Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2018

Gliotransmitters and cytokines in the control of blood-brain barrier permeability

  • Elena D. Osipova , Oxana V. Semyachkina-Glushkovskaya , Andrey V. Morgun , Natalia V. Pisareva , Natalia A. Malinovskaya , Elizaveta B. Boitsova , Elena A. Pozhilenkova , Olga A. Belova , Vladimir V. Salmin , Tatiana E. Taranushenko , Mami Noda and Alla B. Salmina EMAIL logo

Abstract

The contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.

Acknowledgments

The study was supported by the Russian Ministry of Science and Education (grant no. 12.1223.2017/AP, Funder Id: 10.13039/501100003443).

References

Agulhon, C., Sun, M.-Y., Murphy, T., Myers, T., Lauderdale, K., and Fiacco, T.A. (2012). Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front. Pharmacol. 3, 139.10.3389/fphar.2012.00139Search in Google Scholar PubMed PubMed Central

Ahn, H., Kim, J., Jeung, E.-B., and Lee, G.-S. (2014). Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219, 315–322.10.1016/j.imbio.2013.11.003Search in Google Scholar PubMed

Albert, J.L., Boyle, J.P., Roberts, J.A., John Challiss, R., Gubby, S.E., and Boarder, M.R. (1997). Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. Br. J. Pharmacol. 122, 935–941.10.1038/sj.bjp.0701453Search in Google Scholar PubMed PubMed Central

Alfonso-Loeches, S., Ureña-Peralta, J.R., Morillo-Bargues, M.J., and Guerri, C. (2014). Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front. Cell. Neurosci. 8, 216.10.3389/fncel.2014.00216Search in Google Scholar PubMed PubMed Central

Alvarez-Maubecin, V., García-Hernández, F., Williams, J.T., and Van Bockstaele, E.J. (2000). Functional coupling between neurons and glia. J. Neurosci. 20, 4091–4098.10.1523/JNEUROSCI.20-11-04091.2000Search in Google Scholar PubMed

Álvarez, S. and Muñoz-Fernández, M.Á. (2013). TNF-α may mediate inflammasome activation in the absence of bacterial infection in more than one way. PLoS One 8, e71477.10.1371/journal.pone.0071477Search in Google Scholar PubMed PubMed Central

Amoroso, F., Falzoni, S., Adinolfi, E., Ferrari, D., and Di Virgilio, F. (2012). The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis. 3, e370.10.1038/cddis.2012.105Search in Google Scholar PubMed PubMed Central

Anderson, C.M., Bergher, J.P., and Swanson, R.A. (2004). ATP-induced ATP release from astrocytes. J. Neurochem. 88, 246–256.10.1111/j.1471-4159.2004.02204.xSearch in Google Scholar PubMed

Anderson, M.A., Ao, Y., and Sofroniew, M.V. (2014). Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29.10.1016/j.neulet.2013.12.030Search in Google Scholar PubMed PubMed Central

András, I.E., Deli, M.A., Veszelka, S., Hayashi, K., Hennig, B., and Toborek, M. (2007). The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J. Cereb. Blood Flow Metab. 27, 1431–1443.10.1038/sj.jcbfm.9600445Search in Google Scholar PubMed

Antonucci, F., Turola, E., Riganti, L., Caleo, M., Gabrielli, M., Perrotta, C., Novellino, L., Clementi, E., Giussani, P., and Viani, P. (2012). Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240.10.1038/emboj.2011.489Search in Google Scholar PubMed PubMed Central

Argaw, A.T., Zhang, Y., Snyder, B.J., Zhao, M.-L., Kopp, N., Lee, S.C., Raine, C.S., Brosnan, C.F., and John, G.R. (2006). IL-1β regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J. Immunol. 177, 5574–5584.10.4049/jimmunol.177.8.5574Search in Google Scholar PubMed

Armulik, A., Genové, G., Mäe, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., and Strittmatter, K. (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561.10.1038/nature09522Search in Google Scholar PubMed

Arnò, B., Grassivaro, F., Rossi, C., Bergamaschi, A., Castiglioni, V., Furlan, R., Greter, M., Favaro, R., Comi, G., and Becher, B. (2014). Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611.10.1038/ncomms6611Search in Google Scholar PubMed

Attwell, D., Buchan, A.M., Charpak, S., Lauritzen, M., MacVicar, B.A., and Newman, E.A. (2010). Glial and neuronal control of brain blood flow. Nature 468, 232–243.10.1038/nature09613Search in Google Scholar PubMed PubMed Central

Azarias, G., Perreten, H., Lengacher, S., Poburko, D., Demaurex, N., Magistretti, P.J., and Chatton, J.-Y. (2011). Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J. Neurosci. 31, 3550–3559.10.1523/JNEUROSCI.4378-10.2011Search in Google Scholar PubMed PubMed Central

Bajetto, A., Barbieri, F., Dorcaratto, A., Barbero, S., Daga, A., Porcile, C., Ravetti, J.L., Zona, G., Spaziante, R., and Corte, G. (2006). Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem. Int. 49, 423–432.10.1016/j.neuint.2006.03.003Search in Google Scholar PubMed

Bal-Price, A., Moneer, Z., and Brown, G.C. (2002). Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40, 312–323.10.1002/glia.10124Search in Google Scholar PubMed

Banisadr, G., Fontanges, P., Haour, F., Kitabgi, P., Rostène, W., and Mélik Parsadaniantz, S. (2002). Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur. J. Neurosci. 16, 1661–1671.10.1046/j.1460-9568.2002.02237.xSearch in Google Scholar PubMed

Basuroy, S., Leffler, C.W., and Parfenova, H. (2013). CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am. J. Physiol. Cell. Physiol. 304, C1105–C1115.10.1152/ajpcell.00023.2013Search in Google Scholar PubMed PubMed Central

Beard, R.S., Reynolds, J.J., and Bearden, S.E. (2011). Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions. Blood 118, 2007–2014.10.1182/blood-2011-02-338269Search in Google Scholar PubMed PubMed Central

Beard, R.S., Reynolds, J.J., and Bearden, S.E. (2012). Metabotropic glutamate receptor 5 mediates phosphorylation of vascular endothelial cadherin and nuclear localization of β-catenin in response to homocysteine. Vasc. Pharmacol. 56, 159–167.10.1016/j.vph.2012.01.004Search in Google Scholar PubMed PubMed Central

Bélanger, M., Yang, J., Petit, J.-M., Laroche, T., Magistretti, P.J., and Allaman, I. (2011). Role of the glyoxalase system in astrocyte-mediated neuroprotection. J. Neurosci. 31, 18338–18352.10.1523/JNEUROSCI.1249-11.2011Search in Google Scholar PubMed PubMed Central

Bennett, M.V., Garré, J.M., Orellana, J.A., Bukauskas, F.F., Nedergaard, M., Giaume, C., and Saez, J.C. (2012). Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res. 1487, 3–15.10.1016/j.brainres.2012.08.042Search in Google Scholar PubMed PubMed Central

Bergersen, L., Morland, C., Ormel, L., Rinholm, J., Larsson, M., Wold, J., Røe, Å., Stranna, A., Santello, M., and Bouvier, D. (2011). Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697.10.1093/cercor/bhr254Search in Google Scholar PubMed

Bezzi, P. and Volterra, A. (2014). Identification and staining of distinct populations of secretory organelles in astrocytes. Cold Spring Harbor Prot. 2014, pdb. prot081703.10.1101/pdb.prot081703Search in Google Scholar PubMed

Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., and Meldolesi, J. (2001). CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710.10.1038/89490Search in Google Scholar PubMed

Bezzi, P., Gundersen, V., Galbete, J.L., Seifert, G., Steinhäuser, C., Pilati, E., and Volterra, A. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620.10.1038/nn1246Search in Google Scholar PubMed

Bhalala, U.S., Koehler, R.C., and Kannan, S. (2015). Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front. Pediatr. 2, 144.10.3389/fped.2014.00144Search in Google Scholar PubMed PubMed Central

Bianco, F., Pravettoni, E., Colombo, A., Schenk, U., Möller, T., Matteoli, M., and Verderio, C. (2005). Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. J. Immunol. 174, 7268–7277.10.4049/jimmunol.174.11.7268Search in Google Scholar PubMed

Bintig, W., Begandt, D., Schlingmann, B., Gerhard, L., Pangalos, M., Dreyer, L., Hohnjec, N., Couraud, P.-O., Romero, I.A., and Weksler, B.B. (2012). Purine receptors and Ca2+ signalling in the human blood-brain barrier endothelial cell line hCMEC/D3. Purinergic Signal. 8, 71–80.10.1007/s11302-011-9262-7Search in Google Scholar PubMed PubMed Central

Blamire, A., Anthony, D., Rajagopalan, B., Sibson, N., Perry, V., and Styles, P. (2000). Interleukin-1β-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J. Neurosci. 20, 8153–8159.10.1523/JNEUROSCI.20-21-08153.2000Search in Google Scholar

Bridges, R., Lutgen, V., Lobner, D., and Baker, D.A. (2012). Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (system xc) to normal and pathological glutamatergic signaling. Pharmacol. Rev. 64, 780–802.10.1124/pr.110.003889Search in Google Scholar PubMed PubMed Central

Brose, S.A., Marquardt, A.L., and Golovko, M.Y. (2014). Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J. Neurochem. 129, 400–412.10.1111/jnc.12617Search in Google Scholar PubMed PubMed Central

Buckingham, S.C. and Robel, S. (2013). Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem. Int. 63, 696–701.10.1016/j.neuint.2013.01.027Search in Google Scholar PubMed PubMed Central

Burkert, K., Moodley, K., Angel, C.E., Brooks, A., and Graham, E.S. (2012). Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem. Int. 60, 573–580.10.1016/j.neuint.2011.09.002Search in Google Scholar PubMed

Burnstock, G. (2002). Purinergic signaling and vascular cell proliferation and death. Arterioscler. Thromb. Vasc. Biol. 22, 364–373.10.1161/hq0302.105360Search in Google Scholar PubMed

