PubMed Central

Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P., and Ron, D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666.10.1126/science.287.5453.664Search in Google Scholar PubMed

Verfaillie, T., Rubio, N., Garg, A.D., Bultynck, G., Rizzuto, R., Decuypere, J.P., Piette, J., Linehan, C., Gupta, S., Samali, A., et al. (2012). PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 438, 500–506.10.1038/cdd.2012.74Search in Google Scholar PubMed PubMed Central

Wang, S. and Kaufman, R.J. (2012). The impact of the unfolded protein response on human disease. J. Cell. Biol. 197, 857–867.10.1083/jcb.201110131Search in Google Scholar PubMed PubMed Central

Wang, X., Eno, C.O., Altman, B.J., Zhu, Y., Zhao, G., Olberding, K.E., Rathmell, J.C., and Li, C. (2011). ER stress modulates cellular metabolism. Biochem. J. 435, 285–296.10.1042/BJ20101864Search in Google Scholar PubMed PubMed Central

Wang, X.Z., Harding, H.P., Zhang, Y., Jolicoeur, E.M., Kuroda, M., and Ron, D. (1998). Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708–5717.10.1093/emboj/17.19.5708Search in Google Scholar PubMed PubMed Central

Wei, M.C., Zong, W.X., Cheng, E.H.Y., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., Macgregor, G.R., Thompson, C.B., and Korsmeyer, S.J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.10.1126/science.1059108Search in Google Scholar PubMed PubMed Central

White, C., Li, C., Yang, J., Petrenko, N.B., Madesh, M., Thompson, C.B., and Foskett, J.K. (2005). The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat. Cell Biol. 7, 1021–1028.10.1038/ncb1302Search in Google Scholar PubMed PubMed Central

Yamamoto, K., Ichijo, H., and Korsmeyer, S.J. (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Molecular and Cell. Biol. 19, 8469–8478.10.1128/MCB.19.12.8469Search in Google Scholar PubMed PubMed Central

Yamazaki, H., Hiramatsu, N., Hayakawa, K., Tagawa, Y., Okamura, M., Ogata, R., Huang, T., Nakajima, S., Yao, J., Paton, A.W., et al. (2009). Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J. Immunol. 183, 1480–1487.10.4049/jimmunol.0900017Search in Google Scholar PubMed PubMed Central

Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.10.1016/S0092-8674(01)00611-0Search in Google Scholar

Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.10.1016/S0092-8674(00)80501-2Search in Google Scholar

Zou, H., Li, Y., Liu, X., and Wang, X. (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556.10.1074/jbc.274.17.11549Search in Google Scholar PubMed

Received: 2013-5-10
Accepted: 2013-8-21
Published Online: 2013-09-02
Published in Print: 2014-01-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0174/html
Scroll to top button