Skip to main content
Erschienen in: Drugs 8/2022

01.06.2022 | Review Article

Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals

verfasst von: Deepak Menon, Vera Bril

Erschienen in: Drugs | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Myasthenia gravis (MG) is a chronic, fluctuating, antibody-mediated autoimmune disorder directed against the post-synaptic neuromuscular junctions of skeletal muscles, resulting in a wide spectrum of manifestations ranging from mild to potentially fatal. Given its unique natural course, designing an ideal trial design for MG has been wrought with difficulties and evidence in favour of several of the conventional agents is weak as per current standards. Despite this, acetylcholinesterases and corticosteroids have remained the cornerstones of treatment for several decades with intravenous immunoglobulins (IVIG) and therapeutic plasma exchange (PLEX) offering rapid treatment response, especially in crises. However, the treatment of MG entails long-term immunosuppression and conventional agents are viable options but take longer to act and have a number of class-specific adverse effects. Advances in immunology, translational medicine and drug development have seen the emergence of several newer biological agents which offer selective, target-specific immunotherapy with fewer side effects and rapid onset of action. Eculizumab is one of the newer agents that belong to the class of complement inhibitors and has been approved for the treatment of refractory general MG. Zilucoplan and ravulizumab are other agents in this group in clinical trials. Neisseria meningitis is a concern with all complement inhibitors, mandating vaccination. Neonatal Fc receptor (FcRn) inhibitors prevent immunoglobulin recycling and cause rapid reduction in antibody levels. Efgartigimod is an FcRn inhibitor recently approved for MG treatment, and rozanolixizumab, nipocalimab and batoclimab are other agents in clinical trial development. Although lacking high quality evidence from randomized clinical trials, clinical experience with the use of anti-CD20 rituximab has led to its use in refractory MG. Among novel targets, interleukin 6 (IL6) inhibitors such as satralizumab are promising and currently undergoing evaluation. Cutting-edge therapies include genetically modifying T cells to recognise chimeric antigen receptors (CAR) and chimeric autoantibody receptors (CAAR). These may offer sustained and long-term remissions, but are still in very early stages of evaluation. Hematopoietic stem cell transplantation (HSCT) allows immune resetting and offers sustained remission, but the induction regimens often involve serious systemic toxicity. While MG treatment is moving beyond conventional agents towards target-specific biologicals, lack of knowledge as to the initiation, maintenance, switching, tapering and long-term safety profile necessitates further research. These concerns and the high financial burden of novel agents may hamper widespread clinical use in the near future.
Literatur
1.
Zurück zum Zitat Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):1–19.CrossRef Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. Nat Rev Dis Primers. 2019;5(1):1–19.CrossRef
2.
Zurück zum Zitat Twork S, Wiesmeth S, Klewer J, Pöhlau D, Kugler J. Quality of life and life circumstances in German myasthenia gravis patients. Health Qual Life Outcomes. 2010;11(8):129.CrossRef Twork S, Wiesmeth S, Klewer J, Pöhlau D, Kugler J. Quality of life and life circumstances in German myasthenia gravis patients. Health Qual Life Outcomes. 2010;11(8):129.CrossRef
3.
Zurück zum Zitat Nagane Y, Murai H, Imai T, Yamamoto D, Tsuda E, Minami N, et al. Social disadvantages associated with myasthenia gravis and its treatment: a multicentre cross-sectional study. BMJ Open. 2017;7(2):e013278.PubMedPubMedCentralCrossRef Nagane Y, Murai H, Imai T, Yamamoto D, Tsuda E, Minami N, et al. Social disadvantages associated with myasthenia gravis and its treatment: a multicentre cross-sectional study. BMJ Open. 2017;7(2):e013278.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Breiner A, Widdifield J, Katzberg HD, Barnett C, Bril V, Tu K. Epidemiology of myasthenia gravis in Ontario, Canada. Neuromuscul Disord. 2016;26(1):41–6.PubMedCrossRef Breiner A, Widdifield J, Katzberg HD, Barnett C, Bril V, Tu K. Epidemiology of myasthenia gravis in Ontario, Canada. Neuromuscul Disord. 2016;26(1):41–6.PubMedCrossRef
5.
Zurück zum Zitat Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10(1):46.PubMedPubMedCentralCrossRef Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10(1):46.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212.PubMedPubMedCentralCrossRef Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Hughes BW, Moro De Casillas ML, Kaminski HJ. Pathophysiology of myasthenia gravis. Semin Neurol. 2004;24(1):21–30.PubMedCrossRef Hughes BW, Moro De Casillas ML, Kaminski HJ. Pathophysiology of myasthenia gravis. Semin Neurol. 2004;24(1):21–30.PubMedCrossRef
8.
Zurück zum Zitat Beecher G, Putko BN, Wagner AN, Siddiqi ZA. Therapies directed against B-cells and downstream effectors in generalized autoimmune myasthenia gravis: current status. Drugs. 2019;79(4):353–64.PubMedCrossRef Beecher G, Putko BN, Wagner AN, Siddiqi ZA. Therapies directed against B-cells and downstream effectors in generalized autoimmune myasthenia gravis: current status. Drugs. 2019;79(4):353–64.PubMedCrossRef
9.
Zurück zum Zitat Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev. 2013;12(9):904–11.PubMedCrossRef Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev. 2013;12(9):904–11.PubMedCrossRef
10.
Zurück zum Zitat Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263:826–34.PubMedCrossRef Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263:826–34.PubMedCrossRef
11.
Zurück zum Zitat Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84.PubMedCrossRef Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84.PubMedCrossRef
13.
Zurück zum Zitat Menon D, Urra Pincheira A, Bril V. Emerging drugs for the treatment of myasthenia gravis. Expert Opin Emerg Drugs. 2021;26(3):259–70.PubMedCrossRef Menon D, Urra Pincheira A, Bril V. Emerging drugs for the treatment of myasthenia gravis. Expert Opin Emerg Drugs. 2021;26(3):259–70.PubMedCrossRef
14.
Zurück zum Zitat Benatar M, Sanders DB, Burns TM, Cutter GR, Guptill JT, Baggi F, et al. Recommendations for myasthenia gravis clinical trials. Muscle Nerve. 2012;45(6):909–17.PubMedCrossRef Benatar M, Sanders DB, Burns TM, Cutter GR, Guptill JT, Baggi F, et al. Recommendations for myasthenia gravis clinical trials. Muscle Nerve. 2012;45(6):909–17.PubMedCrossRef
15.
Zurück zum Zitat Punga AR, Kaminski HJ, Richman DP, Benatar M. How clinical trials of myasthenia gravis can inform pre-clinical drug development. Exp Neurol. 2015;270:78–81.PubMedCentralCrossRef Punga AR, Kaminski HJ, Richman DP, Benatar M. How clinical trials of myasthenia gravis can inform pre-clinical drug development. Exp Neurol. 2015;270:78–81.PubMedCentralCrossRef
16.
Zurück zum Zitat Jaretzki A, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis: recommendations for clinical research standards Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.PubMedCrossRef Jaretzki A, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis: recommendations for clinical research standards Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.PubMedCrossRef
17.
Zurück zum Zitat Sanders DB, Burns TM, Cutter GR, Massey JM, Juel VC, Hobson-Webb L, et al. Does change in acetylcholine receptor antibody level correlate with clinical change in myasthenia gravis? Muscle Nerve. 2014;49(4):483–6.PubMedCrossRef Sanders DB, Burns TM, Cutter GR, Massey JM, Juel VC, Hobson-Webb L, et al. Does change in acetylcholine receptor antibody level correlate with clinical change in myasthenia gravis? Muscle Nerve. 2014;49(4):483–6.PubMedCrossRef
18.
19.
Zurück zum Zitat Walker MB. Treatment of myasthenia gravis with physostigmine. Lancet. 1934;223(5779):1200–1.CrossRef Walker MB. Treatment of myasthenia gravis with physostigmine. Lancet. 1934;223(5779):1200–1.CrossRef
20.
Zurück zum Zitat Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Nair VP, Hunter JM. Anticholinesterases and anticholinergic drugs. Contin Educ Anaesth Crit Care Pain. 2004;4(5):164–8.CrossRef Nair VP, Hunter JM. Anticholinesterases and anticholinergic drugs. Contin Educ Anaesth Crit Care Pain. 2004;4(5):164–8.CrossRef
22.
Zurück zum Zitat Aquilonius S-M, Hartvig P. Clinical pharmacokinetics of cholinesterase inhibitors. Clin-Pharmacokinet. 1986;11(3):236–49.PubMedCrossRef Aquilonius S-M, Hartvig P. Clinical pharmacokinetics of cholinesterase inhibitors. Clin-Pharmacokinet. 1986;11(3):236–49.PubMedCrossRef
23.
Zurück zum Zitat Beekman R, Kuks JB, Oosterhuis HJ. Myasthenia gravis: diagnosis and follow-up of 100 consecutive patients. J Neurol. 1997;244(2):112–8.PubMedCrossRef Beekman R, Kuks JB, Oosterhuis HJ. Myasthenia gravis: diagnosis and follow-up of 100 consecutive patients. J Neurol. 1997;244(2):112–8.PubMedCrossRef
24.
Zurück zum Zitat Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol. 1990;237(6):339–44.PubMedCrossRef Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol. 1990;237(6):339–44.PubMedCrossRef
25.
Zurück zum Zitat Maggi L, Mantegazza R. Treatment of myasthenia gravis: focus on pyridostigmine. Clin Drug Investig. 2011;31(10):691–701.PubMedCrossRef Maggi L, Mantegazza R. Treatment of myasthenia gravis: focus on pyridostigmine. Clin Drug Investig. 2011;31(10):691–701.PubMedCrossRef
26.