Burnstock, G. (2009). Purinergic regulation of vascular tone and remodelling. Auton. Autacoid Pharmacol. 29, 63–72.10.1111/j.1474-8673.2009.00435.xSearch in Google Scholar PubMed

Butt, A.M. (2011). ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin. Cell Dev. Biol. 22, 205–13.10.1016/j.semcdb.2011.02.023Search in Google Scholar PubMed

Bynoe, M.S., Viret, C., Yan, A., and Kim, D.-G. (2015). Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS 12, 20.10.1186/s12987-015-0017-7Search in Google Scholar PubMed PubMed Central

Cabezas, R., Ávila, M., Gonzalez, J., El-Bachá, R.S., Báez, E., García-Segura, L.M., Coronel, J.C.J., Capani, F., Cardona-Gomez, G.P., and Barreto, G.E. (2014). Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci. 8, 211.10.3389/fncel.2014.00211Search in Google Scholar PubMed PubMed Central

Calì, C. and Bezzi, P. (2010). CXCR4-mediated glutamate exocytosis from astrocytes. J. Neuroimmunol. 224, 13–21.10.1016/j.jneuroim.2010.05.004Search in Google Scholar PubMed

Calì, C., Marchaland, J., Regazzi, R., and Bezzi, P. (2008). SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single- vesicle level with TIRF microscopy. J. Neuroimmunol. 198, 82–91.10.1016/j.jneuroim.2008.04.015Search in Google Scholar PubMed

Cali, C., Lopatar, J., Petrelli, F., Pucci, L., and Bezzi, P. (2014). G-Protein coupled receptor-evoked glutamate exocytosis from astrocytes: role of prostaglandins. Neural Plast. 2014, 254574.10.1155/2014/254574Search in Google Scholar PubMed PubMed Central

Carman, A.J., Mills, J.H., Krenz, A., Kim, D.-G., and Bynoe, M.S. (2011). Adenosine receptor signaling modulates permeability of the blood-brain barrier. J. Neurosci. 31, 13272–13280.10.1523/JNEUROSCI.3337-11.2011Search in Google Scholar PubMed PubMed Central

Chan, T.J., Her, L.S., Liaw, H.J., Chen, M.C., and Tzeng, S.F. (2012). Retinoic acid mediates the expression of glutamate transporter-1 in rat astrocytes through genomic RXR action and non-genomic protein kinase C signaling pathway. J. Neurochem. 121, 537–550.10.1111/j.1471-4159.2012.07715.xSearch in Google Scholar PubMed

Chiu, C.-T., Liao, C.-K., Shen, C.-C., Tang, T.-K., Jow, G.-M., Wang, H.-S., and Wu, J.-C. (2015). HYS-32-induced microtubule catastrophes in rat astrocytes involves the PI3K-GSK3β signaling pathway. PLoS One 10, e0126217.10.1371/journal.pone.0126217Search in Google Scholar PubMed PubMed Central

Choi, S.-K., Kim, J.-H., Park, J.-K., Lee, K.-M., Kim, E., and Jeon, W.B. (2013). Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid. Food Chem. Toxicol. 60, 520–529.10.1016/j.fct.2013.07.070Search in Google Scholar PubMed

Choi, S.S., Lee, H.J., Lim, I., Satoh, J., and Kim, S.U. (2014). Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9, e92325.10.1371/journal.pone.0092325Search in Google Scholar PubMed PubMed Central

Choi, J., Stradmann-Bellinghausen, B., Yakubov, E., Savaskan, N.E., and Régnier-Vigouroux, A. (2015). Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol. Ther. 16, 1205–1213.10.1080/15384047.2015.1056406Search in Google Scholar PubMed PubMed Central

Contreras, J.E., Sánchez, H.A., Eugenín, E.A., Speidel, D., Theis, M., Willecke, K., Bukauskas, F.F., Bennett, M.V., and Sáez, J.C. (2002). Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl. Acad. Sci. USA. 99, 495–500.10.1073/pnas.012589799Search in Google Scholar

Cui, J.G., Li, Y.Y., Zhao, Y., Bhattacharjee, S., and Lukiw, W.J. (2010). Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. J. Biol. Chem. 285, 38951–38960.10.1074/jbc.M110.178848Search in Google Scholar PubMed

Curran, B. and O’Connor, J. (2001). The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Neuroscience 108, 83–90.10.1016/S0306-4522(01)00405-5Search in Google Scholar PubMed

D’hondt, C., Iyyathurai, J., Himpens, B., Leybaert, L., and Bultynck, G. (2014). Cx43-hemichannel function and regulation in physiology and pathophysiology: insights from the bovine corneal endothelial cell system and beyond. Front. Physiol. 5, 348–348.10.3389/fphys.2014.00348Search in Google Scholar PubMed PubMed Central

da Fonseca, A.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C., and Lima, F.R. (2014). The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362.10.3389/fncel.2014.00362Search in Google Scholar PubMed PubMed Central

Davidson, J.O., Green, C.R., Nicholson, B., Louise, F., O’Carroll, S.J., Fraser, M., Bennet, L., and Jan Gunn, A. (2012). Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann. Neurol. 71, 121–132.10.1002/ana.22654Search in Google Scholar PubMed

Davidson, J., Green, C., Bennet, L., Nicholson, L., Danesh-Meyer, H., O’Carroll, S.J., and Gunn, A. (2013). A key role for connexin hemichannels in spreading ischemic brain injury. Curr. Drug Targets 14, 36–46.10.2174/138945013804806479Search in Google Scholar PubMed

de Rivero Vaccari, J.P., Dietrich, W.D., and Keane, R.W. (2014). Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J. Cereb. Blood Flow Metab. 34, 369–375.10.1038/jcbfm.2013.227Search in Google Scholar PubMed PubMed Central

del Rey, A., Balschun, D., Wetzel, W., Randolf, A., and Besedovsky, H.O. (2013). A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav. Immunity 33, 15–23.10.1016/j.bbi.2013.05.011Search in Google Scholar PubMed

Deng, Y., Xu, Z., Xu, B., Xu, D., Tian, Y., and Feng, W. (2012). The protective effects of riluzole on manganese-induced disruption of glutamate transporters and glutamine synthetase in the cultured astrocytes. Biol. Trace Element Res. 148, 242–249.10.1007/s12011-012-9365-1Search in Google Scholar PubMed

Deng, Y., Xie, D., Fang, M., Zhu, G., Chen, C., Zeng, H., Lu, J., and Charanjit, K. (2014). Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS One 9, e87420.10.1371/journal.pone.0087420Search in Google Scholar PubMed PubMed Central

Domercq, M., Brambilla, L., Pilati, E., Marchaland, J., Volterra, A., and Bezzi, P. (2006). P2Y1 Receptor-evoked glutamate exocytosis from astrocytes control by tumor necrosis factor-α and prostaglandins. J. Biol. Chem. 281, 30684–30696.10.1074/jbc.M606429200Search in Google Scholar PubMed

Domoki, F., Kis, B., Gáspár, T., Bari, F., and Busija, D.W. (2008). Cerebromicrovascular endothelial cells are resistant to L-glutamate. Am. J. Physiol. Regul. Integ. Comp. Physiol. 295, R1099–R1108.10.1152/ajpregu.90430.2008Search in Google Scholar PubMed PubMed Central

Dou, Y., Wu, H.J., Li, H.Q., Qin, S., Wang, Y.E., Li, J., Lou, H.F., Chen, Z., Li, X.M., and Luo, Q.M. (2012). Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res. 22, 1022–1033.10.1038/cr.2012.10Search in Google Scholar PubMed PubMed Central

Dubois, L.G., Campanati, L., Righy, C., D’Andrea-Meira, I., Spohr, T.C., Porto-Carreiro, I., Pereira, C.M., Balça-Silva, J., Kahn, S.A., and DosSantos, M.F. (2014). Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci. 8, 418.10.3389/fncel.2014.00418Search in Google Scholar PubMed PubMed Central

Dubyak, G.R. (2012). P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell. Microbiol. 14, 1697–1706.10.1111/cmi.12001Search in Google Scholar PubMed PubMed Central

Duitman, E.H., Orinska, Z., and Bulfone-Paus, S. (2011). Mechanisms of cytokine secretion: a portfolio of distinct pathways allows flexibility in cytokine activity. Eur. J. Cell Biol. 90, 476–483.10.1016/j.ejcb.2011.01.010Search in Google Scholar PubMed

Dunlop, J., Eliasof, S., Stack, G., McIlvain, H.B., Greenfield, A., Kowal, D., Petroski, R., and Carrick, T. (2003). WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1,3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake. Br. J. Pharmacol. 140, 839–846.10.1038/sj.bjp.0705509Search in Google Scholar PubMed PubMed Central

Ebong, E.E. and DePaola, N. (2013). Specificity in the participation of connexin proteins in flow-induced endothelial gap junction communication. Eur. J. Physiol. 465, 1293–1302.10.1007/s00424-013-1245-9Search in Google Scholar PubMed

Evans, W.H., Bultynck, G., and Leybaert, L. (2012). Manipulating connexin communication channels: use of peptidomimetics and the translational outputs. J. Membr. Biol. 245, 437–449.10.1007/s00232-012-9488-5Search in Google Scholar PubMed PubMed Central

Falchi, A.M., Sogos, V., Saba, F., Piras, M., Congiu, T., and Piludu, M. (2013). Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem. Cell Biol. 139, 221–231.10.1007/s00418-012-1045-xSearch in Google Scholar PubMed

Fan, S.H., Wang, Y.Y., Lu, J., Zheng, Y.L., Wu, D.M., Li, M.Q., Hu, B., Zhang, Z.F., Cheng, W., and Shan, Q. (2014). Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One 9, e89961.10.1371/journal.pone.0089961Search in Google Scholar PubMed

