J Reconstr Microsurg 2007; 23(2): 093-098
DOI: 10.1055/s-2007-970189
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Remote Ischemic Preconditioning Modulates p38 MAP Kinase in Rat Adipocutaneous Flaps

R. Brannon Claytor1 , Nathan J. Aranson1 , Ronald A. Ignotz1 , Janice F. Lalikos1 , Raymond M. Dunn1
  • 1Division of Plastic and Reconstructive Surgery, University of Massachusetts Medical Center, Worcester, Massachusetts
Further Information

Publication History

Accepted: October 11, 2006

Publication Date:
01 March 2007 (online)

ABSTRACT

Ischemic preconditioning has been shown to improve survival of cutaneous flaps. The authors examined the effect of remote ischemic preconditioning (RIPC) on phosphorylation of p38 MAP kinase and related the results to flap survival. Female Wistar rats had 8 × 12-cm abdominal adipocutaneous flaps raised on the medial branch of the superficial epigastric artery. Controls (Group 1) had the flap elevated and the pedicle clamped for 3 hr, then closed with a sheet of plastic between the flap and abdominal wall. Group 2 animals had RIPC by tourniquet on the contralateral hind limb before the flap was dissected. Group 3 animals mimicked Group 2 and also had an infusion of the nitric oxide blocker, N-nitro-L-arginine methyl ester (L-NAME) 5 min prior to the RIPC. Group 4 had the flap elevated prior to the RIPC. All groups except Group 1 had 10 min of RIPC with 30 min of reperfusion, then 3 hr of ischemia. Tissue samples were taken at the distal margins of the flaps before preconditioning and 30 min after preconditioning for detection of p38 MAP kinase and phosphorylated p38 MAP kinase (pp38 MAP kinase). Group 2 flaps (RIPC before flap elevation) exhibited better flap tissue survival and had well-defined phosphorylation of p38 MAP kinase 30 min post RIPC, when compared to the other groups. Pre-infusion with the nitric oxide blocker (Group 3) before RIPC blocked the survival advantage conferred by preconditioning and diminished the phosphorylation of p38 MAP kinase. Tissue from all groups showed very little phosphorylation of p38 MAP kinase following 3 hr of ischemia. Thus, increased tissue survival is correlated with elevated levels of p38 MAP kinase phosphorylation following RIPC. This effect is inhibited by blockade of nitric oxide. Modulation of the p38 MAP kinase pathway may represent a protection pathway for ischemic preconditioning.