Zurück zum Zitat Punga AR, Sawada M, Stålberg EV. Electrophysiological signs and the prevalence of adverse effects of acetylcholinesterase inhibitors in patients with myasthenia gravis. Muscle Nerve. 2008;37(3):300–7.PubMedCrossRef Punga AR, Sawada M, Stålberg EV. Electrophysiological signs and the prevalence of adverse effects of acetylcholinesterase inhibitors in patients with myasthenia gravis. Muscle Nerve. 2008;37(3):300–7.PubMedCrossRef
27.
Zurück zum Zitat Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain. 2003;126(10):2304–11.PubMedCrossRef Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain. 2003;126(10):2304–11.PubMedCrossRef
29.
Zurück zum Zitat Schwab RS. WIN 8077 in the treatment of sixty myasthenia gravis patients: a twelve-month report. Am J Med. 1955;19(5):734–6.PubMedCrossRef Schwab RS. WIN 8077 in the treatment of sixty myasthenia gravis patients: a twelve-month report. Am J Med. 1955;19(5):734–6.PubMedCrossRef
30.
Zurück zum Zitat Hodge AS, Humphrey DR, Rosenberry TL. Ambenonium is a rapidly reversible noncovalent inhibitor of acetylcholinesterase, with one of the highest known affinities. Mol Pharmacol. 1992;41(5):937–42.PubMed Hodge AS, Humphrey DR, Rosenberry TL. Ambenonium is a rapidly reversible noncovalent inhibitor of acetylcholinesterase, with one of the highest known affinities. Mol Pharmacol. 1992;41(5):937–42.PubMed
31.
32.
Zurück zum Zitat Sussman J, Argov Z, Wirguin Y, Apolski S, Milic-Rasic V, Soreq H. Further developments with antisense treatment for myasthenia gravis. Ann N Y Acad Sci. 2012;1275:13–6.PubMedCrossRef Sussman J, Argov Z, Wirguin Y, Apolski S, Milic-Rasic V, Soreq H. Further developments with antisense treatment for myasthenia gravis. Ann N Y Acad Sci. 2012;1275:13–6.PubMedCrossRef
33.
Zurück zum Zitat Nguyen-Cao TM, Gelinas D, Griffin R, Mondou E. Myasthenia gravis: historical achievements and the “golden age” of clinical trials. J Neurol Sci. 2019;15(406):116428.CrossRef Nguyen-Cao TM, Gelinas D, Griffin R, Mondou E. Myasthenia gravis: historical achievements and the “golden age” of clinical trials. J Neurol Sci. 2019;15(406):116428.CrossRef
34.
Zurück zum Zitat Bestue-Cardiel M, Sáenz de Cabezón-Alvarez A, Capablo-Liesa JL, López-Pisón J, Peña-Segura JL, Martin-Martinez J, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65(1):144–6.PubMedCrossRef Bestue-Cardiel M, Sáenz de Cabezón-Alvarez A, Capablo-Liesa JL, López-Pisón J, Peña-Segura JL, Martin-Martinez J, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65(1):144–6.PubMedCrossRef
35.
Zurück zum Zitat Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7(LOE Classification). Neurology. 2010;74(19):1517–23.PubMedPubMedCentralCrossRef Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7(LOE Classification). Neurology. 2010;74(19):1517–23.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Sadeh M, Shen X-M, Engel AG. Beneficial effect of albuterol in congential myasthenic syndrome with epsilon subuint mutations. Muscle Nerve. 2011;44(2):289–91.PubMedPubMedCentralCrossRef Sadeh M, Shen X-M, Engel AG. Beneficial effect of albuterol in congential myasthenic syndrome with epsilon subuint mutations. Muscle Nerve. 2011;44(2):289–91.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 Myasthenia. Muscle Nerve. 2011;44(5):789–94.PubMedPubMedCentralCrossRef Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 Myasthenia. Muscle Nerve. 2011;44(5):789–94.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Vanhaesebrouck AE, Webster R, Maxwell S, Rodriguez Cruz PM, Cossins J, Wickens J, et al. β2-Adrenergic receptor agonists ameliorate the adverse effect of long-term pyridostigmine on neuromuscular junction structure. Brain. 2019;142(12):3713–27.PubMedPubMedCentralCrossRef Vanhaesebrouck AE, Webster R, Maxwell S, Rodriguez Cruz PM, Cossins J, Wickens J, et al. β2-Adrenergic receptor agonists ameliorate the adverse effect of long-term pyridostigmine on neuromuscular junction structure. Brain. 2019;142(12):3713–27.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37(2):141–9.PubMedCrossRef Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37(2):141–9.PubMedCrossRef
41.
Zurück zum Zitat Narayanaswami P, Sanders DB, Wolfe G, Benatar M, Cea G, Evoli A, et al. International consensus guidance for management of myasthenia gravis. Neurology. 2021;96(3):114–22.PubMedPubMedCentralCrossRef Narayanaswami P, Sanders DB, Wolfe G, Benatar M, Cea G, Evoli A, et al. International consensus guidance for management of myasthenia gravis. Neurology. 2021;96(3):114–22.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Sathasivam S. Steroids and immunosuppressant drugs in myasthenia gravis. Nat Rev Neurol. 2008;4(6):317–27.CrossRef Sathasivam S. Steroids and immunosuppressant drugs in myasthenia gravis. Nat Rev Neurol. 2008;4(6):317–27.CrossRef
43.
Zurück zum Zitat Warmolts JR, Engel WK. Benefit from alternate-day prednisone in myasthenia gravis. N Engl J Med. 1972;286(1):17–20.PubMedCrossRef Warmolts JR, Engel WK. Benefit from alternate-day prednisone in myasthenia gravis. N Engl J Med. 1972;286(1):17–20.PubMedCrossRef
44.
45.
Zurück zum Zitat Howard FM, Duane DD, Lambert EH, Daube JR. Alternate-day prednisone: preliminary report of a double-blind controlled study. Ann N Y Acad Sci. 1976;274:596–607.PubMedCrossRef Howard FM, Duane DD, Lambert EH, Daube JR. Alternate-day prednisone: preliminary report of a double-blind controlled study. Ann N Y Acad Sci. 1976;274:596–607.PubMedCrossRef
46.
Zurück zum Zitat Pascuzzi RM, Coslett HB, Johns TR. Long-term corticosteroid treatment of myasthenia gravis: report of 116 patients. Ann Neurol. 1984;15(3):291–8.PubMedCrossRef Pascuzzi RM, Coslett HB, Johns TR. Long-term corticosteroid treatment of myasthenia gravis: report of 116 patients. Ann Neurol. 1984;15(3):291–8.PubMedCrossRef
47.
Zurück zum Zitat Sghirlanzoni A, Peluchetti D, Mantegazza R, Fiacchino F, Cornelio F. Myasthenia gravis: prolonged treatment with steroids. Neurology. 1984;34(2):170–4.PubMedCrossRef Sghirlanzoni A, Peluchetti D, Mantegazza R, Fiacchino F, Cornelio F. Myasthenia gravis: prolonged treatment with steroids. Neurology. 1984;34(2):170–4.PubMedCrossRef
49.
Zurück zum Zitat Lindberg C, Andersen O, Lefvert AK. Treatment of myasthenia gravis with methylprednisolone pulse: a double blind study. Acta Neurol Scand. 1998;97(6):370–3.PubMedCrossRef Lindberg C, Andersen O, Lefvert AK. Treatment of myasthenia gravis with methylprednisolone pulse: a double blind study. Acta Neurol Scand. 1998;97(6):370–3.PubMedCrossRef
50.
Zurück zum Zitat Arsura E, Brunner NG, Namba T, Grob D. High-dose intravenous methylprednisolone in myasthenia gravis. Arch Neurol. 1985;42(12):1149–53.PubMedCrossRef Arsura E, Brunner NG, Namba T, Grob D. High-dose intravenous methylprednisolone in myasthenia gravis. Arch Neurol. 1985;42(12):1149–53.PubMedCrossRef
51.
Zurück zum Zitat Sugimoto T, Ochi K, Ishikawa R, Tazuma T, Hayashi M, Mine N, et al. Initial deterioration and intravenous methylprednisolone therapy in patients with myasthenia gravis. J Neurol Sci. 2020;15(412):116740.CrossRef Sugimoto T, Ochi K, Ishikawa R, Tazuma T, Hayashi M, Mine N, et al. Initial deterioration and intravenous methylprednisolone therapy in patients with myasthenia gravis. J Neurol Sci. 2020;15(412):116740.CrossRef
52.
Zurück zum Zitat Bae JS, Go SM, Kim BJ. Clinical predictors of steroid-induced exacerbation in myasthenia gravis. J Clin Neurosci. 2006;13(10):1006–10.PubMedCrossRef Bae JS, Go SM, Kim BJ. Clinical predictors of steroid-induced exacerbation in myasthenia gravis. J Clin Neurosci. 2006;13(10):1006–10.PubMedCrossRef
53.
Zurück zum Zitat Lotan I, Hellmann MA, Wilf-Yarkoni A, Steiner I. Exacerbation of myasthenia gravis following corticosteroid treatment: what is the evidence? A systematic review. J Neurol. 2021;268(12):4573–86.PubMedCrossRef Lotan I, Hellmann MA, Wilf-Yarkoni A, Steiner I. Exacerbation of myasthenia gravis following corticosteroid treatment: what is the evidence? A systematic review. J Neurol. 2021;268(12):4573–86.PubMedCrossRef
54.
Zurück zum Zitat Seybold ME, Drachman DB. Gradually increasing doses of prednisone in myasthenia gravis. Reducing the hazards of treatment. N Engl J Med. 1974;290(2):81–4.PubMedCrossRef Seybold ME, Drachman DB. Gradually increasing doses of prednisone in myasthenia gravis. Reducing the hazards of treatment. N Engl J Med. 1974;290(2):81–4.PubMedCrossRef
55.