Fellin, T., Pozzan, T., and Carmignoto, G. (2006). Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J. Biol. Chem. 281, 4274–4284.10.1074/jbc.M510679200Search in Google Scholar PubMed

Feng, L., Chen, Y., Ding, R., Fu, Z., Yang, S., Deng, X., and Zeng, J. (2015). P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J. Neuroinflamm. 12, 190.10.1186/s12974-015-0409-2Search in Google Scholar

Ferrari, C.C., Depino, A.M., Prada, F., Muraro, N., Campbell, S., Podhajcer, O., Perry, V.H., Anthony, D.C., and Pitossi, F.J. (2004). Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am. J. Pathol. 165, 1827–1837.10.1016/S0002-9440(10)63438-4Search in Google Scholar PubMed

Frühbeis, C., Fröhlich, D., and Krämer-Albers, E.-M. (2012a). Emerging roles of exosomes in neuron-glia communication. Front. Physiol. 3, 119.10.3389/fphys.2012.00119Search in Google Scholar PubMed PubMed Central

Frühbeis, C., Fröhlich, D., Kuo, W., and Krämer-Albers, E. (2012b). Extracellular vesicles as mediators of neuron-glia communication. Front. Cell. Neurosci. 7, 182–182.10.3389/fncel.2013.00182Search in Google Scholar PubMed PubMed Central

Fu, Y., Wang, Y., Du, L., Xu, C., Cao, J., Fan, T., Liu, J., Su, X., Fan, S., and Liu, Q. (2013). Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. Int. J. Mol. Sci. 14, 14105–14118.10.3390/ijms140714105Search in Google Scholar PubMed PubMed Central

Gajardo-Gómez, R., Labra, V.C., and Orellana, J.A. (2016). Connexins and pannexins: new insights into microglial functions and dysfunctions. Front. Mol. Neurosci. 9, 86.10.3389/fnmol.2016.00086Search in Google Scholar PubMed PubMed Central

Galvão, R.P. and Zong, H. (2013). Inflammation and gliomagenesis: bi-directional communication at early and late stages of tumor progression. Curr. Pathobiol. Rep. 1, 19–28.10.1007/s40139-012-0006-3Search in Google Scholar PubMed PubMed Central

Genda, E.N., Jackson, J.G., Sheldon, A.L., Locke, S.F., Greco, T.M., O’Donnell, J.C., Spruce, L.A., Xiao, R., Guo, W., and Putt, M. (2011). Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J. Neurosci. 31, 18275–18288.10.1523/JNEUROSCI.3305-11.2011Search in Google Scholar PubMed PubMed Central

Gérard, F. and Hansson, E. (2012). Inflammatory activation enhances NMDA-triggered Ca2+ signalling and IL-1β secretion in primary cultures of rat astrocytes. Brain Res. 1473, 1–8.10.1016/j.brainres.2012.07.032Search in Google Scholar PubMed

Giaume, C., Koulakoff, A., Roux, L., Holcman, D., and Rouach, N. (2010). Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat. Rev. Neurosci. 11, 87–99.10.1038/nrn2757Search in Google Scholar PubMed

Goepfert, C., Sundberg, C., Sévigny, J., Enjyoji, K., Hoshi, T., Csizmadia, E., and Robson, S. (2001). Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104, 3109–3115.10.1161/hc5001.100663Search in Google Scholar PubMed

González, M.I., Krizman-Genda, E., and Robinson, M.B. (2007). Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J. Biol. Chem. 282, 29855–29865.10.1074/jbc.M704738200Search in Google Scholar PubMed

Görg, B., Morwinsky, A., Keitel, V., Qvartskhava, N., Schrör, K., and Häussinger, D. (2010). Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia 58, 691–705.Search in Google Scholar PubMed

Gosselin, R.-D., Meylan, P., and Decosterd, I. (2013). Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front. Cell. Neurosci. 7, 251.10.3389/fncel.2013.00251Search in Google Scholar PubMed PubMed Central

Goubard, V., Fino, E., and Venance, L. (2011). Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing. J. Physiol. 589, 2301–2319.10.1113/jphysiol.2010.203125Search in Google Scholar PubMed PubMed Central

Green, H.F. and Nolan, Y.M. (2012). GSK-3 mediates the release of IL-1β, TNF-α and IL-10 from cortical glia. Neurochem. Int. 61, 666–671.10.1016/j.neuint.2012.07.003Search in Google Scholar PubMed

Grewer, C., Gameiro, A., and Rauen, T. (2014). SLC1 glutamate transporters. Eur. J. Physiol. 466, 3–24.10.1007/s00424-013-1397-7Search in Google Scholar PubMed PubMed Central

Guarda, G. and So, A. (2010). Regulation of inflammasome activity. Immunology 130, 329–336.10.1111/j.1365-2567.2010.03283.xSearch in Google Scholar PubMed PubMed Central

Gustin, A., Kirchmeyer, M., Koncina, E., Felten, P., Losciuto, S., Heurtaux, T., Tardivel, A., Heuschling, P., and Dostert, C. (2015). NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10, e0130624.10.1371/journal.pone.0130624Search in Google Scholar PubMed PubMed Central

Guyon, A. (2014). CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell. Neurosci. 8, 65.10.3389/fncel.2014.00065Search in Google Scholar PubMed PubMed Central

Haddad, N.F., Teodoro, A.J., de Oliveira, F.L., Soares, N., de Mattos, R.M., Hecht, F., Dezonne, R.S., Vairo, L., dos Santos Goldenberg, R.C., and Gomes, F.C.A. (2013). Lycopene and β-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells. PLoS One 8, e62773.10.1371/journal.pone.0062773Search in Google Scholar PubMed PubMed Central

Hagino, Y., Kariura, Y., Manago, Y., Amano, T., Wang, B., Sekiguchi, M., Nishikawa, K., Aoki, S., Wada, K., and Noda, M. (2004). Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia 47, 68–77.10.1002/glia.20034Search in Google Scholar PubMed

Hamby, M.E. and Sofroniew, M.V. (2010). Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7, 494–506.10.1016/j.nurt.2010.07.003Search in Google Scholar PubMed PubMed Central

Han, K.-S., Woo, J., Park, H., Yoon, B.-J., Choi, S., and Lee, C.J. (2013). Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol. Brain 6, 4.10.1186/1756-6606-6-4Search in Google Scholar PubMed PubMed Central

Hanamsagar, R., Aldrich, A., and Kielian, T. (2014). Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J. Neurochem. 129, 704–711.10.1111/jnc.12669Search in Google Scholar PubMed PubMed Central

Hanisch, U.-K. and Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394.10.1038/nn1997Search in Google Scholar PubMed

Hansen, D.B., Ye, Z.-C., Calloe, K., Braunstein, T.H., Hofgaard, J.P., Ransom, B.R., Nielsen, M.S., and MacAulay, N. (2014). Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi) channels. J. Biol. Chem. 289, 26058–26073.10.1074/jbc.M114.582155Search in Google Scholar PubMed PubMed Central

Heid, M.E., Keyel, P.A., Kamga, C., Shiva, S., Watkins, S.C., and Salter, R.D. (2013). Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230–5238.10.4049/jimmunol.1301490Search in Google Scholar PubMed PubMed Central

Helms, H.C., Abbott, N.J., Burek, M., Cecchelli, R., Couraud, P.-O., Deli, M.A., Förster, C., Galla, H.J., Romero, I.A., and Shusta, E.V. (2016). In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 36, 862–890.10.1177/0271678X16630991Search in Google Scholar PubMed PubMed Central

Henn, A., Kirner, S., and Leist, M. (2011). TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. J. Immunol. 186, 3237–3247.10.4049/jimmunol.1002787Search in Google Scholar PubMed

Hinojosa, A.E., Garcia-Bueno, B., Leza, J.C., and Madrigal, J.L. (2011). CCL2/MCP-1 modulation of microglial activation and proliferation. J. Neuroinflamm. 8, 77.10.1186/1742-2094-8-77Search in Google Scholar PubMed PubMed Central

Hirayama, Y., Ikeda-Matsuo, Y., Notomi, S., Enaida, H., Kinouchi, H., and Koizumi, S. (2015). Astrocyte-mediated ischemic tolerance. J. Neurosci. 35, 3794–3805.10.1523/JNEUROSCI.4218-14.2015Search in Google Scholar PubMed PubMed Central

Hoffmann, A., Gloe, T., Pohl, U., and Zahler, S. (2003). Nitric oxide enhances de novo formation of endothelial gap junctions. Cardiovasc. Res. 60, 421–430.10.1016/j.cardiores.2003.04.001Search in Google Scholar PubMed

Hoogland, I.C., Houbolt, C., Westerloo, D.J., Gool, W.A., and Beek, D. (2015). Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflamm. 12, 114.10.1186/s12974-015-0332-6Search in Google Scholar PubMed PubMed Central

Horenstein, A.L., Chillemi, A., Zaccarello, G., Bruzzone, S., Quarona, V., Zito, A., Serra, S., and Malavasi, F. (2013). A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2, e26246.10.4161/onci.26246Search in Google Scholar PubMed PubMed Central

Hosoi, T., Noguchi, J., Takakuwa, M., Honda, M., Okuma, Y., Nomura, Y., and Ozawa, K. (2014). Inhibition of inducible nitric oxide synthase and interleukin-1β expression by tunicamycin in cultured glial cells exposed to lipopolysaccharide. Brain Res. 1558, 11–17.10.1016/j.brainres.2014.02.035Search in Google Scholar PubMed

Hsiao, P.-J., Jao, J.-C., Tsai, J.-L., Chang, W.-T., Jeng, K.-S., and Kuo, K.-K. (2014). Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic “stem-like” cells. Kaohsiung J. Med. Sci. 30, 57–67.10.1016/j.kjms.2013.10.002Search in Google Scholar PubMed

Hua, K.F., Chou, J.C., Ka, S.M., Tasi, Y.L., Chen, A., Wu, S.H., Chiu, H.W., Wong, W.T., Wang, Y.F., and Tsai, C.L. (2015). Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production. J. Cell. Physiol. 230, 863–874.10.1002/jcp.24815Search in Google Scholar PubMed

