Skip to main content
Erschienen in: Neurotherapeutics 4/2018

01.10.2018 | Review

Skeletal Muscle Channelopathies

verfasst von: Lauren Phillips, Jaya R. Trivedi

Erschienen in: Neurotherapeutics | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. These disorders cause lifetime disability and impact quality of life. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis, therapeutic, genetic counseling, and research planning. Electrodiagnostic testing is useful in directing the diagnosis, but has several limitations: patient discomfort, time consuming, and significant overlap of findings in muscle channelopathies. Although genetic testing is the gold standard in making a definitive diagnosis, a mutation might not be identified in many patients with a well-supported clinical diagnosis of periodic paralysis. In the recent past, there have been landmark clinical trials in non-dystrophic myotonia and periodic paralysis which are encouraging as they demonstrate the ability of robust clinical research consortia to conduct well-controlled trials of rare diseases.
Literatur
1.
Zurück zum Zitat Raja Rayan DL, Hanna MG. Skeletal muscle channelopathies: nondystrophic myotonias and periodic paralysis. Curr Opin Neurol. 2010;23(5):466–76.CrossRefPubMed Raja Rayan DL, Hanna MG. Skeletal muscle channelopathies: nondystrophic myotonias and periodic paralysis. Curr Opin Neurol. 2010;23(5):466–76.CrossRefPubMed
2.
Zurück zum Zitat Statland JM, Barohn RJ. Muscle channelopathies: the nondystrophic myotonias and periodic paralyses. Continuum (Minneap Minn). 2013;19(6 Muscle Disease):1598–614.PubMedPubMedCentral Statland JM, Barohn RJ. Muscle channelopathies: the nondystrophic myotonias and periodic paralyses. Continuum (Minneap Minn). 2013;19(6 Muscle Disease):1598–614.PubMedPubMedCentral
3.
Zurück zum Zitat Paninka RM, Carlos-Lima E, Lindsey SC, Kunii IS, Dias-da-Silva MR, Arcisio-Miranda M. Down-regulation of Kir2.6 channel by c-termini mutation D252N and its association with the susceptibility to Thyrotoxic Periodic Paralysis. Neuroscience. 2017;346:197–202.CrossRefPubMed Paninka RM, Carlos-Lima E, Lindsey SC, Kunii IS, Dias-da-Silva MR, Arcisio-Miranda M. Down-regulation of Kir2.6 channel by c-termini mutation D252N and its association with the susceptibility to Thyrotoxic Periodic Paralysis. Neuroscience. 2017;346:197–202.CrossRefPubMed
4.
Zurück zum Zitat Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci. 2006;29:387–415.CrossRefPubMed Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci. 2006;29:387–415.CrossRefPubMed
5.
Zurück zum Zitat Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord. 1991;1(1):19–29.CrossRefPubMed Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord. 1991;1(1):19–29.CrossRefPubMed
6.
Zurück zum Zitat Fialho D, Schorge S, Pucovska U, Davies NP, Labrum R, Haworth A, et al. Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain. 2007;130(Pt 12):3265–74.CrossRefPubMed Fialho D, Schorge S, Pucovska U, Davies NP, Labrum R, Haworth A, et al. Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain. 2007;130(Pt 12):3265–74.CrossRefPubMed
7.
Zurück zum Zitat Hoffman EP, Wang J. Duchenne-Becker muscular dystrophy and the nondystrophic myotonias. Paradigms for loss of function and change of function of gene products. Arch Neurol. 1993;50(11):1227–37.CrossRefPubMed Hoffman EP, Wang J. Duchenne-Becker muscular dystrophy and the nondystrophic myotonias. Paradigms for loss of function and change of function of gene products. Arch Neurol. 1993;50(11):1227–37.CrossRefPubMed
8.
Zurück zum Zitat Lehmann-Horn F, Rudel R. Channelopathies: the nondystrophic myotonias and periodic paralyses. Semin Pediatr Neurol. 1996;3(2):122–39.CrossRefPubMed Lehmann-Horn F, Rudel R. Channelopathies: the nondystrophic myotonias and periodic paralyses. Semin Pediatr Neurol. 1996;3(2):122–39.CrossRefPubMed
9.