Zurück zum Zitat Imai T, Suzuki S, Tsuda E, Nagane Y, Murai H, Masuda M, et al. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle Nerve. 2015;51(5):692–6.PubMedCrossRef Imai T, Suzuki S, Tsuda E, Nagane Y, Murai H, Masuda M, et al. Oral corticosteroid therapy and present disease status in myasthenia gravis. Muscle Nerve. 2015;51(5):692–6.PubMedCrossRef
56.
Zurück zum Zitat Sharshar T, Porcher R, Demeret S, Tranchant C, Gueguen A, Eymard B, et al. Comparison of corticosteroid tapering regimens in myasthenia gravis: a randomized clinical trial. JAMA Neurol. 2021;78(4):426–33.PubMedPubMedCentralCrossRef Sharshar T, Porcher R, Demeret S, Tranchant C, Gueguen A, Eymard B, et al. Comparison of corticosteroid tapering regimens in myasthenia gravis: a randomized clinical trial. JAMA Neurol. 2021;78(4):426–33.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111(8):1133–45.PubMedPubMedCentralCrossRef Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111(8):1133–45.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Mertens HG, Hertel G, Reuther P, Ricker K. Effect of immunosuppressive drugs (azathioprine). Ann N Y Acad Sci. 1981;377:691–9.PubMedCrossRef Mertens HG, Hertel G, Reuther P, Ricker K. Effect of immunosuppressive drugs (azathioprine). Ann N Y Acad Sci. 1981;377:691–9.PubMedCrossRef
60.
Zurück zum Zitat Mantegazza R, Antozzi C, Peluchetti D, Sghirlanzoni A, Cornelio F. Azathioprine as a single drug or in combination with steroids in the treatment of myasthenia gravis. J Neurol. 1988;235(8):449–53.PubMedCrossRef Mantegazza R, Antozzi C, Peluchetti D, Sghirlanzoni A, Cornelio F. Azathioprine as a single drug or in combination with steroids in the treatment of myasthenia gravis. J Neurol. 1988;235(8):449–53.PubMedCrossRef
61.
Zurück zum Zitat Witte AS, Cornblath DR, Parry GJ, Lisak RP, Schatz NJ. Azathioprine in the treatment of myasthenia gravis. Ann Neurol. 1984;15(6):602–5.PubMedCrossRef Witte AS, Cornblath DR, Parry GJ, Lisak RP, Schatz NJ. Azathioprine in the treatment of myasthenia gravis. Ann Neurol. 1984;15(6):602–5.PubMedCrossRef
62.
Zurück zum Zitat A randomised clinical trial comparing prednisone and azathioprine in myasthenia gravis. Results of the second interim analysis. Myasthenia Gravis Clinical Study Group. J Neurol Neurosurg Psychiatry. 1993;56(11):1157–63. A randomised clinical trial comparing prednisone and azathioprine in myasthenia gravis. Results of the second interim analysis. Myasthenia Gravis Clinical Study Group. J Neurol Neurosurg Psychiatry. 1993;56(11):1157–63.
63.
Zurück zum Zitat Bromberg M, Wald J, Forshew D, Feldman E, Albers J. Randomized trial of azathioprine or prednisone for initial immunosuppressive treatment of myasthenia gravis. J Neurol Sci. 1997;150(1):59–62.PubMedCrossRef Bromberg M, Wald J, Forshew D, Feldman E, Albers J. Randomized trial of azathioprine or prednisone for initial immunosuppressive treatment of myasthenia gravis. J Neurol Sci. 1997;150(1):59–62.PubMedCrossRef
64.
Zurück zum Zitat Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology. 1998;50(6):1778–83.PubMedCrossRef Palace J, Newsom-Davis J, Lecky B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology. 1998;50(6):1778–83.PubMedCrossRef
66.
Zurück zum Zitat Hohlfeld R, Michels M, Heininger K, Besinger U, Toyka KV. Azathioprine toxicity during long-term immunosuppression of generalized myasthenia gravis. Neurology. 1988;38(2):258–61.PubMedCrossRef Hohlfeld R, Michels M, Heininger K, Besinger U, Toyka KV. Azathioprine toxicity during long-term immunosuppression of generalized myasthenia gravis. Neurology. 1988;38(2):258–61.PubMedCrossRef
67.
Zurück zum Zitat Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM, et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 2004;14(3):181–7.PubMedCrossRef Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S, Lewis CM, et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 2004;14(3):181–7.PubMedCrossRef
68.
Zurück zum Zitat Burnett HF, Tanoshima R, Chandranipapongse W, Madadi P, Ito S, Ungar WJ. Testing for thiopurine methyltransferase status for safe and effective thiopurine administration: a systematic review of clinical guidance documents. Pharmacogenomics J. 2014;14(6):493–502.PubMedCrossRef Burnett HF, Tanoshima R, Chandranipapongse W, Madadi P, Ito S, Ungar WJ. Testing for thiopurine methyltransferase status for safe and effective thiopurine administration: a systematic review of clinical guidance documents. Pharmacogenomics J. 2014;14(6):493–502.PubMedCrossRef
69.
Zurück zum Zitat Pedersen EG, Pottegård A, Hallas J, Friis S, Hansen K, Jensen PEH, et al. Use of azathioprine for non-thymoma myasthenia and risk of cancer: a nationwide case-control study in Denmark. Eur J Neurol. 2013;20(6):942–8.PubMedCrossRef Pedersen EG, Pottegård A, Hallas J, Friis S, Hansen K, Jensen PEH, et al. Use of azathioprine for non-thymoma myasthenia and risk of cancer: a nationwide case-control study in Denmark. Eur J Neurol. 2013;20(6):942–8.PubMedCrossRef
70.
Zurück zum Zitat Skorpen CG, Hoeltzenbein M, Tincani A, Fischer-Betz R, Elefant E, Chambers C, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016;75(5):795–810.CrossRef Skorpen CG, Hoeltzenbein M, Tincani A, Fischer-Betz R, Elefant E, Chambers C, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016;75(5):795–810.CrossRef
71.
Zurück zum Zitat Alharbi M, Menon D, Barnett C, Katzberg H, Sermer M, Bril V. Myasthenia Gravis and Pregnancy: Toronto Specialty Center Experience. Can J Neurol Sci. 2021;12:1–5.CrossRef Alharbi M, Menon D, Barnett C, Katzberg H, Sermer M, Bril V. Myasthenia Gravis and Pregnancy: Toronto Specialty Center Experience. Can J Neurol Sci. 2021;12:1–5.CrossRef
72.
Zurück zum Zitat Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.PubMedCrossRef Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.PubMedCrossRef
73.
Zurück zum Zitat Chaudhry V, Cornblath DR, Griffin JW, O’Brien R, Drachman DB. Mycophenolate mofetil: a safe and promising immunosuppressant in neuromuscular diseases. Neurology. 2001;56(1):94–6.PubMedCrossRef Chaudhry V, Cornblath DR, Griffin JW, O’Brien R, Drachman DB. Mycophenolate mofetil: a safe and promising immunosuppressant in neuromuscular diseases. Neurology. 2001;56(1):94–6.PubMedCrossRef
74.
Zurück zum Zitat Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology. 2008;71(6):394–9.CrossRef Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology. 2008;71(6):394–9.CrossRef
75.
Zurück zum Zitat Sanders DB, Hart IK, Mantegazza R, Shukla SS, Siddiqi ZA, De Baets MHV, et al. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. 2008;71(6):400–6.PubMedCrossRef Sanders DB, Hart IK, Mantegazza R, Shukla SS, Siddiqi ZA, De Baets MHV, et al. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. 2008;71(6):400–6.PubMedCrossRef
76.
Zurück zum Zitat Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis. Neurology. 2016;87(4):419–25.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Hehir MK, Burns TM, Alpers J, Conaway MR, Sawa M, Sanders DB. Mycophenolate mofetil in AChR-antibody-positive myasthenia gravis: outcomes in 102 patients. Muscle Nerve. 2010;41(5):593–8.PubMedCrossRef Hehir MK, Burns TM, Alpers J, Conaway MR, Sawa M, Sanders DB. Mycophenolate mofetil in AChR-antibody-positive myasthenia gravis: outcomes in 102 patients. Muscle Nerve. 2010;41(5):593–8.PubMedCrossRef
78.
Zurück zum Zitat Sussman J, Farrugia ME, Maddison P, Hill M, Leite MI, Hilton-Jones D. Myasthenia gravis: Association of British Neurologists’ management guidelines. Pract Neurol. 2015;15(3):199–206.PubMedCrossRef Sussman J, Farrugia ME, Maddison P, Hill M, Leite MI, Hilton-Jones D. Myasthenia gravis: Association of British Neurologists’ management guidelines. Pract Neurol. 2015;15(3):199–206.PubMedCrossRef
79.
Zurück zum Zitat Li Z-Y. China guidelines for the diagnosis and treatment of myasthenia gravis. Neuroimmunol Neuroinflamm. 2016;20(3):1–9.CrossRef Li Z-Y. China guidelines for the diagnosis and treatment of myasthenia gravis. Neuroimmunol Neuroinflamm. 2016;20(3):1–9.CrossRef
80.
Zurück zum Zitat Hanisch F, Wendt M, Zierz S. Mycophenolate mofetil as second line immunosuppressant in myasthenia gravis—a long-term prospective open-label study. Eur J Med Res. 2009;14(8):364–6.PubMedPubMedCentralCrossRef Hanisch F, Wendt M, Zierz S. Mycophenolate mofetil as second line immunosuppressant in myasthenia gravis—a long-term prospective open-label study. Eur J Med Res. 2009;14(8):364–6.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000;47(2):119–25.PubMedCrossRef Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000;47(2):119–25.PubMedCrossRef
82.