Huang, J., Li, Y., Tang, Y., Tang, G., Yang, G.-Y., and Wang, Y. (2013). CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 44, 190–197.10.1161/STROKEAHA.112.670299Search in Google Scholar PubMed

Hulsmans, M. and Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc. Res. 100, 7–18.10.1093/cvr/cvt161Search in Google Scholar PubMed

Iglesias, R., Locovei, S., Roque, A., Alberto, A., Dahl, G., Spray, D.C., and Scemes, E. (2008). P2X7 receptor-pannexin1 complex: pharmacology and signaling. Am. J. Physiol. Cell. Physiol. 295, C752–C760.10.1152/ajpcell.00228.2008Search in Google Scholar PubMed PubMed Central

Iglesias, R., Dahl, G., Qiu, F., Spray, D.C., and Scemes, E. (2009). Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J. Neurosci. 29, 7092–7097.10.1523/JNEUROSCI.6062-08.2009Search in Google Scholar PubMed PubMed Central

Inzhutova, A., Larionov, A., and Lopatina, O. (2011). Modulation of membrane blebbing and microparticle shedding as a target of cardiovascular prophylaxis. Vestn. Ross. Akad. Med. Nauk 11, 23–28.Search in Google Scholar

Inzhutova, A., Larionov, A., Petrova, M., and Salmina, A. (2012). Theory of intercellular communication in the development of endothelial dysfunction. Bull. Exp. Biol. Med. 153, 201–205.10.1007/s10517-012-1676-xSearch in Google Scholar PubMed

Isakov, E., Weisman-Shomer, P., and Benhar, M. (2014). Suppression of the pro-inflammatory NLRP3/interleukin-1β pathway in macrophages by the thioredoxin reductase inhibitor auranofin. Biochim. Biophys. Acta Gen. Subj. 1840, 3153–3161.10.1016/j.bbagen.2014.07.012Search in Google Scholar PubMed

Ishrat, T., Mohamed, I.N., Pillai, B., Soliman, S., Fouda, A.Y., Ergul, A., El-Remessy, A.B., and Fagan, S.C. (2015). Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol. Neurobiol. 51, 766–778.10.1007/s12035-014-8766-xSearch in Google Scholar PubMed PubMed Central

Iyer, A., Zurolo, E., Prabowo, A., Fluiter, K., Spliet, W.G., van Rijen, P.C., Gorter, J.A., and Aronica, E. (2012). MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7, e44789.10.1371/journal.pone.0044789Search in Google Scholar PubMed PubMed Central

Jackson, D.G., Wang, J., Keane, R.W., Scemes, E., and Dahl, G. (2014). ATP and potassium ions: a deadly combination for astrocytes. Sci. Rep. 4, 4576.10.1038/srep04576Search in Google Scholar PubMed PubMed Central

Jansson, L.C. and Åkerman, K.E. (2014). The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J. Neural Transm. 121, 819–836.10.1007/s00702-014-1174-6Search in Google Scholar PubMed

Jeremic, A., Jeftinija, K., Stevanovic, J., Glavaski, A., and Jeftinija, S. (2001). ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J. Neurochem. 77, 664–675.10.1046/j.1471-4159.2001.00272.xSearch in Google Scholar PubMed

Jiang, S., Yuan, H., Duan, L., Cao, R., Gao, B., Xiong, Y.-F., and Rao, Z.-R. (2011). Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res. 1392, 8–15.10.1016/j.brainres.2011.03.056Search in Google Scholar PubMed

Johnson, E.A., Guignet, M.A., Dao, T.L., Hamilton, T.A., and Kan, R.K. (2015). Interleukin-18 expression increases in response to neurovascular damage following soman-induced status epilepticus in rats. J. Inflamm. 12, 43.10.1186/s12950-015-0089-9Search in Google Scholar PubMed PubMed Central

Jolivet, R., Coggan, J.S., Allaman, I., and Magistretti, P.J. (2015). Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 11, e1004036.10.1371/journal.pcbi.1004036Search in Google Scholar PubMed PubMed Central

Jung, H.K., Ryu, H.J., Kim, M.-J., Kim, W.I., Choi, H.K., Choi, H.-C., Song, H.-K., Jo, S.-M., and Kang, T.-C. (2012). Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res. 1447, 126–134.10.1016/j.brainres.2012.01.057Search in Google Scholar PubMed

Kabátková, M., Svobodová, J., Pěnčíková, K., Mohatad, D.S., Šmerdová, L., Kozubík, A., Machala, M., and Vondráček, J. (2015). Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription. Toxicol. Lett. 232, 113–121.10.1016/j.toxlet.2014.09.023Search in Google Scholar PubMed

Kahlenberg, J.M., Thacker, S.G., Berthier, C.C., Cohen, C.D., Kretzler, M., and Kaplan, M.J. (2011). Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J. Immunol. 187, 6143–6156.10.4049/jimmunol.1101284Search in Google Scholar PubMed PubMed Central

Kamatsuka, Y., Fukagawa, M., Furuta, T., Ohishi, A., Nishida, K., and Nagasawa, K. (2014). Astrocytes, but not neurons, exhibit constitutive activation of P2X7 receptors in mouse acute cortical slices under non-stimulated resting conditions. Biol. Pharm. Bull. 37, 1958–1962.10.1248/bpb.b14-00000Search in Google Scholar PubMed

Karagiannis, A., Sylantyev, S., Hadjihambi, A., Hosford, P.S., Kasparov, S., and Gourine, A.V. (2016). Hemichannel-mediated release of lactate. J. Cereb. Blood Flow Metab. 36, 1202–1211.10.1177/0271678X15611912Search in Google Scholar PubMed PubMed Central

Karki, P., Smith, K., Johnson, J., Aschner, M., and Lee, E. (2015). Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem. Int. 88, 53–59.10.1016/j.neuint.2014.08.002Search in Google Scholar PubMed PubMed Central

Kaufman, J., Gordon, C., Bergamaschi, R., Wang, H.Z., Cohen, I.S., Valiunas, V., and Brink, P.R. (2013). The effects of the histone deacetylase inhibitor 4-phenylbutyrate on gap junction conductance and permeability. Front. Pharmacol. 4, 111.10.3389/fphar.2013.00111Search in Google Scholar PubMed

Kettenmann, H., Hanisch, U.-K., Noda, M., and Verkhratsky, A. (2011). Physiology of microglia. Physiol. Rev. 91, 461–553.10.1152/physrev.00011.2010Search in Google Scholar PubMed

Kigerl, K.A., Ankeny, D.P., Garg, S.K., Wei, P., Guan, Z., Lai, W., McTigue, D.M., Banerjee, R., and Popovich, P.G. (2012). System xc regulates microglia and macrophage glutamate excitotoxicity in vivo. Exp. Neurol. 233, 333–341.10.1016/j.expneurol.2011.10.025Search in Google Scholar

Kim, R.-K., Kim, M.-J., Yoon, C.-H., Lim, E.-J., Yoo, K.-C., Lee, G.-H., Kim, Y.-H., Kim, H., Jin, Y.B., and Lee, Y.-J. (2012). A new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, suppresses stemness in glioma stem-like cells. Mol. Pharmacol. 82, 400–407.10.1124/mol.112.078402Search in Google Scholar PubMed

Kong, Q., Chang, L.-C., Takahashi, K., Liu, Q., Schulte, D.A., Lai, L., Ibabao, B., Lin, Y., Stouffer, N., and Mukhopadhyay, C.D. (2014). Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J. Clin. Invest. 124, 1255–1267.10.1172/JCI66163Search in Google Scholar PubMed

Kovac, A., Erickson, M.A., and Banks, W.A. (2011). Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J. Neuroinflamm. 8, 139.10.1186/1742-2094-8-139Search in Google Scholar

Krasnow, S.M., Knoll, J.G., Verghese, S.C., Levasseur, P.R., and Marks, D.L. (2017). Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. J. Neuroinflamm. 14, 133.10.1186/s12974-017-0908-4Search in Google Scholar

Krizbai, I.A., Deli, M.A., Pestenácz, A., Siklós, L., Szabó, C.A., András, I., and Joó, F. (1998). Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res. 54, 814–819.10.1002/(SICI)1097-4547(19981215)54:6<814::AID-JNR9>3.0.CO;2-3Search in Google Scholar PubMed

Kuzumaki, N., Ikegami, D., Imai, S., Narita, M., Tamura, R., Yajima, M., Suzuki, A., Miyashita, K., Niikura, K., and Takeshima, H. (2010). Enhanced IL-1β production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse 64, 721–728.10.1002/syn.20800Search in Google Scholar PubMed

Lalo, U., Rasooli-Nejad, S., and Pankratov, Y. (2014). Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem. Soc. Trans. 42, 1275–1281.10.1042/BST20140163Search in Google Scholar PubMed

Lalo, U., Palygin, O., Verkhratsky, A., Grant, S., and Pankratov, Y. (2016). ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci. Rep. 6, 33609.10.1038/srep33609Search in Google Scholar PubMed PubMed Central

Lau, L.T. and Yu, A.C.-H. (2001). Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-γ following traumatic and metabolic injury. J. Neurotrauma 18, 351–359.10.1089/08977150151071035Search in Google Scholar PubMed

LeMaistre, J.L., Sanders, S.A., Stobart, M.J., Lu, L., Knox, J.D., Anderson, H.D., and Anderson, C.M. (2012). Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J. Cereb. Blood Flow Metab. 32, 537–547.10.1038/jcbfm.2011.161Search in Google Scholar PubMed PubMed Central

Lewerenz, J., Hewett, S.J., Huang, Y., Lambros, M., Gout, P.W., Kalivas, P.W., Massie, A., Smolders, I., Methner, A., and Pergande, M. (2013). The cystine/glutamate antiporter system xc in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18, 522–555.10.1089/ars.2011.4391Search in Google Scholar PubMed PubMed Central