Zurück zum Zitat Pinessi L, Bergamini L, Cantello R, Di Tizio C. Myotonia congenita and myotonic dystrophy: descriptive epidemiological investigation in Turin, Italy (1955-1979). Ital J Neurol Sci. 1982;3(3):207–10.CrossRefPubMed Pinessi L, Bergamini L, Cantello R, Di Tizio C. Myotonia congenita and myotonic dystrophy: descriptive epidemiological investigation in Turin, Italy (1955-1979). Ital J Neurol Sci. 1982;3(3):207–10.CrossRefPubMed
10.
Zurück zum Zitat Ptacek LJ, George AL, Jr., Griggs RC, Tawil R, Kallen RG, Barchi RL, et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell. 1991;67(5):1021–7.CrossRefPubMed Ptacek LJ, George AL, Jr., Griggs RC, Tawil R, Kallen RG, Barchi RL, et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell. 1991;67(5):1021–7.CrossRefPubMed
11.
Zurück zum Zitat Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet. 2001;9(12):903–9.CrossRefPubMed Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet. 2001;9(12):903–9.CrossRefPubMed
12.
Zurück zum Zitat Lion-Francois L, Mignot C, Vicart S, Manel V, Sternberg D, Landrieu P, et al. Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder. Neurology. 2010;75(7):641–5.CrossRefPubMed Lion-Francois L, Mignot C, Vicart S, Manel V, Sternberg D, Landrieu P, et al. Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder. Neurology. 2010;75(7):641–5.CrossRefPubMed
13.
Zurück zum Zitat Orrell RW, Jurkat-Rott K, Lehmann-Horn F, Lane RJ. Familial cramp due to potassium-aggravated myotonia. J Neurol Neurosurg Psychiatry. 1998;65(4):569–72.CrossRefPubMedPubMedCentral Orrell RW, Jurkat-Rott K, Lehmann-Horn F, Lane RJ. Familial cramp due to potassium-aggravated myotonia. J Neurol Neurosurg Psychiatry. 1998;65(4):569–72.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lacomis D, Gonzales JT, Giuliani MJ. Fluctuating clinical myotonia and weakness from Thomsen’s disease occurring only during pregnancies. Clin Neurol Neurosurg. 1999;101(2):133–6.CrossRefPubMed Lacomis D, Gonzales JT, Giuliani MJ. Fluctuating clinical myotonia and weakness from Thomsen’s disease occurring only during pregnancies. Clin Neurol Neurosurg. 1999;101(2):133–6.CrossRefPubMed
15.
Zurück zum Zitat Fialho D, Kullmann DM, Hanna MG, Schorge S. Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord. 2008;18(11):869–72.CrossRefPubMed Fialho D, Kullmann DM, Hanna MG, Schorge S. Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord. 2008;18(11):869–72.CrossRefPubMed
16.
Zurück zum Zitat Basu A, Nishanth P, Ifaturoti O. Pregnancy in women with myotonia congenita. Int J Gynaecol Obstet. 2009;106(1):62–3.CrossRefPubMed Basu A, Nishanth P, Ifaturoti O. Pregnancy in women with myotonia congenita. Int J Gynaecol Obstet. 2009;106(1):62–3.CrossRefPubMed
17.
Zurück zum Zitat Sun C, Van Ghelue M, Tranebjaerg L, Thyssen F, Nilssen O, Torbergsen T. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet. 2011;80(6):574–80.CrossRefPubMed Sun C, Van Ghelue M, Tranebjaerg L, Thyssen F, Nilssen O, Torbergsen T. Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet. 2011;80(6):574–80.CrossRefPubMed
18.
Zurück zum Zitat Suominen T, Schoser B, Raheem O, Auvinen S, Walter M, Krahe R, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol. 2008;255(11):1731–6.CrossRefPubMedPubMedCentral Suominen T, Schoser B, Raheem O, Auvinen S, Walter M, Krahe R, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol. 2008;255(11):1731–6.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Bugiardini E, Rivolta I, Binda A, Soriano Caminero A, Cirillo F, Cinti A, et al. SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype. Neuromuscul Disord. 2015;25(4):301–7.CrossRefPubMed Bugiardini E, Rivolta I, Binda A, Soriano Caminero A, Cirillo F, Cinti A, et al. SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype. Neuromuscul Disord. 2015;25(4):301–7.CrossRefPubMed
20.
21.
Zurück zum Zitat Colding-Jorgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve. 2005;32(1):19–34.CrossRefPubMed Colding-Jorgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve. 2005;32(1):19–34.CrossRefPubMed
22.