Zurück zum Zitat Tindall RSA, Rollins JA, Phillips JT, Greenlee RG, Wells L, Belendiuk G. Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N Engl J Med. 1987;316(12):719–24.PubMedCrossRef Tindall RSA, Rollins JA, Phillips JT, Greenlee RG, Wells L, Belendiuk G. Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N Engl J Med. 1987;316(12):719–24.PubMedCrossRef
83.
Zurück zum Zitat Lavrnic D, Vujic A, Rakocevic-Stojanovic V, Stevic Z, Basta I, Pavlovic S, et al. Cyclosporine in the treatment of myasthenia gravis. Acta Neurol Scand. 2005;111(4):247–52.PubMedCrossRef Lavrnic D, Vujic A, Rakocevic-Stojanovic V, Stevic Z, Basta I, Pavlovic S, et al. Cyclosporine in the treatment of myasthenia gravis. Acta Neurol Scand. 2005;111(4):247–52.PubMedCrossRef
84.
Zurück zum Zitat Souayah N, Khella SL. Low dose of cyclosporine in myasthenia gravis. J Clin Neuromuscul Dis. 2006;8(2):75–9.CrossRef Souayah N, Khella SL. Low dose of cyclosporine in myasthenia gravis. J Clin Neuromuscul Dis. 2006;8(2):75–9.CrossRef
85.
Zurück zum Zitat Nagane Y, Suzuki S, Suzuki N, Utsugisawa K. Two-year treatment with cyclosporine microemulsion for responder myasthenia gravis patients. Eur Neurol. 2010;64(3):186–90.PubMedCrossRef Nagane Y, Suzuki S, Suzuki N, Utsugisawa K. Two-year treatment with cyclosporine microemulsion for responder myasthenia gravis patients. Eur Neurol. 2010;64(3):186–90.PubMedCrossRef
86.
87.
Zurück zum Zitat Yoshikawa H, Kiuchi T, Saida T, Takamori M. Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J Neurol Neurosurg Psychiatry. 2011;82(9):970–7.PubMedCrossRef Yoshikawa H, Kiuchi T, Saida T, Takamori M. Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J Neurol Neurosurg Psychiatry. 2011;82(9):970–7.PubMedCrossRef
88.
Zurück zum Zitat Zhou L, Liu W, Li W, Li H, Zhang X, Shang H, et al. Tacrolimus in the treatment of myasthenia gravis in patients with an inadequate response to glucocorticoid therapy: randomized, double-blind, placebo-controlled study conducted in China. Ther Adv Neurol Disord. 2017;10(9):315–25.PubMedPubMedCentralCrossRef Zhou L, Liu W, Li W, Li H, Zhang X, Shang H, et al. Tacrolimus in the treatment of myasthenia gravis in patients with an inadequate response to glucocorticoid therapy: randomized, double-blind, placebo-controlled study conducted in China. Ther Adv Neurol Disord. 2017;10(9):315–25.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Fan Z, Li Z, Shen F, Zhang X, Lei L, Su S, et al. Favorable effects of tacrolimus monotherapy on myasthenia gravis patients. Front Neurol. 2020;11:1306.CrossRef Fan Z, Li Z, Shen F, Zhang X, Lei L, Su S, et al. Favorable effects of tacrolimus monotherapy on myasthenia gravis patients. Front Neurol. 2020;11:1306.CrossRef
90.
Zurück zum Zitat Choudhry S, Bagga A, Hari P, Sharma S, Kalaivani M, Dinda A. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis. 2009;53(5):760–9.PubMedCrossRef Choudhry S, Bagga A, Hari P, Sharma S, Kalaivani M, Dinda A. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis. 2009;53(5):760–9.PubMedCrossRef
91.
Zurück zum Zitat Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65(3):168–73.PubMed Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65(3):168–73.PubMed
92.
Zurück zum Zitat Heckmann JM, Rawoot A, Bateman K, Renison R, Badri M. A single-blinded trial of methotrexate versus azathioprine as steroid-sparing agents in generalized myasthenia gravis. BMC Neurol. 2011;5(11):97.CrossRef Heckmann JM, Rawoot A, Bateman K, Renison R, Badri M. A single-blinded trial of methotrexate versus azathioprine as steroid-sparing agents in generalized myasthenia gravis. BMC Neurol. 2011;5(11):97.CrossRef
93.
Zurück zum Zitat Pasnoor M, He J, Herbelin L, Burns TM, Nations S, Bril V, et al. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology. 2016;87(1):57–64.PubMedPubMedCentralCrossRef Pasnoor M, He J, Herbelin L, Burns TM, Nations S, Bril V, et al. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology. 2016;87(1):57–64.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Pavy S, Constantin A, Pham T, Gossec L, Maillefert J-F, Cantagrel A, et al. Methotrexate therapy for rheumatoid arthritis: clinical practice guidelines based on published evidence and expert opinion. Joint Bone Spine. 2006;73(4):388–95.PubMedCrossRef Pavy S, Constantin A, Pham T, Gossec L, Maillefert J-F, Cantagrel A, et al. Methotrexate therapy for rheumatoid arthritis: clinical practice guidelines based on published evidence and expert opinion. Joint Bone Spine. 2006;73(4):388–95.PubMedCrossRef
95.
Zurück zum Zitat Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661–71.PubMedCrossRef Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661–71.PubMedCrossRef
96.
Zurück zum Zitat Perez MC, Buot WL, Mercado-Danguilan C, Bagabaldo ZG, Renales LD. Stable remissions in myasthenia gravis. Neurology. 1981;31(1):32–7.PubMedCrossRef Perez MC, Buot WL, Mercado-Danguilan C, Bagabaldo ZG, Renales LD. Stable remissions in myasthenia gravis. Neurology. 1981;31(1):32–7.PubMedCrossRef
97.
Zurück zum Zitat De Feo LG, Schottlender J, Martelli NA, Molfino NA. Use of intravenous pulsed cyclophosphamide in severe, generalized myasthenia gravis. Muscle Nerve. 2002;26(1):31–6.PubMedCrossRef De Feo LG, Schottlender J, Martelli NA, Molfino NA. Use of intravenous pulsed cyclophosphamide in severe, generalized myasthenia gravis. Muscle Nerve. 2002;26(1):31–6.PubMedCrossRef
98.
Zurück zum Zitat Nagappa M, Netravathi M, Taly AB, Sinha S, Bindu PS, Mahadevan A. Long-term efficacy and limitations of cyclophosphamide in myasthenia gravis. J Clin Neurosci. 2014;21(11):1909–14.PubMedCrossRef Nagappa M, Netravathi M, Taly AB, Sinha S, Bindu PS, Mahadevan A. Long-term efficacy and limitations of cyclophosphamide in myasthenia gravis. J Clin Neurosci. 2014;21(11):1909–14.PubMedCrossRef
99.
Zurück zum Zitat Gomez-Figueroa E, Garcia-Trejo S, Bazan-Rodriguez L, Cervantes-Uribe R, Chac-Lezama G, López-Hernández JC, et al. Intravenous cyclophosphamide monthly pulses in refractory myasthenia gravis. J Neurol. 2020;267(3):674–8.PubMedCrossRef Gomez-Figueroa E, Garcia-Trejo S, Bazan-Rodriguez L, Cervantes-Uribe R, Chac-Lezama G, López-Hernández JC, et al. Intravenous cyclophosphamide monthly pulses in refractory myasthenia gravis. J Neurol. 2020;267(3):674–8.PubMedCrossRef
100.
Zurück zum Zitat Buzzard KA, Meyer NJ, Hardy TA, Riminton DS, Reddel SW. Induction intravenous cyclophosphamide followed by maintenance oral immunosuppression in refractory myasthenia gravis. Muscle Nerve. 2015;52(2):204–10.PubMedCrossRef Buzzard KA, Meyer NJ, Hardy TA, Riminton DS, Reddel SW. Induction intravenous cyclophosphamide followed by maintenance oral immunosuppression in refractory myasthenia gravis. Muscle Nerve. 2015;52(2):204–10.PubMedCrossRef
101.
Zurück zum Zitat Ponticelli C, Escoli R, Moroni G. Does cyclophosphamide still play a role in glomerular diseases? Autoimmun Rev. 2018;17(10):1022–7.PubMedCrossRef Ponticelli C, Escoli R, Moroni G. Does cyclophosphamide still play a role in glomerular diseases? Autoimmun Rev. 2018;17(10):1022–7.PubMedCrossRef
102.
Zurück zum Zitat Hartung H-P. Advances in the understanding of the mechanism of action of IVIg. J Neurol. 2008;255(Suppl 3):3–6.PubMedCrossRef Hartung H-P. Advances in the understanding of the mechanism of action of IVIg. J Neurol. 2008;255(Suppl 3):3–6.PubMedCrossRef
103.
Zurück zum Zitat Gajdos P, Outin H, Elkharrat D, Brunel D, de Rohan-Chabot P, Raphael JC, et al. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet. 1984;1(8373):406–7.PubMedCrossRef Gajdos P, Outin H, Elkharrat D, Brunel D, de Rohan-Chabot P, Raphael JC, et al. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet. 1984;1(8373):406–7.PubMedCrossRef
104.
Zurück zum Zitat Zinman L, Ng E, Bril V. IV immunoglobulin in patients with myasthenia gravis: a randomized controlled trial. Neurology. 2007;68(11):837–41.PubMedCrossRef Zinman L, Ng E, Bril V. IV immunoglobulin in patients with myasthenia gravis: a randomized controlled trial. Neurology. 2007;68(11):837–41.PubMedCrossRef
105.
106.
Zurück zum Zitat Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;2012(12):CD002277.PubMedCentral Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;2012(12):CD002277.PubMedCentral
107.