Lezcano, V., Bellido, T., Plotkin, L., Boland, R., and Morelli, S. (2014). Osteoblastic protein tyrosine phosphatases inhibition and connexin 43 phosphorylation by alendronate. Exp. Cell Res. 324, 30–39.10.1016/j.yexcr.2014.03.016Search in Google Scholar PubMed PubMed Central

Li, J.-H., Zhao, S.-T., Wu, C.-Y., Cao, X., Peng, M.-R., Li, S.-J., Liu, X.-A., and Gao, T.-M. (2013). Store-operated Ca2+ channels blockers inhibit lipopolysaccharide induced astrocyte activation. Neurochem. Res. 38, 2216–2226.10.1007/s11064-013-1130-0Search in Google Scholar PubMed

Li, G., Qin, Z., Chen, Z., Xie, L., Wang, R., and Zhao, H. (2017). Tumor microenvironment in treatment of glioma. Open Med. 12, 247–251.10.1515/med-2017-0035Search in Google Scholar PubMed PubMed Central

Lin, H.-W., Basu, A., Druckman, C., Cicchese, M., Krady, J.K., and Levison, S.W. (2006). Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury. J. Neuroinflamm. 3, 15.10.1186/1742-2094-3-15Search in Google Scholar PubMed PubMed Central

Liu, L. and Chan, C. (2014). IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer’s disease. Neurobiol. Aging 35, 309–321.10.1016/j.neurobiolaging.2013.08.016Search in Google Scholar PubMed PubMed Central

Liu, G.J., Kalous, A., Werry, E.L., and Bennett, M.R. (2006). Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol. Pharmacol. 70, 851–859.10.1124/mol.105.021436Search in Google Scholar PubMed

Liu, G.J., Nagarajah, R., Banati, R.B., and Bennett, M.R. (2009). Glutamate induces directed chemotaxis of microglia. Eur. J. Neurosci. 29, 1108–1118.10.1111/j.1460-9568.2009.06659.xSearch in Google Scholar PubMed

Liu, Z., Zhao, F., and He, J.J. (2014a). Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18. J. Neurovirol. 20, 278–293.10.1007/s13365-014-0245-7Search in Google Scholar

Liu, R.T., Wang, A., To, E., Gao, J., Cao, S., Cui, J.Z., and Matsubara, J.A. (2014b). Vinpocetine inhibits amyloid-β induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells. Exp. Eye Res. 127, 49–58.10.1016/j.exer.2014.07.003Search in Google Scholar

López-Colomé, A.M., Martínez-Lozada, Z., Guillem, A.M., López, E., and Ortega, A. (2012). Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells. Asn Neuro 4, AN20120022.10.1042/AN20120022Search in Google Scholar

López-Redondo, F., Nakajima, K., Honda, S., and Kohsaka, S. (2000). Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Mol. Brain Res. 76, 429–435.10.1016/S0169-328X(00)00022-XSearch in Google Scholar

Lou, N., Takano, T., Pei, Y., Xavier, A.L., Goldman, S.A., and Nedergaard, M. (2016). Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc. Natl. Acad. Sci. USA. 113, 1074–1079.10.1073/pnas.1520398113Search in Google Scholar PubMed PubMed Central

Lu, H., Burns, D., Garnier, P., Wei, G., Zhu, K., and Ying, W. (2007). P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem. Biophys. Res. Commun. 362, 946–950.10.1016/j.bbrc.2007.08.095Search in Google Scholar PubMed

Luo, X., Tai, W.L., Sun, L., Pan, Z., Xia, Z., Chung, S.K., and Cheung, C.W. (2016). Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol. Pain 12, 1–15.10.1177/1744806916636385Search in Google Scholar PubMed PubMed Central

Ma, Y., Chen, H., Xia, W., and Ying, W. (2011). Oxidative stress and PARP activation mediate the NADH-induced decrease in glioma cell survival. Int. J. Physiol. Pathophysiol. Pharmacol. 3, 21–28.Search in Google Scholar PubMed

Ma, Y., Cao, W., Wang, L., Jiang, J., Nie, H., Wang, B., Wei, X., and Ying, W. (2014). Basal CD38/cyclic ADP-ribose-dependent signaling mediates ATP release and survival of microglia by modulating connexin 43 hemichannels. Glia 62, 943–955.10.1002/glia.22651Search in Google Scholar PubMed

Maier, N.K., Crown, D., Liu, J., Leppla, S.H., and Moayeri, M. (2014). Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. J. Immunol. 192, 763–770.10.4049/jimmunol.1301434Search in Google Scholar PubMed PubMed Central

Malarkey, E.B. and Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochem. Int. 52, 142–154.10.1016/j.neuint.2007.06.005Search in Google Scholar PubMed

Mamik, M.K., Banerjee, S., Walseth, T.F., Hirte, R., Tang, L., Borgmann, K., and Ghorpade, A. (2011). HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κ B signaling mechanisms. J. Neuroinflamm. 8, 145.10.1186/1742-2094-8-145Search in Google Scholar

Martineau, M. (2013). Gliotransmission: Focus on Exocytotic Release of L-Glutamate and D-Serine From Astrocytes. Biochem. Soc. Trans. 41, 1557–1561.10.1042/BST20130195Search in Google Scholar PubMed

Martinez-Outschoorn, U., Sotgia, F., and Lisanti, M.P. (2014). Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin. Oncol. 41, 195–216.10.1053/j.seminoncol.2014.03.002Search in Google Scholar PubMed

Martı́nez, A.D. and Sáez, J.C. (2000). Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res. Rev. 32, 250–258.10.1016/S0165-0173(99)00086-7Search in Google Scholar

Marty, V., Médina, C., Combe, C., Parnet, P., and Amédée, T. (2005). ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 49, 511–519.10.1002/glia.20138Search in Google Scholar PubMed

Masamoto, K., Unekawa, M., Watanabe, T., Toriumi, H., Takuwa, H., Kawaguchi, H., Kanno, I., Matsui, K., Tanaka, K.F., and Tomita, Y. (2015). Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep. 5, 11455.10.1038/srep11455Search in Google Scholar PubMed PubMed Central

Matyash, M., Zabiegalov, O., Wendt, S., Matyash, V., and Kettenmann, H. (2017). The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One 12, e0175012.10.1371/journal.pone.0175012Search in Google Scholar PubMed PubMed Central

Mause, S.F. and Weber, C. (2010). Microparticles. Circ. Res. 107, 1047–1057.10.1161/CIRCRESAHA.110.226456Search in Google Scholar PubMed

McCandless, E.E., Piccio, L., Woerner, B.M., Schmidt, R.E., Rubin, J.B., Cross, A.H., and Klein, R.S. (2008). Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am. J. Pathol. 172, 799–808.10.2353/ajpath.2008.070918Search in Google Scholar PubMed PubMed Central

McMullan, S.M., Phanavanh, B., Li, G.G., and Barger, S.W. (2012). Metabotropic glutamate receptors inhibit microglial glutamate release. Asn Neuro 4, AN20120044.10.1042/AN20120044Search in Google Scholar PubMed PubMed Central

Mingam, R., De Smedt, V., Amédée, T., Bluthé, R.-M., Kelley, K.W., Dantzer, R., and Layé, S. (2008). In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1β in the murine brain. Brain Behav. Immunity 22, 234–244.10.1016/j.bbi.2007.08.007Search in Google Scholar PubMed PubMed Central

Minkiewicz, J., Rivero Vaccari, J.P., and Keane, R.W. (2013). Human astrocytes express a novel NLRP2 inflammasome. Glia 61, 1113–1121.10.1002/glia.22499Search in Google Scholar PubMed

Montana, V., Ni, Y., Hua, X., and Parpura, V. (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci. 24, 2633–2642.10.1523/JNEUROSCI.3770-03.2004Search in Google Scholar PubMed PubMed Central

Morandi, F., Morandi, B., Horenstein, A., Chillemi, A., Quarona, V., Zaccarello, G., Carrega, P., Ferlazzo, G., Mingari, M., and Moretta, L. (2015). A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 6, 25602–25618.10.18632/oncotarget.4693Search in Google Scholar PubMed PubMed Central

Morley, P., Small, D.L., Murray, C.L., Mealing, G.A., Poulter, M.O., Durkin, J.P., and Stanimirovic, D.B. (1998). Evidence that functional glutamate receptors are not expressed on rat or human cerebromicrovascular endothelial cells. J. Cereb. Blood Flow Metab. 18, 396–406.10.1097/00004647-199804000-00008Search in Google Scholar PubMed

Moynagh, P.N. (2005). The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J. Anat. 207, 265–269.10.1111/j.1469-7580.2005.00445.xSearch in Google Scholar PubMed PubMed Central

Murana, E., Pagani, F., Basilico, B., Sundukova, M., Batti, L., Di Angelantonio, S., Cortese, B., Grimaldi, A., Francioso, A., and Heppenstall, P. (2017). ATP release during cell swelling activates a Ca2+-dependent Cl current by autocrine mechanism in mouse hippocampal microglia. Sci. Rep. 7, 4184.10.1038/s41598-017-04452-8Search in Google Scholar PubMed PubMed Central

Murphy, S.F., Varghese, R.T., Lamouille, S., Guo, S., Pridham, K.J., Kanabur, P., Osimani, A.M., Sharma, S., Jourdan, J., and Rodgers, C.M. (2015). Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res. 76, 139–149.10.1158/0008-5472.CAN-15-1286Search in Google Scholar PubMed PubMed Central

Murugan, M., Ling, E.-A., and Kaur, C. (2013). Glutamate receptors in microglia. CNS Neurol. Disord. Drug Targets 12, 773–784.10.2174/18715273113126660174Search in Google Scholar PubMed

Nakagawa, T., Otsubo, Y., Yatani, Y., Shirakawa, H., and Kaneko, S. (2008). Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Eur. J. Neurosci. 28, 1719–1730.10.1111/j.1460-9568.2008.06494.xSearch in Google Scholar PubMed