REFERENCES

  • 1 Ping P, Murphy E. Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase?.  Circ Res. 2000;  86 921-922
  • 2 Stotland M A, Kerrigan C L. The role of platelet-activating factor in musculocutaneous flap reperfusion injury.  Plast Reconstr Surg Am. 1997;  99 1989-1999 discussion 2000-2001
  • 3 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;  74 1124-1136
  • 4 Kuntscher M V, Kastell T, Altmann J et al.. Acute remote preconditioning II: The role of nitric oxide.  Microsurgery Am. 2002;  22 227-231
  • 5 Kurose I, Wolf R, Grisham M B, Granger D N. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide.  Circ Res. 1994;  74 376-382
  • 6 Cordeiro P G, Mastorakos D P, Hu Q Y, Kirschner R E. The protective effect of L-arginine on ischemia-reperfusion injury in rat skin flaps.  Plast Reconstr Surg. 1997;  100 1227-1233
  • 7 Cordeiro P G, Santamaria E, Hu Q Y. Use of a nitric oxide precursor to protect pig myocutaneous flaps from ischemia-reperfusion injury.  Plast Reconstr Surg. 1998;  102 2040-2048 discussion 2049-2051
  • 8 Dickson E W, Lorbar M, Porcaro W A et al.. Rabbit heart can be "preconditioned" via transfer of coronary effluent.  Am J Physiol. 1999;  277 H2451-H2457
  • 9 Furuta S, Vadiveloo P, Romeo-Meeuw R et al.. Early inducible nitric oxide synthase 2 (NOS 2) activity enhances ischaemic skin flap survival.  Angiogenesis. 2004;  7 33-43
  • 10 Gaboury J, Woodman R C, Granger D N et al.. Nitric oxide prevents leukocyte adherence: role of superoxide.  Am J Physiol. 1993;  265 H862-H867
  • 11 Kane A J, Barker J E, Mitchell G M et al.. Inducible nitric oxide synthase (iNOS) activity promotes ischaemic skin flap survival.  Br J Pharmacol. 2001;  132 1631-1638
  • 12 Knox L K, Stewart A G, Hayward P G, Morrison W A. Nitric oxide synthase inhibitors improve skin flap survival in the rat.  Microsurgery. 1994;  15 708-711
  • 13 Maulik N, Engelman R M, Rousou J A et al.. Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2.  Circulation. 1999;  100 II369-II375
  • 14 Przyklenk K, Simkhovich B Z, Bauer B et al.. Cellular mechanisms of infarct size reduction with ischemic preconditioning.  Annals of New York Academy of Sciences. 1999;  874 192-210
  • 15 Maulik N, Sato M, Price B D et al.. An essential role of NFkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia.  FEBS Lett. 1998;  429 365-369
  • 16 Maulik N, Yoshida T, Zu Y-L et al.. Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPAP kinase 2.  Am J Physiol. 1998;  275 H1857-H1864
  • 17 Im M J, Su C T, Hoopes J E, Anthenelli R M. Skin-flap metabolism in rats: oxygen consumption and lactate production.  Plast Reconstr Surg. 1983;  71 685-688
  • 18 Angel M F, Ramasastry S S, Swartz W M et al.. The critical relationship between free radicals and degrees of ischemia: evidence for tissue intolerance of marginal perfusion.  Plast Reconstr Surg. 1988;  81 233-239
  • 19 Kuntscher M V, Kastell T, Sauerbier M et al.. Acute remote ischemic preconditioning on a rat cremasteric muscle flap model.  Microsurgery. 2002;  22 221-226
  • 20 Kharbanda R K, Mortensen U M, White P A et al.. Transient limb ischemia induces remote ischemic preconditioning in vivo.  Circulation. 2002;  106 2881-2883
  • 21 Tosaki A, Maulik N, Cordis G et al.. Ischemic preconditioning triggers phospholipase D signaling in rat heart.  Am J Physiol. 1997;  273 H1860-H1866
  • 22 Wang N-P, Bufkin B L, Nakamura M et al.. Ischemic preconditioning reduces neutrophil accumulation and myocardial apoptosis.  Ann Thorac Surg. 1999;  67 1689-1695
  • 23 Zahir K S, Syed S A, Zink J R et al.. Comparison of the effects of ischemic preconditioning and surgical delay on pedicled musculocutaneous flap survival in a rat model.  Ann Plast Surg. 1998;  40 422-428 discussion 428-429
  • 24 Zahir K S, Syed S A, Zink J R et al.. Ischemic preconditioning improves the survival of skin and myocutaneous flaps in a rat model.  Plast Reconstr Surg. 1998;  102 140-150 discussion 151-152
  • 25 Zahir T M, Zahir K S, Syed S A et al.. Ischemic preconditioning of musculocutaneous flaps: effects of ischemia cycle length and number of cycles.  Ann Plast Surg. 1998;  40 430-435
  • 26 Meldrum D G, Stephenson L L, Zamboni W A. Effects of L-NAME and L-arginine on ischemia-reperfusion injury in rat skeletal muscle.  Plast Reconstr Surg. 1999;  103 935-940
  • 27 Kuntscher M V, Schirmbeck E U, Menke H et al.. Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model.  Plast Reconstr Surg. 2002;  109 2398-2404

Janice F LalikosM.D. 

Division of Plastic and Reconstructive Surgery, University of Massachusetts Medical Center

55 Lake Avenue, North, Worcester, MA 01655

    >