Zurück zum Zitat Karelis G, Balasa R, De Bleecker JL, Stuchevskaya T, Villa A, Van Damme P, et al. A Phase 3 Multicenter, Prospective, Open-Label Efficacy and Safety Study of Immune Globulin (Human) 10% Caprylate/Chromatography Purified in Patients with Myasthenia Gravis Exacerbations. ENE. 2019;81(5–6):223–30. Karelis G, Balasa R, De Bleecker JL, Stuchevskaya T, Villa A, Van Damme P, et al. A Phase 3 Multicenter, Prospective, Open-Label Efficacy and Safety Study of Immune Globulin (Human) 10% Caprylate/Chromatography Purified in Patients with Myasthenia Gravis Exacerbations. ENE. 2019;81(5–6):223–30.
108.
Zurück zum Zitat Liew WKM, Powell CA, Sloan SR, Shamberger RC, Weldon CB, Darras BT, et al. Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol. 2014;71(5):575–80.PubMedCrossRef Liew WKM, Powell CA, Sloan SR, Shamberger RC, Weldon CB, Darras BT, et al. Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol. 2014;71(5):575–80.PubMedCrossRef
109.
Zurück zum Zitat Sorgun MH, Sener HO, Yucesan C, Yucemen N. Intravenous immunoglobulin for prophylaxis of acute exacerbation in Myasthenia Gravis. Neurol Sci. 2014;35(6):891–6.PubMedCrossRef Sorgun MH, Sener HO, Yucesan C, Yucemen N. Intravenous immunoglobulin for prophylaxis of acute exacerbation in Myasthenia Gravis. Neurol Sci. 2014;35(6):891–6.PubMedCrossRef
110.
Zurück zum Zitat Hellmann MA, Mosberg-Galili R, Lotan I, Steiner I. Maintenance IVIg therapy in myasthenia gravis does not affect disease activity. J Neurol Sci. 2014;338(1–2):39–42.PubMedCrossRef Hellmann MA, Mosberg-Galili R, Lotan I, Steiner I. Maintenance IVIg therapy in myasthenia gravis does not affect disease activity. J Neurol Sci. 2014;338(1–2):39–42.PubMedCrossRef
111.
Zurück zum Zitat Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol. 2018;8(9):1299.CrossRef Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol. 2018;8(9):1299.CrossRef
112.
Zurück zum Zitat Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007;6(4):257–9.PubMedCrossRef Katz U, Achiron A, Sherer Y, Shoenfeld Y. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007;6(4):257–9.PubMedCrossRef
113.
Zurück zum Zitat Jacob S, Rajabally YA. Current proposed mechanisms of action of intravenous immunoglobulins in inflammatory neuropathies. Curr Neuropharmacol. 2009;7(4):337–42.PubMedPubMedCentralCrossRef Jacob S, Rajabally YA. Current proposed mechanisms of action of intravenous immunoglobulins in inflammatory neuropathies. Curr Neuropharmacol. 2009;7(4):337–42.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Rasutis VM, Katzberg HD, Bril V. High-dose subcutaneous immunoglobulin in patients with multifocal motor neuropathy: a nursing perspective. J Infus Nurs. 2017;40(5):305–12.PubMedCrossRef Rasutis VM, Katzberg HD, Bril V. High-dose subcutaneous immunoglobulin in patients with multifocal motor neuropathy: a nursing perspective. J Infus Nurs. 2017;40(5):305–12.PubMedCrossRef
115.
Zurück zum Zitat Hadden RDM, Marreno F. Switch from intravenous to subcutaneous immunoglobulin in CIDP and MMN: improved tolerability and patient satisfaction. Ther Adv Neurol Disord. 2015;8(1):14–9.PubMedPubMedCentralCrossRef Hadden RDM, Marreno F. Switch from intravenous to subcutaneous immunoglobulin in CIDP and MMN: improved tolerability and patient satisfaction. Ther Adv Neurol Disord. 2015;8(1):14–9.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Adiao KJB, Espiritu AI, Roque VLA, Reyes JPBT. Efficacy and tolerability of subcutaneously administered immunoglobulin in myasthenia gravis: a systematic review. J Clin Neurosci. 2020;72:316–21.PubMedCrossRef Adiao KJB, Espiritu AI, Roque VLA, Reyes JPBT. Efficacy and tolerability of subcutaneously administered immunoglobulin in myasthenia gravis: a systematic review. J Clin Neurosci. 2020;72:316–21.PubMedCrossRef
117.
Zurück zum Zitat Alcantara M, Sarpong E, Barnett C, Katzberg H, Bril V. Chronic immunoglobulin maintenance therapy in myasthenia gravis. Eur J Neurol. 2021;28(2):639–46.PubMedCrossRef Alcantara M, Sarpong E, Barnett C, Katzberg H, Bril V. Chronic immunoglobulin maintenance therapy in myasthenia gravis. Eur J Neurol. 2021;28(2):639–46.PubMedCrossRef
118.
Zurück zum Zitat Beecher G, Anderson D, Siddiqi ZA. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. Neurology. 2017;89(11):1135–41.PubMedCrossRef Beecher G, Anderson D, Siddiqi ZA. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. Neurology. 2017;89(11):1135–41.PubMedCrossRef
119.
Zurück zum Zitat Menon D, Sarpong E, Bril V. Practical aspects of transitioning from intravenous to subcutaneous immunoglobulin therapy in neuromuscular disorders. Can J Neurol Sci. 2021;26:1–7. Menon D, Sarpong E, Bril V. Practical aspects of transitioning from intravenous to subcutaneous immunoglobulin therapy in neuromuscular disorders. Can J Neurol Sci. 2021;26:1–7.
121.
Zurück zum Zitat Reeves HM, Winters JL. The mechanisms of action of plasma exchange. Br J Haematol. 2014;164(3):342–51.PubMedCrossRef Reeves HM, Winters JL. The mechanisms of action of plasma exchange. Br J Haematol. 2014;164(3):342–51.PubMedCrossRef
122.
Zurück zum Zitat Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. Journal of Clinical Apheresis. 2016;31(3):149–338. Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. Journal of Clinical Apheresis. 2016;31(3):149–338.
123.
Zurück zum Zitat Guptill JT, Juel VC, Massey JM, Anderson AC, Chopra M, Yi JS, et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 2016;49(7):472–9.PubMedPubMedCentralCrossRef Guptill JT, Juel VC, Massey JM, Anderson AC, Chopra M, Yi JS, et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 2016;49(7):472–9.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Pinching AJ, Peters DK, Davis JN. Remission of myasthenia gravis following plasma-exchange. Lancet. 1976;308(8000):1373–6.CrossRef Pinching AJ, Peters DK, Davis JN. Remission of myasthenia gravis following plasma-exchange. Lancet. 1976;308(8000):1373–6.CrossRef
125.
Zurück zum Zitat Ipe TS, Davis AR, Raval JS. Therapeutic plasma exchange in myasthenia gravis: a systematic literature review and meta-analysis of comparative evidence. Front Neurol. 2021;12:1355.CrossRef Ipe TS, Davis AR, Raval JS. Therapeutic plasma exchange in myasthenia gravis: a systematic literature review and meta-analysis of comparative evidence. Front Neurol. 2021;12:1355.CrossRef
126.
Zurück zum Zitat Jensen P, Bril V. A comparison of the effectiveness of intravenous immunoglobulin and plasma exchange as preoperative therapy of myasthenia gravis. J Clin Neuromuscul Dis. 2008;9(3):352–5.PubMedCrossRef Jensen P, Bril V. A comparison of the effectiveness of intravenous immunoglobulin and plasma exchange as preoperative therapy of myasthenia gravis. J Clin Neuromuscul Dis. 2008;9(3):352–5.PubMedCrossRef
127.
Zurück zum Zitat Alipour-Faz A, Shojaei M, Peyvandi H, Ramzi D, Oroei M, Ghadiri F, et al. A comparison between IVIG and plasma exchange as preparations before thymectomy in myasthenia gravis patients. Acta Neurol Belg. 2017;117(1):245–9.PubMedCrossRef Alipour-Faz A, Shojaei M, Peyvandi H, Ramzi D, Oroei M, Ghadiri F, et al. A comparison between IVIG and plasma exchange as preparations before thymectomy in myasthenia gravis patients. Acta Neurol Belg. 2017;117(1):245–9.PubMedCrossRef
128.
Zurück zum Zitat Rønager J, Ravnborg M, Hermansen I, Vorstrup S. Immunoglobulin treatment versus plasma exchange in patients with chronic moderate to severe myasthenia gravis. Artif Organs. 2001;25(12):967–73.PubMedCrossRef Rønager J, Ravnborg M, Hermansen I, Vorstrup S. Immunoglobulin treatment versus plasma exchange in patients with chronic moderate to severe myasthenia gravis. Artif Organs. 2001;25(12):967–73.PubMedCrossRef
129.
Zurück zum Zitat Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44(1):36–40.PubMedCrossRef Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44(1):36–40.PubMedCrossRef
130.
Zurück zum Zitat Howard JF. Myasthenia gravis: the role of complement at the neuromuscular junction. Ann N Y Acad Sci. 2018;1412(1):113–28.PubMedCrossRef Howard JF. Myasthenia gravis: the role of complement at the neuromuscular junction. Ann N Y Acad Sci. 2018;1412(1):113–28.PubMedCrossRef
132.
Zurück zum Zitat Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64.PubMedCrossRef Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64.PubMedCrossRef
134.
Zurück zum Zitat Howard JF Jr, Barohn RJ, Cutter GR, Freimer M, Juel VC, Mozaffar T, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve. 2013;48(1):76–84.PubMedCrossRef Howard JF Jr, Barohn RJ, Cutter GR, Freimer M, Juel VC, Mozaffar T, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve. 2013;48(1):76–84.PubMedCrossRef
135.
Zurück zum Zitat Howard JF, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. The Lancet Neurology. 2017;16(12):976–86.PubMedCrossRef Howard JF, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. The Lancet Neurology. 2017;16(12):976–86.PubMedCrossRef
136.