Nakajima, K., Yamamoto, S., Kohsaka, S., and Kurihara, T. (2008). Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neurosci. Lett. 436, 331–334.10.1016/j.neulet.2008.03.058Search in Google Scholar PubMed

Nash, B. and Meucci, O. (2014). Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. Int. Rev. Neurobiol. 118, 105–128.10.1016/B978-0-12-801284-0.00005-1Search in Google Scholar PubMed

Nicholson, K., Gilliland, T., and Winkelstein, B. (2014). Upregulation of GLT-1 by treatment with ceftriaxone alleviates radicular pain by reducing spinal astrocyte activation and neuronal hyperexcitability. J. Neurosci. Res. 92, 116–129.10.1002/jnr.23295Search in Google Scholar PubMed

Noda, M. and Beppu, K. (2013). Possible contribution of microglial glutamate receptors to inflammatory response upon neurodegenerative diseases. J. Neurol. Disord. 1, 131.10.4172/2329-6895.1000131Search in Google Scholar

Noda, M., Nakanishi, H., and Akaike, N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide. Neuroscience 92, 1465–1474.10.1016/S0306-4522(99)00036-6Search in Google Scholar PubMed

Noda, M., Nakanishi, H., Nabekura, J., and Akaike, N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258.10.1523/JNEUROSCI.20-01-00251.2000Search in Google Scholar PubMed

Nurmi, K., Virkanen, J., Rajamäki, K., Niemi, K., Kovanen, P.T., and Eklund, K.K. (2013). Ethanol inhibits activation of NLRP3 and AIM2 inflammasomes in human macrophages – a novel anti-inflammatory action of alcohol. PLoS One 8, e78537.10.1371/journal.pone.0078537Search in Google Scholar PubMed PubMed Central

Oh, S.-J., Han, K.-S., Park, H., Woo, D.H., Kim, H.Y., Traynelis, S.F., and Lee, C.J. (2012). Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol. Brain 5, 38.10.1186/1756-6606-5-38Search in Google Scholar PubMed PubMed Central

Okada, K., Yamashita, U., and Tsuji, S. (2005). Modulation of Na+-dependent glutamate transporter of murine astrocytes by inflammatory mediators. J. UOEH 27, 161–170.10.7888/juoeh.27.161Search in Google Scholar PubMed

Okuda, H., Nishida, K., Higashi, Y., and Nagasawa, K. (2013). NAD+ influx through connexin hemichannels prevents poly(ADP-ribose) polymerase-mediated astrocyte death. Life Sci. 92, 808–814.10.1016/j.lfs.2013.02.010Search in Google Scholar PubMed

Omran, A., Peng, J., Zhang, C., Xiang, Q.L., Xue, J., Gan, N., Kong, H., and Yin, F. (2012). Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53, 1215–1224.10.1111/j.1528-1167.2012.03540.xSearch in Google Scholar PubMed

Orellana, J.A. and Stehberg, J. (2014). Hemichannels: new roles in astroglial function. Front. Physiol. 5, 193.10.3389/fphys.2014.00193Search in Google Scholar PubMed PubMed Central

Orellana, J.A., Shoji, K.F., Abudara, V., Ezan, P., Amigou, E., Sáez, P.J., Jiang, J.X., Naus, C.C., Sáez, J.C., and Giaume, C. (2011a). Amyloid β-induced death in neurons involves glial and neuronal hemichannels. J. Neurosci. 31, 4962–4977.10.1523/JNEUROSCI.6417-10.2011Search in Google Scholar PubMed PubMed Central

Orellana, J.A., Froger, N., Ezan, P., Jiang, J.X., Bennett, M.V., Naus, C.C., Giaume, C., and Sáez, J.C. (2011b). ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J. Neurochem. 118, 826–840.10.1111/j.1471-4159.2011.07210.xSearch in Google Scholar PubMed PubMed Central

Orihuela, R., McPherson, C.A., and Harry, G.J. (2016). Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173, 649–665.10.1111/bph.13139Search in Google Scholar PubMed PubMed Central

Ormel, L., Stensrud, M.J., Chaudhry, F.A., and Gundersen, V. (2012). A distinct set of synaptic-like microvesicles in atroglial cells contain VGLUT3. Glia 60, 1289–1300.10.1002/glia.22348Search in Google Scholar PubMed

Ortinau, S., Laube, B., and Zimmermann, H. (2003). ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J. Neurosci. 23, 4996–5003.10.1523/JNEUROSCI.23-12-04996.2003Search in Google Scholar PubMed

Pan, W., Stone, K.P., Hsuchou, H., Manda, V.K., Zhang, Y., and Kastin, A.J. (2011). Cytokine signaling modulates blood-brain barrier function. Curr. Pharm. Des. 17, 3729–3740.10.2174/138161211798220918Search in Google Scholar PubMed PubMed Central

Parfenova, H., Tcheranova, D., Basuroy, S., Fedinec, A.L., Liu, J., and Leffler, C.W. (2012). Functional role of astrocyte glutamate receptors and carbon monoxide in cerebral vasodilation response to glutamate. Am. J. Physiol. Heart Circ. Physiol. 302, H2257–H2266.10.1152/ajpheart.01011.2011Search in Google Scholar PubMed PubMed Central

Park, H., Han, K.-S., Oh, S.-J., Jo, S., Woo, J., Yoon, B.-E., and Lee, C.J. (2013). High glutamate permeability and distal localization of Best1 channel in CA1 hippocampal astrocyte. Mol. Brain 6, 54.10.1186/1756-6606-6-54Search in Google Scholar PubMed PubMed Central

Park, H., Han, K.-S., Seo, J., Lee, J., Dravid, S.M., Woo, J., Chun, H., Cho, S., Bae, J.Y., and An, H. (2015). Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol. Brain 8, 7.10.1186/s13041-015-0097-ySearch in Google Scholar PubMed PubMed Central

Parpura, V., Grubišić, V., and Verkhratsky, A. (2011). Ca2+ sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta Mol. Cell. Res. 1813, 984–991.10.1016/j.bbamcr.2010.11.006Search in Google Scholar PubMed

Pascual, O., Achour, S.B., Rostaing, P., Triller, A., and Bessis, A. (2012). Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA. 109, E197–E205.10.1073/pnas.1111098109Search in Google Scholar PubMed PubMed Central

Pelegrin, P. and Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082.10.1038/sj.emboj.7601378Search in Google Scholar PubMed PubMed Central

Persson, M. and Rönnbäck, L. (2012). Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 42, 207–219.10.1007/s00726-011-0865-7Search in Google Scholar PubMed

Peters, O., Schipke, C.G., Hashimoto, Y., and Kettenmann, H. (2003). Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci. 23, 9888–9896.10.1523/JNEUROSCI.23-30-09888.2003Search in Google Scholar PubMed

Piccioli, P. and Rubartelli, A. (2013). The secretion of IL-1β and options for release. Semin. Immunol. 25, 425–429.10.1016/j.smim.2013.10.007Search in Google Scholar PubMed

Poornima, V., Madhupriya, M., Kootar, S., Sujatha, G., Kumar, A., and Bera, A.K. (2012). P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization. J. Mol. Neurosci. 46, 585–594.10.1007/s12031-011-9646-8Search in Google Scholar PubMed

Proia, P., Schiera, G., Mineo, M., Ingrassia, A.M.R., Santoro, G., Savettieri, G., and Di Liegro, I. (2008). Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int. J. Mol. Med. 21, 63–67.10.3892/ijmm.21.1.63Search in Google Scholar PubMed

Prow, N.A. and Irani, D.N. (2008). The inflammatory cytokine, interleukin-1β, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J. Neurochem. 105, 1276–1286.10.1111/j.1471-4159.2008.05230.xSearch in Google Scholar PubMed PubMed Central

Qu, Y., Ramachandra, L., Mohr, S., Franchi, L., Harding, C.V., Nunez, G., and Dubyak, G.R. (2009). P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J. Immunol. 182, 5052–5062.10.4049/jimmunol.0802968Search in Google Scholar PubMed PubMed Central

Quail, D.F. and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437.10.1038/nm.3394Search in Google Scholar PubMed PubMed Central

Ransohoff, R.M. (2016). A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991.10.1038/nn.4338Search in Google Scholar PubMed

Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell. Biol. 200, 373–383.10.1083/jcb.201211138Search in Google Scholar PubMed PubMed Central

Raunser, S., Haase, W., Franke, C., Eckert, G.P., Müller, W.E., and Kühlbrandt, W. (2006). Heterologously expressed GLT-1 associates in ~200-nm protein-lipid islands. Biophys. J. 91, 3718–3726.10.1529/biophysj.106.086900Search in Google Scholar PubMed PubMed Central

Retamal, M.A. (2014). Connexin and pannexin hemichannels are regulated by redox potential. Front. Physiol. 5, 80.10.3389/fphys.2014.00080Search in Google Scholar PubMed PubMed Central

Robert, S.M. and Sontheimer, H. (2014). Glutamate transporters in the biology of malignant gliomas. Cell Mol. Life Sci. 71, 1839–1854.10.1007/s00018-013-1521-zSearch in Google Scholar PubMed PubMed Central

Rustenhoven, J., Jansson, D., Smyth, L.C., and Dragunow, M. (2017). Brain pericytes as mediators of neuroinflammation. Trends Pharmacol. Sci. 38, 291–304.10.1016/j.tips.2016.12.001Search in Google Scholar PubMed

Ryu, H., Kim, J.-E., Kim, M.-J., Kwon, H.-J., Suh, S., Song, H.-K., and Kang, T.-C. (2010). The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 170, 711–721.10.1016/j.neuroscience.2010.07.048Search in Google Scholar PubMed