Zurück zum Zitat Howard JF, Vissing J, Gilhus NE, Leite MI, Utsugisawa K, Duda PW, et al. Zilucoplan: an investigational complement C5 inhibitor for the treatment of acetylcholine receptor autoantibody-positive generalized myasthenia gravis. Expert Opin Investig Drugs. 2021;30(5):483–93.PubMedCrossRef Howard JF, Vissing J, Gilhus NE, Leite MI, Utsugisawa K, Duda PW, et al. Zilucoplan: an investigational complement C5 inhibitor for the treatment of acetylcholine receptor autoantibody-positive generalized myasthenia gravis. Expert Opin Investig Drugs. 2021;30(5):483–93.PubMedCrossRef
137.
Zurück zum Zitat Howard JF, Nowak RJ, Wolfe GI, Freimer ML, Vu TH, Hinton JL, et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis. JAMA Neurol. 2020;77(5):1–11.PubMedCentralCrossRef Howard JF, Nowak RJ, Wolfe GI, Freimer ML, Vu TH, Hinton JL, et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis. JAMA Neurol. 2020;77(5):1–11.PubMedCentralCrossRef
139.
Zurück zum Zitat Ra Pharmaceuticals. A Phase 3, Multicenter, Randomized, Double Blind, Placebo-Controlled Study to Confirm the Safety, Tolerability, and Efficacy of Zilucoplan in Subjects With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Nov [cited 2021 Nov 18]. Report No.: NCT04115293. https://clinicaltrials.gov/ct2/show/NCT04115293 Ra Pharmaceuticals. A Phase 3, Multicenter, Randomized, Double Blind, Placebo-Controlled Study to Confirm the Safety, Tolerability, and Efficacy of Zilucoplan in Subjects With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Nov [cited 2021 Nov 18]. Report No.: NCT04115293. https://​clinicaltrials.​gov/​ct2/​show/​NCT04115293
141.
Zurück zum Zitat Sheridan D, Yu Z-X, Zhang Y, Patel R, Sun F, Lasaro MA, et al. Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action. PLoS ONE. 2018;13(4):e0195909.PubMedPubMedCentralCrossRef Sheridan D, Yu Z-X, Zhang Y, Patel R, Sun F, Lasaro MA, et al. Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action. PLoS ONE. 2018;13(4):e0195909.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Stern RM, Connell NT. Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. Ther Adv Hematol. 2019;10(10):2040620719874728.PubMedPubMedCentral Stern RM, Connell NT. Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. Ther Adv Hematol. 2019;10(10):2040620719874728.PubMedPubMedCentral
144.
Zurück zum Zitat Alexion Pharmaceuticals. A Phase 3, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Safety and Efficacy of Ravulizumab in Complement-Inhibitor-Naïve Adult Patients With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Sep [cited 2021 Nov 18]. Report No.: NCT03920293. https://clinicaltrials.gov/ct2/show/NCT03920293 Alexion Pharmaceuticals. A Phase 3, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Safety and Efficacy of Ravulizumab in Complement-Inhibitor-Naïve Adult Patients With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Sep [cited 2021 Nov 18]. Report No.: NCT03920293. https://​clinicaltrials.​gov/​ct2/​show/​NCT03920293
145.
146.
Zurück zum Zitat Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.PubMedCrossRef Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.PubMedCrossRef
147.
148.
Zurück zum Zitat Ulrichts P, Guglietta A, Dreier T, van Bragt T, Hanssens V, Hofman E, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018;128(10):4372–86.PubMedPubMedCentralCrossRef Ulrichts P, Guglietta A, Dreier T, van Bragt T, Hanssens V, Hofman E, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018;128(10):4372–86.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Ulrichts P, Guglietta A, Dreier T, van Bragt T, Hanssens V, Hofman E, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 128(10):4372–86. Ulrichts P, Guglietta A, Dreier T, van Bragt T, Hanssens V, Hofman E, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 128(10):4372–86.
150.
Zurück zum Zitat Howard JF, Bril V, Burns TM, Mantegazza R, Bilinska M, Szczudlik A, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. 2019;92(23):e2661–73.PubMedPubMedCentralCrossRef Howard JF, Bril V, Burns TM, Mantegazza R, Bilinska M, Szczudlik A, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. 2019;92(23):e2661–73.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Howard JF, Bril V, Vu T, Karam C, Peric S, Margania T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–36.PubMedCrossRef Howard JF, Bril V, Vu T, Karam C, Peric S, Margania T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–36.PubMedCrossRef
156.
Zurück zum Zitat Kiessling P, Lledo-Garcia R, Watanabe S, Langdon G, Tran D, Bari M, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med. 2017;9(414):eaan1208.PubMedCrossRef Kiessling P, Lledo-Garcia R, Watanabe S, Langdon G, Tran D, Bari M, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med. 2017;9(414):eaan1208.PubMedCrossRef
157.
Zurück zum Zitat Bril V, Benatar M, Andersen H, Vissing J, Brock M, Greve B, et al. Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis: a phase 2 randomized control trial. Neurology. 2021;96(6):e853–65.PubMedPubMedCentral Bril V, Benatar M, Andersen H, Vissing J, Brock M, Greve B, et al. Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis: a phase 2 randomized control trial. Neurology. 2021;96(6):e853–65.PubMedPubMedCentral
159.
Zurück zum Zitat Ling LE, Hillson JL, Tiessen RG, Bosje T, van Iersel MP, Nix DJ, et al. M281, an Anti-FcRn Antibody: Pharmacodynamics, Pharmacokinetics, and Safety Across the Full Range of IgG Reduction in a First-in-Human Study. Clin Pharmacol Ther. 2019;105(4):1031–9.PubMedCrossRef Ling LE, Hillson JL, Tiessen RG, Bosje T, van Iersel MP, Nix DJ, et al. M281, an Anti-FcRn Antibody: Pharmacodynamics, Pharmacokinetics, and Safety Across the Full Range of IgG Reduction in a First-in-Human Study. Clin Pharmacol Ther. 2019;105(4):1031–9.PubMedCrossRef
160.
Zurück zum Zitat Guptill J, Antozzi C, Bril V, Gamez J, Meuth SG, Blanco JLM, et al. Vivacity-MG: A Phase 2, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety, Tolerability, Efficacy, Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Nipocalimab Administered to Adults with Generalized Myasthenia Gravis (2157). Neurology [Internet]. 2021 Apr 13 [cited 2021 Dec 1];96(15 Supplement). https://n.neurology.org/content/96/15_Supplement/2157 Guptill J, Antozzi C, Bril V, Gamez J, Meuth SG, Blanco JLM, et al. Vivacity-MG: A Phase 2, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety, Tolerability, Efficacy, Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Nipocalimab Administered to Adults with Generalized Myasthenia Gravis (2157). Neurology [Internet]. 2021 Apr 13 [cited 2021 Dec 1];96(15 Supplement). https://​n.​neurology.​org/​content/​96/​15_​Supplement/​2157
161.
Zurück zum Zitat Janssen Research & Development, LLC. Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of Nipocalimab Administered to Adults With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Nov [cited 2021 Nov 29]. Report No.: NCT04951622. https://clinicaltrials.gov/ct2/show/NCT04951622 Janssen Research & Development, LLC. Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of Nipocalimab Administered to Adults With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Nov [cited 2021 Nov 29]. Report No.: NCT04951622. https://​clinicaltrials.​gov/​ct2/​show/​NCT04951622
162.
Zurück zum Zitat Roy S, Nanovskaya T, Patrikeeva S, Cochran E, Parge V, Guess J, et al. M281, an anti-FcRn antibody, inhibits IgG transfer in a human ex vivo placental perfusion model. Am J Obstet Gynecol. 2019;220(5):498.e1-498.e9.CrossRef Roy S, Nanovskaya T, Patrikeeva S, Cochran E, Parge V, Guess J, et al. M281, an anti-FcRn antibody, inhibits IgG transfer in a human ex vivo placental perfusion model. Am J Obstet Gynecol. 2019;220(5):498.e1-498.e9.CrossRef
163.
Zurück zum Zitat Castleman JS, Moise KJ Jr, Kilby MD. Medical therapy to attenuate fetal anaemia in severe maternal red cell alloimmunisation. Br J Haematol. 2021;192(3):425–32.PubMedCrossRef Castleman JS, Moise KJ Jr, Kilby MD. Medical therapy to attenuate fetal anaemia in severe maternal red cell alloimmunisation. Br J Haematol. 2021;192(3):425–32.PubMedCrossRef
165.
Zurück zum Zitat Yap DYH, Hai J, Lee PCH, Zhou X, Lee M, Zhang Y, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of HBM9161, a novel FcRn inhibitor, in a phase I study for healthy Chinese volunteers. Clin Transl Sci. 2021;14(5):1769–79.PubMedPubMedCentralCrossRef Yap DYH, Hai J, Lee PCH, Zhou X, Lee M, Zhang Y, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of HBM9161, a novel FcRn inhibitor, in a phase I study for healthy Chinese volunteers. Clin Transl Sci. 2021;14(5):1769–79.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Harbour BioMed (Guangzhou) Co. Ltd. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety and Pharmacodynamic and Pharmacokinetic of HBM9161 (HL161) Subcutaneous Injection in Patients With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Sep [cited 2021 Nov 29]. Report No.: NCT04346888. https://clinicaltrials.gov/ct2/show/NCT04346888 Harbour BioMed (Guangzhou) Co. Ltd. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety and Pharmacodynamic and Pharmacokinetic of HBM9161 (HL161) Subcutaneous Injection in Patients With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Sep [cited 2021 Nov 29]. Report No.: NCT04346888. https://​clinicaltrials.​gov/​ct2/​show/​NCT04346888
168.