Sahlender, D.A., Savtchouk, I., and Volterra, A. (2014). What do we know about gliotransmitter release from astrocytes? Philos. Trans. R. Soc. B 369, 20130592.10.1098/rstb.2013.0592Search in Google Scholar PubMed PubMed Central

Sakuma, S., Tokuhara, D., Otsubo, H., Yamano, T., and Shintaku, H. (2014). Dynamic change in cells expressing IL-1b in rat hippocampus after status epilepticus. Jpn. Clin. Med. 5, 25–32.10.4137/JCM.S13738Search in Google Scholar PubMed PubMed Central

Sakuma, R., Kawahara, M., Nakano-Doi, A., Takahashi, A., Tanaka, Y., Narita, A., Kuwahara-Otani, S., Hayakawa, T., Yagi, H., and Matsuyama, T. (2016). Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J. Neuroinflamm. 13, 57.10.1186/s12974-016-0523-9Search in Google Scholar PubMed PubMed Central

Salmina, A.B. (2009). Neuron-glia interactions as therapeutic targets in neurodegeneration. J. Alzheimers Dis. 16, 485–502.10.3233/JAD-2009-0988Search in Google Scholar PubMed

Salmina, A.B., Kuvacheva, N.V., Morgun, A.V., Komleva, Y.K., Pozhilenkova, E.A., Lopatina, O.L., Gorina, Y.V., Taranushenko, T.E., and Petrova, L.L. (2015). Glycolysis-mediated control of blood-brain barrier development and function. Int. J. Biochem. Cell Biol. 64, 174–184.10.1016/j.biocel.2015.04.005Search in Google Scholar PubMed

Salmina, A.B., Morgun, A.V., Kuvacheva, N.V., Lopatina, O.L., Komleva, Y.K., Malinovskaya, N.A., and Pozhilenkova, E.A. (2014). Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev. Neurosci. 25, 97–111.10.1515/revneuro-2013-0044Search in Google Scholar PubMed

Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M., and Soininen, H. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3–11.10.1111/j.1460-9568.2011.07738.xSearch in Google Scholar PubMed

Santiago, M.F., Veliskova, J., Patel, N.K., Lutz, S.E., Caille, D., Charollais, A., Meda, P., and Scemes, E. (2011). Targeting pannexin1 improves seizure outcome. PLoS One 6, e25178.10.1371/journal.pone.0025178Search in Google Scholar PubMed PubMed Central

Schmidt, M.M. and Dringen, R. (2009). Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front. Neuroenerget. 1, 1.10.3389/neuro.14.001.2009Search in Google Scholar PubMed PubMed Central

Schnaars, M., Beckert, H., and Halle, A. (2013). Assessing β-amyloid-induced NLRP3 inflammasome activation in primary microglia. Inflamm. Methods Prot. 1040, 1–8.10.1007/978-1-62703-523-1_1Search in Google Scholar PubMed

Schreiner, A.E., Berlinger, E., Langer, J., Kafitz, K.W., and Rose, C.R. (2013). Lesion-induced alterations in astrocyte glutamate transporter expression and function in the hippocampus. ISRN Neurol. 2013, 893605.10.1155/2013/893605Search in Google Scholar PubMed PubMed Central

Scott, G., Bowman, S., Smith, T., Flower, R.A., and Bolton, C. (2007). Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-D-aspartate (NMDA) receptor activation. Biochem. Pharmacol. 73, 228–236.10.1016/j.bcp.2006.09.021Search in Google Scholar PubMed PubMed Central

Seidel, J.L., Escartin, C., Ayata, C., Bonvento, G., and Shuttleworth, C.W. (2016). Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreading depolarization in acute brain injury? Glia 64, 5–20.10.1002/glia.22824Search in Google Scholar PubMed PubMed Central

Seike, T., Fujita, K., Yamakawa, Y., Kido, M.A., Takiguchi, S., Teramoto, N., Iguchi, H., and Noda, M. (2011). Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 28, 13–25.10.1007/s10585-010-9354-8Search in Google Scholar PubMed PubMed Central

Sharp, C.D., Hines, I., Houghton, J., Warren, A., Jackson, T., Jawahar, A., Nanda, A., Elrod, J., Long, A., and Chi, A. (2003). Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am. J. Physiol. Heart Circ. Physiol. 285, H2592–H2598.10.1152/ajpheart.00520.2003Search in Google Scholar PubMed

Shigeri, Y., Seal, R.P., and Shimamoto, K. (2004). Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res. Rev. 45, 250–265.10.1016/j.brainresrev.2004.04.004Search in Google Scholar PubMed

Sidoryk-Wegrzynowicz, M., Lee, E., and Aschner, M. (2012). Mechanism of Mn (II)-mediated dysregulation of glutamine-glutamate cycle: focus on glutamate turnover. J. Neurochem. 122, 856–867.10.1111/j.1471-4159.2012.07835.xSearch in Google Scholar PubMed PubMed Central

Sierra, A., Price, J.E., Garcia-Ramirez, M., Méndez, O., López, L., and Fabra, A. (1997). Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab. Invest. 77, 357–368.Search in Google Scholar PubMed

Silverman, W.R., de Rivero Vaccari, J.P., Locovei, S., Qiu, F., Carlsson, S.K., Scemes, E., Keane, R.W., and Dahl, G. (2009). The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284, 18143–18151.10.1074/jbc.M109.004804Search in Google Scholar PubMed PubMed Central

Simard, J.-C., Cesaro, A., Chapeton-Montes, J., Tardif, M., Antoine, F., Girard, D., and Tessier, P.A. (2013). S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB1. PLoS One 8, e72138.10.1371/journal.pone.0072138Search in Google Scholar PubMed PubMed Central

Sipos, I., Dömötör, E., Abbott, N.J., and Adam-Vizi, V. (2000). The pharmacology of nucleotide receptors on primary rat brain endothelial cells grown on a biological extracellular matrix: effects on intracellular calcium concentration. Br. J. Pharmacol. 131, 1195–1203.10.1038/sj.bjp.0703675Search in Google Scholar PubMed PubMed Central

Sivakumar, V., Ling, E.A., Lu, J., and Kaur, C. (2010). Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 58, 507–523.10.1002/glia.20940Search in Google Scholar PubMed

Smith, D.E. (2011). The biological paths of IL-1 family members IL-18 and IL-33. J. Leuk. Biol. 89, 383–392.10.1189/jlb.0810470Search in Google Scholar PubMed

Sontheimer, H. and Bridges, R.J. (2012). Sulfasalazine for brain cancer fits. Expert Opin. Invest. Drugs 21, 575.10.1517/13543784.2012.670634Search in Google Scholar PubMed PubMed Central

Stack, J.H., Beaumont, K., Larsen, P.D., Straley, K.S., Henkel, G.W., Randle, J.C., and Hoffman, H.M. (2005). IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 175, 2630–2634.10.4049/jimmunol.175.4.2630Search in Google Scholar PubMed

Stamatovic, S.M., Shakui, P., Keep, R.F., Moore, B.B., Kunkel, S.L., Van Rooijen, N., and Andjelkovic, A.V. (2005). Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J. Cereb. Blood Flow Metab. 25, 593–606.10.1038/sj.jcbfm.9600055Search in Google Scholar PubMed

Stamatovic, S.M., Keep, R.F., and Andjelkovic, A.V. (2008). Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr. Neuropharmacol. 6, 179–192.10.2174/157015908785777210Search in Google Scholar PubMed PubMed Central

Stumm, R. and Höllt, V. (2007). CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. J. Mol. Endocrinol. 38, 377–382.10.1677/JME-06-0032Search in Google Scholar PubMed

Sühs, K.-W., Gudi, V., Eckermann, N., Fairless, R., Pul, R., Skripuletz, T., and Stangel, M. (2016). Cytokine regulation by modulation of the NMDA receptor on astrocytes. Neurosci. Lett. 629, 227–233.10.1016/j.neulet.2016.07.016Search in Google Scholar PubMed

Takaki, J., Fujimori, K., Miura, M., Suzuki, T., Sekino, Y., and Sato, K. (2012). L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J. Neuroinflamm. 9, 275.10.1186/1742-2094-9-275Search in Google Scholar PubMed PubMed Central

Takemiya, T. and Yamagata, K. (2013). Intercellular signaling pathway among endothelia, astrocytes and neurons in excitatory neuronal damage. Int. J. Mol. Sci. 14, 8345–8357.10.3390/ijms14048345Search in Google Scholar PubMed PubMed Central

Takeuchi, H. and Suzumura, A. (2014). Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front. Cell. Neurosci. 8, 189.10.3389/fncel.2014.00189Search in Google Scholar PubMed PubMed Central

Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M.W., Okamoto, S.I., Dziewczapolski, G., Nakamura, T., Cao, G., and Pratt, A.E. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. USA. 110, E2518–E2527.10.1073/pnas.1306832110Search in Google Scholar PubMed PubMed Central

Tang, Y. and Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194.10.1007/s12035-014-9070-5Search in Google Scholar PubMed

Tang, W., Wang, X., Chen, Y., Zhang, J., and Lin, Z. (2015). CXCL12 and CXCR4 as predictive biomarkers of glioma recurrence pattern after total resection. Pathol. Biol. 63, 190–198.10.1016/j.patbio.2015.07.002Search in Google Scholar PubMed

Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593.10.1038/nri2567Search in Google Scholar PubMed

Trudeau, K., Muto, T., and Roy, S. (2012). Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome c release in retinal endothelial cells high glucose decreases mitochondrial connexin 43. Invest. Ophthalmol. Vis. Sci. 53, 6675–6681.10.1167/iovs.12-9895Search in Google Scholar PubMed PubMed Central

Tsang, H., Leiper, J., Lao, K.H., Dowsett, L., Delahaye, M.W., Barnes, G., Wharton, J., Howard, L., Iannone, L., and Lang, N.N. (2013). Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function. Pulm. Circ. 3, 675–691.10.1086/674440Search in Google Scholar PubMed PubMed Central