Zurück zum Zitat Immunovant Sciences GmbH. A Phase 2a, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study With an Open-Label Extension of RVT-1401 in Myasthenia Gravis Patients [Internet]. clinicaltrials.gov; 2021 Oct [cited 2021 Nov 29]. Report No.: NCT03863080. https://clinicaltrials.gov/ct2/show/NCT03863080 Immunovant Sciences GmbH. A Phase 2a, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study With an Open-Label Extension of RVT-1401 in Myasthenia Gravis Patients [Internet]. clinicaltrials.gov; 2021 Oct [cited 2021 Nov 29]. Report No.: NCT03863080. https://​clinicaltrials.​gov/​ct2/​show/​NCT03863080
169.
Zurück zum Zitat Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transpl. 2006;6(5 Pt 1):859–66.CrossRef Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transpl. 2006;6(5 Pt 1):859–66.CrossRef
171.
Zurück zum Zitat Kosmidis ML, Dalakas MC. Practical considerations on the use of rituximab in autoimmune neurological disorders. Ther Adv Neurol Disord. 2010;3(2):93–105.PubMedPubMedCentralCrossRef Kosmidis ML, Dalakas MC. Practical considerations on the use of rituximab in autoimmune neurological disorders. Ther Adv Neurol Disord. 2010;3(2):93–105.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Tandan R, Hehir MK II, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve. 2017;56(2):185–96.PubMedCrossRef Tandan R, Hehir MK II, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve. 2017;56(2):185–96.PubMedCrossRef
173.
Zurück zum Zitat Nowak RJ, Coffey CS, Goldstein JM, Dimachkie MM, Benatar M, Kissel JT, et al. Phase 2 trial of rituximab in acetylcholine receptor antibody-positive generalized myasthenia gravis: the BeatMG study. Neurology. 2022;98(4):e376–89.CrossRef Nowak RJ, Coffey CS, Goldstein JM, Dimachkie MM, Benatar M, Kissel JT, et al. Phase 2 trial of rituximab in acetylcholine receptor antibody-positive generalized myasthenia gravis: the BeatMG study. Neurology. 2022;98(4):e376–89.CrossRef
174.
Zurück zum Zitat Landon-Cardinal O, Friedman D, Guiguet M, Laforêt P, Heming N, Salort-Campana E, et al. Efficacy of Rituximab in refractory generalized anti-AChR myasthenia gravis. J Neuromuscular Dis. 2018;5(2):241–9.CrossRef Landon-Cardinal O, Friedman D, Guiguet M, Laforêt P, Heming N, Salort-Campana E, et al. Efficacy of Rituximab in refractory generalized anti-AChR myasthenia gravis. J Neuromuscular Dis. 2018;5(2):241–9.CrossRef
175.
Zurück zum Zitat Juel VC, Massey JM. Myasthenia gravis. Orphanet J Rare Dis. 2007;6(2):44.CrossRef Juel VC, Massey JM. Myasthenia gravis. Orphanet J Rare Dis. 2007;6(2):44.CrossRef
176.
Zurück zum Zitat Brauner S, Eriksson-Dufva A, Hietala MA, Frisell T, Press R, Piehl F. Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol. 2020;77(8):974–81.PubMedCrossRef Brauner S, Eriksson-Dufva A, Hietala MA, Frisell T, Press R, Piehl F. Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol. 2020;77(8):974–81.PubMedCrossRef
177.
Zurück zum Zitat Stefano VD, Lupica A, Rispoli MG, Muzio AD, Brighina F, Rodolico C. Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry. 2020;91(4):392–5.PubMedCrossRef Stefano VD, Lupica A, Rispoli MG, Muzio AD, Brighina F, Rodolico C. Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry. 2020;91(4):392–5.PubMedCrossRef
178.
Zurück zum Zitat Marino M, Basile U, Spagni G, Napodano C, Iorio R, Gulli F, et al. Long-lasting rituximab-induced reduction of specific—but not total—IgG4 in MuSK-positive myasthenia gravis. Front Immunol. 2020;11:613.PubMedPubMedCentralCrossRef Marino M, Basile U, Spagni G, Napodano C, Iorio R, Gulli F, et al. Long-lasting rituximab-induced reduction of specific—but not total—IgG4 in MuSK-positive myasthenia gravis. Front Immunol. 2020;11:613.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat van Vollenhoven RF, Fleischmann RM, Furst DE, Lacey S, Lehane PB. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol. 2015;42(10):1761–6.PubMedCrossRef van Vollenhoven RF, Fleischmann RM, Furst DE, Lacey S, Lehane PB. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol. 2015;42(10):1761–6.PubMedCrossRef
180.
Zurück zum Zitat Stewart D, Aucoin JS, Crosbie T, Forman M, Lye E, Christofides A, et al. Update on the subcutaneous administration of rituximab in Canadian cancer centres. Curr Oncol. 2020;27(2):113–6.PubMedPubMedCentralCrossRef Stewart D, Aucoin JS, Crosbie T, Forman M, Lye E, Christofides A, et al. Update on the subcutaneous administration of rituximab in Canadian cancer centres. Curr Oncol. 2020;27(2):113–6.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Georgieva M, Wheeler SJFh Jr. Cost-effectiveness of Rituximab versus Calcineurin inhibitors for refractory Myasthenia Gravis. Value Health. 2015;18(3):A298.CrossRef Georgieva M, Wheeler SJFh Jr. Cost-effectiveness of Rituximab versus Calcineurin inhibitors for refractory Myasthenia Gravis. Value Health. 2015;18(3):A298.CrossRef
183.
Zurück zum Zitat Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8(1):12.PubMedPubMedCentralCrossRef Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8(1):12.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Waters MJ, Field D, Ravindran J. Refractory myasthenia gravis successfully treated with ofatumumab. Muscle Nerve. 2019;60(6):E45–7.PubMedCrossRef Waters MJ, Field D, Ravindran J. Refractory myasthenia gravis successfully treated with ofatumumab. Muscle Nerve. 2019;60(6):E45–7.PubMedCrossRef
185.
Zurück zum Zitat Frampton JE. Inebilizumab: first approval. Drugs. 2020;29:1–6. Frampton JE. Inebilizumab: first approval. Drugs. 2020;29:1–6.
186.
Zurück zum Zitat Viela Bio. A Randomized, Double-blind, Multicenter, Placebo-controlled Phase 3 Study With Open-label Period to Evaluate the Efficacy and Safety of Inebilizumab in Adults With Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Dec [cited 2021 Dec 22]. Report No.: NCT04524273. https://clinicaltrials.gov/ct2/show/NCT04524273 Viela Bio. A Randomized, Double-blind, Multicenter, Placebo-controlled Phase 3 Study With Open-label Period to Evaluate the Efficacy and Safety of Inebilizumab in Adults With Myasthenia Gravis [Internet]. clinicaltrials.gov; 2021 Dec [cited 2021 Dec 22]. Report No.: NCT04524273. https://​clinicaltrials.​gov/​ct2/​show/​NCT04524273
187.
Zurück zum Zitat Novartis Pharmaceuticals. A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group Study to Preliminarily Evaluate the Safety, Tolerability, Pharmacokinetics and Efficacy of CFZ533 in Patients With Moderate to Severe Myasthenia Gravis [Internet]. clinicaltrials.gov; 2020 Dec [cited 2022 Jan 5]. Report No.: NCT02565576. https://clinicaltrials.gov/ct2/show/NCT02565576 Novartis Pharmaceuticals. A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group Study to Preliminarily Evaluate the Safety, Tolerability, Pharmacokinetics and Efficacy of CFZ533 in Patients With Moderate to Severe Myasthenia Gravis [Internet]. clinicaltrials.gov; 2020 Dec [cited 2022 Jan 5]. Report No.: NCT02565576. https://​clinicaltrials.​gov/​ct2/​show/​NCT02565576
190.
Zurück zum Zitat Hewett K, Sanders DB, Grove RA, Broderick CL, Rudo TJ, Bassiri A, et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology. 2018;90(16):e1425–34.PubMedPubMedCentralCrossRef Hewett K, Sanders DB, Grove RA, Broderick CL, Rudo TJ, Bassiri A, et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology. 2018;90(16):e1425–34.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Uzawa A, Kawaguchi N, Himuro K, Kanai T, Kuwabara S. Serum cytokine and chemokine profiles in patients with myasthenia gravis. Clin Exp Immunol. 2014;176(2):232–7.PubMedPubMedCentralCrossRef Uzawa A, Kawaguchi N, Himuro K, Kanai T, Kuwabara S. Serum cytokine and chemokine profiles in patients with myasthenia gravis. Clin Exp Immunol. 2014;176(2):232–7.PubMedPubMedCentralCrossRef
193.
Zurück zum Zitat Hoffmann-La Roche. A Phase III, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study To Evaluate Efficacy, Safety, Pharmacokinetics, And Pharmacodynamics Of Satralizumab In Patients With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2022 Mar [cited 2022 Apr 3]. Report No.: NCT04963270. https://clinicaltrials.gov/ct2/show/NCT04963270 Hoffmann-La Roche. A Phase III, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study To Evaluate Efficacy, Safety, Pharmacokinetics, And Pharmacodynamics Of Satralizumab In Patients With Generalized Myasthenia Gravis [Internet]. clinicaltrials.gov; 2022 Mar [cited 2022 Apr 3]. Report No.: NCT04963270. https://​clinicaltrials.​gov/​ct2/​show/​NCT04963270
194.
Zurück zum Zitat Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front Cell Dev Biol [Internet]. 2021 [cited 2022 Mar 30];0.: https://www.frontiersin.org/articles/https://doi.org/10.3389/fcell.2021.630942/full Estupiñán HY, Berglöf A, Zain R, Smith CIE. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front Cell Dev Biol [Internet]. 2021 [cited 2022 Mar 30];0.: https://​www.​frontiersin.​org/​articles/​https://​doi.​org/​10.​3389/​fcell.​2021.​630942/​full
195.