Turner, D.A. and Adamson, D.C. (2011). Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J. Neuropathol. Exp. Neurol. 70, 167–176.10.1097/NEN.0b013e31820e1152Search in Google Scholar PubMed PubMed Central

Turola, E., Furlan, R., Bianco, F., Matteoli, M., and Verderio, C. (2012). Microglial microvesicle secretion and intercellular signaling. Front. Physiol. 3, 1–11.10.3389/fphys.2012.00149Search in Google Scholar PubMed PubMed Central

Ullensvang, K., Lehre, K., Storm-Mathisen, J., and Danbolt, N. (1997). Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur. J. Neurosci. 9, 1646–1655.10.1111/j.1460-9568.1997.tb01522.xSearch in Google Scholar PubMed

Underly, R.G., Levy, M., Hartmann, D.A., Grant, R.I., Watson, A.N., and Shih, A.Y. (2017). Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J. Neurosci. 37, 129–140.10.1523/JNEUROSCI.2891-16.2016Search in Google Scholar PubMed PubMed Central

Van Wagoner, N.J., Oh, J.-W., Repovic, P., and Benveniste, E.N. (1999). Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J. Neurosci. 19, 5236–5244.10.1523/JNEUROSCI.19-13-05236.1999Search in Google Scholar PubMed

Van Neerven, S., Regen, T., Wolf, D., Nemes, A., Johann, S., Beyer, C., Hanisch, U.K., and Mey, J. (2010). Inflammatory chemokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J. Neurochem. 114, 1511–1526.10.1111/j.1471-4159.2010.06867.xSearch in Google Scholar PubMed

Vandamme, W., Braet, K., Cabooter, L., and Leybaert, L. (2004). Tumour necrosis factor alpha inhibits purinergic calcium signalling in blood-brain barrier endothelial cells. J. Neurochem. 88, 411–421.10.1046/j.1471-4159.2003.02163.xSearch in Google Scholar PubMed

Verkhratsky, A., Schousboe, A., and Parpura, V. (2014). Glutamate and ATP: the crossroads of signaling and metabolism in the brain. Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain (Springer), pp. 1–12.10.1007/978-3-319-08894-5_1Search in Google Scholar PubMed

Virgintino, D., Errede, M., Rizzi, M., Girolamo, F., Strippoli, M., Wälchli, T., Robertson, D., Frei, K., and Roncali, L. (2013). The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development. J. Inherit. Metab. Dis. 36, 455–466.10.1007/s10545-012-9574-ySearch in Google Scholar PubMed

Wang, N., De Bock, M., Decrock, E., Bol, M., Gadicherla, A., Bultynck, G., and Leybaert, L. (2013a). Connexin targeting peptides as inhibitors of voltage-and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology 75, 506–516.10.1016/j.neuropharm.2013.08.021Search in Google Scholar PubMed

Wang, L., Fu, Y., Peng, J., Wu, D., Yu, M., Xu, C., Wang, Q., and Tao, L. (2013b). Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: An involvement of PKC pathway. Toxicology 312, 149–157.10.1016/j.tox.2013.08.013Search in Google Scholar PubMed

Wang, Y., Jin, S., Sonobe, Y., Cheng, Y., Horiuchi, H., Parajuli, B., Kawanokuchi, J., Mizuno, T., Takeuchi, H., and Suzumura, A. (2014). Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One 9, e110024.10.1371/journal.pone.0110024Search in Google Scholar PubMed PubMed Central

Wasseff, S.K. and Scherer, S.S. (2014). Activated microglia do not form functional gap junctions in vivo. J. Neuroimmunol. 269, 90–93.10.1016/j.jneuroim.2014.02.005Search in Google Scholar PubMed PubMed Central

Wei, L., Sheng, H., Chen, L., Hao, B., Shi, X., and Chen, Y. (2016). Effect of pannexin-1 on the release of glutamate and cytokines in astrocytes. J. Clin. Neurosci. 23, 135–141.10.1016/j.jocn.2015.05.043Search in Google Scholar PubMed

Weilinger, N.L., Tang, P.L., and Thompson, R.J. (2012). Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 32, 12579–12588.10.1523/JNEUROSCI.1267-12.2012Search in Google Scholar PubMed PubMed Central

Welser, J.V., Li, L., and Milner, R. (2010). Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J. Neuroinflamm. 7, 89.10.1186/1742-2094-7-89Search in Google Scholar PubMed PubMed Central

Weng, H.-R., Gao, M., and Maixner, D.W. (2014). Glycogen synthase kinase 3β regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain. Exp. Neurol. 252, 18–27.10.1016/j.expneurol.2013.11.018Search in Google Scholar PubMed PubMed Central

Woo, D.H., Han, K.-S., Shim, J.W., Yoon, B.-E., Kim, E., Bae, J.Y., Oh, S.-J., Hwang, E.M., Marmorstein, A.D., and Bae, Y.C. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151, 25–40.10.1016/j.cell.2012.09.005Search in Google Scholar PubMed

Wu, J., Taylor, R.N., and Sidell, N. (2013). Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin 43. J. Cell. Physiol. 228, 903–910.10.1002/jcp.24241Search in Google Scholar PubMed

Wu, D.C., Chen, R.Y.-T., Cheng, T.-C., Chiang, Y.-C., Shen, M.-L., Hsu, L.-L., and Zhou, N. (2017). Spreading depression promotes astrocytic calcium oscillations and enhances gliotransmission to hippocampal neurons. Cereb. Cortex 1, 1–13.10.1093/cercor/bhx192Search in Google Scholar PubMed

Würth, R., Bajetto, A., Harrison, J.K., Barbieri, F., and Florio, T. (2014). CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci. 8, 144.10.3389/fncel.2014.00144Search in Google Scholar PubMed PubMed Central

Xia, M., Boini, K.M., Abais, J.M., Xu, M., Zhang, Y., and Li, P.-L. (2014). Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am. J. Pathol. 184, 1617–1628.10.1016/j.ajpath.2014.01.032Search in Google Scholar PubMed PubMed Central

Yan, X., Yadav, R., Gao, M., and Weng, H.R. (2014). Interleukin-1β enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia 62, 1093–1109.10.1002/glia.22665Search in Google Scholar PubMed PubMed Central

Yang, G., Meng, Y., Li, W., Yong, Y., Fan, Z., Ding, H., Wei, Y., Luo, J., and Ke, Z.J. (2011). Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol. 21, 279–297.10.1111/j.1750-3639.2010.00445.xSearch in Google Scholar PubMed PubMed Central

Yang, C.-M., Hsieh, H.-L., Yu, P.-H., Lin, C.-C., and Liu, S.-W. (2015). IL-1β induces MMP-9-dependent brain astrocytic migration via transactivation of PDGF receptor/NADPH oxidase 2-derived reactive oxygen species signals. Mol. Neurobiol. 52, 303–317.10.1007/s12035-014-8838-ySearch in Google Scholar PubMed

Yao, Y. and Tsirka, S.E. (2014). Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol. Life Sci. 71, 683–697.10.1007/s00018-013-1459-1Search in Google Scholar PubMed PubMed Central

Ye, B., Shen, H., Zhang, J., Zhu, Y.G., Ransom, B.R., Chen, X.C., and Ye, Z.C. (2015). Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. Glia 63, 2208–2219.10.1002/glia.22886Search in Google Scholar PubMed

Ye, Z.-C., Wyeth, M.S., Baltan-Tekkok, S., and Ransom, B.R. (2003). Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596.10.1523/JNEUROSCI.23-09-03588.2003Search in Google Scholar PubMed

Yeung, Y., McDonald, K., Grewal, T., and Munoz, L. (2013). Interleukins in glioblastoma pathophysiology: implications for therapy. Br. J. Pharmacol. 168, 591–606.10.1111/bph.12008Search in Google Scholar PubMed PubMed Central

Yoon, B. and Lee, C. (2014). GABA as a rising gliotransmitter. Front. Neural Circ. 8, 141–141.10.3389/fncir.2014.00141Search in Google Scholar PubMed PubMed Central

York, J.M., Castellanos, K.J., Cabay, R.J., and Fantuzzi, G. (2014). Inhibition of the nucleotide-binding domain, leucine-rich containing family, pyrin-domain containing 3 inflammasome reduces the severity of experimentally induced acute pancreatitis in obese mice. Transl. Res. 164, 259–269.10.1016/j.trsl.2014.06.012Search in Google Scholar PubMed PubMed Central

Zeevi-Levin, N., Barac, Y.D., Reisner, Y., Reiter, I., Yaniv, G., Meiry, G., Abassi, Z., Kostin, S., Schaper, J., and Rosen, M.R. (2005). Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes. Cardiovasc. Res. 66, 64–73.10.1016/j.cardiores.2005.01.014Search in Google Scholar PubMed

Zeng, L.-H., Bero, A.W., Zhang, B., Holtzman, D.M., and Wong, M. (2010). Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 37, 764–771.10.1016/j.nbd.2009.12.020Search in Google Scholar PubMed PubMed Central

Zhou, Y., Ling, E.-A., and Dheen, S.T. (2007). Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J. Neurochem. 102, 667–678.10.1111/j.1471-4159.2007.04535.xSearch in Google Scholar PubMed

Zhou, P., Zhang, S.-M., Wang, Q.-L., Wu, Q., Chen, M., and Pei, J.-M. (2013). Anti-arrhythmic effect of verapamil is accompanied by preservation of cx43 protein in rat heart. PLoS One 8, e71567.10.1371/journal.pone.0071567Search in Google Scholar PubMed PubMed Central

Zorec, R., Verkhratsky, A., Rodriguez, J., and Parpura, V. (2016). Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323, 67–75.10.1016/j.neuroscience.2015.02.033Search in Google Scholar PubMed

Zschocke, J., Bayatti, N., and Behl, C. (2005). Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts. Glia 49, 275–287.10.1002/glia.20116Search in Google Scholar PubMed

Received: 2017-11-02
Accepted: 2017-11-26
Published Online: 2018-01-08
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0092/html
Scroll to top button