Zurück zum Zitat Lorenzo-Vizcaya A, Fasano S, Isenberg DA. Bruton’s Tyrosine kinase inhibitors: a new therapeutic target for the treatment of SLE? Immunotargets Ther. 2020;2(9):105–10.CrossRef Lorenzo-Vizcaya A, Fasano S, Isenberg DA. Bruton’s Tyrosine kinase inhibitors: a new therapeutic target for the treatment of SLE? Immunotargets Ther. 2020;2(9):105–10.CrossRef
196.
Zurück zum Zitat Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20(9):729–38.PubMedCrossRef Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021;20(9):729–38.PubMedCrossRef
197.
Zurück zum Zitat Sanofi. A Phase 3, Randomized, Double-blind, Placebo-controlled, Parallel-group Study to Evaluate the Efficacy and Safety of Tolebrutinib (SAR442168) in Adults With Generalized Myasthenia Gravis (MG) [Internet]. clinicaltrials.gov; 2022 Feb [cited 2022 Mar 28]. Report No.: NCT05132569. https://clinicaltrials.gov/ct2/show/NCT05132569 Sanofi. A Phase 3, Randomized, Double-blind, Placebo-controlled, Parallel-group Study to Evaluate the Efficacy and Safety of Tolebrutinib (SAR442168) in Adults With Generalized Myasthenia Gravis (MG) [Internet]. clinicaltrials.gov; 2022 Feb [cited 2022 Mar 28]. Report No.: NCT05132569. https://​clinicaltrials.​gov/​ct2/​show/​NCT05132569
198.
Zurück zum Zitat Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.PubMedPubMedCentralCrossRef Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3-9.PubMedCrossRef Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3-9.PubMedCrossRef
201.
Zurück zum Zitat Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):1–11.CrossRef Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):1–11.CrossRef
202.
Zurück zum Zitat Wang J, Hu Y, Huang H. Current development of chimeric antigen receptor T-cell therapy. Stem Cell Investig. 2018;3(5):44.CrossRef Wang J, Hu Y, Huang H. Current development of chimeric antigen receptor T-cell therapy. Stem Cell Investig. 2018;3(5):44.CrossRef
203.
Zurück zum Zitat Sadeqi Nezhad M, Seifalian A, Bagheri N, Yaghoubi S, Karimi MH, Adbollahpour-Alitappeh M. chimeric antigen receptor based therapy as a potential approach in autoimmune diseases: how close are we to the treatment? Front Immunol. 2020;11:3062.CrossRef Sadeqi Nezhad M, Seifalian A, Bagheri N, Yaghoubi S, Karimi MH, Adbollahpour-Alitappeh M. chimeric antigen receptor based therapy as a potential approach in autoimmune diseases: how close are we to the treatment? Front Immunol. 2020;11:3062.CrossRef
204.
Zurück zum Zitat Wei J, Guo Y, Wang Y, Wu Z, Bo J, Zhang B, et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol. 2021;18(4):792–804.PubMedCrossRef Wei J, Guo Y, Wang Y, Wu Z, Bo J, Zhang B, et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol. 2021;18(4):792–804.PubMedCrossRef
205.
Zurück zum Zitat Cartesian Therapeutics. Autologous T-Cells Expressing A Chimeric Antigen Receptor Directed To B-Cell Maturation Antigen (BCMA) In Patients With Generalized Myasthenia Gravis (MG) [Internet]. clinicaltrials.gov; 2021 Dec [cited 2021 Dec 2]. Report No.: NCT04146051. https://clinicaltrials.gov/ct2/show/NCT04146051 Cartesian Therapeutics. Autologous T-Cells Expressing A Chimeric Antigen Receptor Directed To B-Cell Maturation Antigen (BCMA) In Patients With Generalized Myasthenia Gravis (MG) [Internet]. clinicaltrials.gov; 2021 Dec [cited 2021 Dec 2]. Report No.: NCT04146051. https://​clinicaltrials.​gov/​ct2/​show/​NCT04146051
207.
Zurück zum Zitat Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ Book. 2019;39:433–44.PubMedCrossRef Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ Book. 2019;39:433–44.PubMedCrossRef
208.
Zurück zum Zitat Chen Y, Sun J, Liu H, Yin G, Xie Q. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. J Immunol Res. 2019;31(2019):e5727516. Chen Y, Sun J, Liu H, Yin G, Xie Q. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. J Immunol Res. 2019;31(2019):e5727516.
210.
Zurück zum Zitat Cabaletta Bio. A Phase 1, Open-label, Safety and Dosing Study of Autologous Desmoglein 3 Chimeric Autoantibody Receptor T Cells (DSG3-CAART) in Subjects With Active, Anti-DSG3, Mucosal-dominant Pemphigus Vulgaris [Internet]. clinicaltrials.gov; 2021 Oct [cited 2021 Dec 2]. Report No.: NCT04422912. https://clinicaltrials.gov/ct2/show/NCT04422912 Cabaletta Bio. A Phase 1, Open-label, Safety and Dosing Study of Autologous Desmoglein 3 Chimeric Autoantibody Receptor T Cells (DSG3-CAART) in Subjects With Active, Anti-DSG3, Mucosal-dominant Pemphigus Vulgaris [Internet]. clinicaltrials.gov; 2021 Oct [cited 2021 Dec 2]. Report No.: NCT04422912. https://​clinicaltrials.​gov/​ct2/​show/​NCT04422912
211.
Zurück zum Zitat Chang H-D, Tokoyoda K, Hoyer B, Alexander T, Khodadadi L, Mei H, et al. Pathogenic memory plasma cells in autoimmunity. Curr Opin Immunol. 2019;61:86–91.PubMedPubMedCentralCrossRef Chang H-D, Tokoyoda K, Hoyer B, Alexander T, Khodadadi L, Mei H, et al. Pathogenic memory plasma cells in autoimmunity. Curr Opin Immunol. 2019;61:86–91.PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–84.PubMedCrossRef Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–84.PubMedCrossRef
213.
Zurück zum Zitat Alexander T, Bondanza A, Muraro PA, Greco R, Saccardi R, Daikeler T, et al. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transpl. 2015;50(2):173–80.CrossRef Alexander T, Bondanza A, Muraro PA, Greco R, Saccardi R, Daikeler T, et al. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transpl. 2015;50(2):173–80.CrossRef
214.
Zurück zum Zitat Strober J, Cowan MJ, Horn BN. Allogeneic hematopoietic cell transplantation for refractory myasthenia gravis. Arch Neurol. 2009;66(5):659–61.PubMedCrossRef Strober J, Cowan MJ, Horn BN. Allogeneic hematopoietic cell transplantation for refractory myasthenia gravis. Arch Neurol. 2009;66(5):659–61.PubMedCrossRef
215.
Zurück zum Zitat Sossa Melo CL, Peña AM, Salazar LA, Jiménez SI, Gómez ED, Chalela CM, et al. Autologous hematopoietic stem cell transplantation in a patient with refractory seropositive myasthenia gravis: a case report. Neuromuscul Disord. 2019;29(2):142–5.PubMedCrossRef Sossa Melo CL, Peña AM, Salazar LA, Jiménez SI, Gómez ED, Chalela CM, et al. Autologous hematopoietic stem cell transplantation in a patient with refractory seropositive myasthenia gravis: a case report. Neuromuscul Disord. 2019;29(2):142–5.PubMedCrossRef
216.
Zurück zum Zitat Bryant A, Atkins H, Pringle CE, Allan D, Anstee G, Bence-Bruckler I, et al. Myasthenia gravis treated with autologous hematopoietic stem cell transplantation. JAMA Neurol. 2016;73(6):652–8.PubMedCrossRef Bryant A, Atkins H, Pringle CE, Allan D, Anstee G, Bence-Bruckler I, et al. Myasthenia gravis treated with autologous hematopoietic stem cell transplantation. JAMA Neurol. 2016;73(6):652–8.PubMedCrossRef
217.
Zurück zum Zitat Burt RK, Balabanov R, Tavee J, Han X, Sufit R, Ajroud-Driss S, et al. Hematopoietic stem cell transplantation for chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol. 2020;267(11):3378–91.PubMedCrossRef Burt RK, Balabanov R, Tavee J, Han X, Sufit R, Ajroud-Driss S, et al. Hematopoietic stem cell transplantation for chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol. 2020;267(11):3378–91.PubMedCrossRef
218.
219.
Zurück zum Zitat Fred Hutchinson Cancer Research Center. High-Dose Immunosuppressive Therapy Using Carmustine, Etoposide, Cytarabine, and Melphalan (BEAM) + Thymoglobulin Followed by Syngeneic or Autologous Hematopoietic Cell Transplantation for Patients With Autoimmune Neurologic Diseases [Internet]. clinicaltrials.gov; 2021 Oct [cited 2021 Dec 2]. Report No.: study/NCT00716066. https://clinicaltrials.gov/ct2/show/study/NCT00716066 Fred Hutchinson Cancer Research Center. High-Dose Immunosuppressive Therapy Using Carmustine, Etoposide, Cytarabine, and Melphalan (BEAM) + Thymoglobulin Followed by Syngeneic or Autologous Hematopoietic Cell Transplantation for Patients With Autoimmune Neurologic Diseases [Internet]. clinicaltrials.gov; 2021 Oct [cited 2021 Dec 2]. Report No.: study/NCT00716066. https://​clinicaltrials.​gov/​ct2/​show/​study/​NCT00716066
Metadaten
Titel
Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals
verfasst von
Deepak Menon
Vera Bril
Publikationsdatum
01.06.2022
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 8/2022
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-022-01726-y

Weitere Artikel der Ausgabe 8/2022

Drugs 8/2022 Zur Ausgabe

AdisInsight Report

Ganaxolone: First Approval