Zurück zum Zitat Streib EW. Paramyotonia congenita: successful treatment with tocainide. Clinical and electrophysiologic findings in seven patients. Muscle Nerve. 1987;10(2):155–62.CrossRefPubMed Streib EW. Paramyotonia congenita: successful treatment with tocainide. Clinical and electrophysiologic findings in seven patients. Muscle Nerve. 1987;10(2):155–62.CrossRefPubMed
23.
Zurück zum Zitat Becker PE, Knussmann R, Kuhn E. Myotonia congenita and syndromes associated with myotonia : clinical-genetic studies of the nondystrophic myotonias. Stuttgart: Thieme; 1977. x, 181 p. p. Becker PE, Knussmann R, Kuhn E. Myotonia congenita and syndromes associated with myotonia : clinical-genetic studies of the nondystrophic myotonias. Stuttgart: Thieme; 1977. x, 181 p. p.
24.
Zurück zum Zitat Trivedi JR, Bundy B, Statland J, Salajegheh M, Rayan DR, Venance SL, et al. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. Brain. 2013;136(Pt 7):2189–200.CrossRefPubMedPubMedCentral Trivedi JR, Bundy B, Statland J, Salajegheh M, Rayan DR, Venance SL, et al. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. Brain. 2013;136(Pt 7):2189–200.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Trip J, Drost G, Ginjaar HB, Nieman FH, van der Kooi AJ, de Visser M, et al. Redefining the clinical phenotypes of non-dystrophic myotonic syndromes. J Neurol Neurosurg Psychiatry. 2009;80(6):647–52.CrossRefPubMed Trip J, Drost G, Ginjaar HB, Nieman FH, van der Kooi AJ, de Visser M, et al. Redefining the clinical phenotypes of non-dystrophic myotonic syndromes. J Neurol Neurosurg Psychiatry. 2009;80(6):647–52.CrossRefPubMed
26.
Zurück zum Zitat Ptacek LJ, Trimmer JS, Agnew WS, Roberts JW, Petajan JH, Leppert M. Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus. Am J Hum Genet. 1991;49(4):851–4.PubMedPubMedCentral Ptacek LJ, Trimmer JS, Agnew WS, Roberts JW, Petajan JH, Leppert M. Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus. Am J Hum Genet. 1991;49(4):851–4.PubMedPubMedCentral
27.
Zurück zum Zitat Ptacek LJ, Tyler F, Trimmer JS, Agnew WS, Leppert M. Analysis in a large hyperkalemic periodic paralysis pedigree supports tight linkage to a sodium channel locus. Am J Hum Genet. 1991;49(2):378–82.PubMedPubMedCentral Ptacek LJ, Tyler F, Trimmer JS, Agnew WS, Leppert M. Analysis in a large hyperkalemic periodic paralysis pedigree supports tight linkage to a sodium channel locus. Am J Hum Genet. 1991;49(2):378–82.PubMedPubMedCentral
28.
Zurück zum Zitat Fontaine B. Periodic paralysis, myotonia congenita and sarcolemmal ion channels: a success of the candidate gene approach. Neuromuscul Disord. 1993;3(2):101–7.CrossRefPubMed Fontaine B. Periodic paralysis, myotonia congenita and sarcolemmal ion channels: a success of the candidate gene approach. Neuromuscul Disord. 1993;3(2):101–7.CrossRefPubMed
29.
Zurück zum Zitat Ptacek LJ, Johnson KJ, Griggs RC. Genetics and physiology of the myotonic muscle disorders. N Engl J Med. 1993;328(7):482–9.CrossRefPubMed Ptacek LJ, Johnson KJ, Griggs RC. Genetics and physiology of the myotonic muscle disorders. N Engl J Med. 1993;328(7):482–9.CrossRefPubMed
30.
Zurück zum Zitat Matthews E, Tan SV, Fialho D, Sweeney MG, Sud R, Haworth A, et al. What causes paramyotonia in the United Kingdom? Common and new SCN4A mutations revealed. Neurology. 2008;70(1):50–3.CrossRefPubMed Matthews E, Tan SV, Fialho D, Sweeney MG, Sud R, Haworth A, et al. What causes paramyotonia in the United Kingdom? Common and new SCN4A mutations revealed. Neurology. 2008;70(1):50–3.CrossRefPubMed
31.
Zurück zum Zitat Matthews E, Fialho D, Tan SV, Venance SL, Cannon SC, Sternberg D, et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain. 2010;133(Pt 1):9–22.CrossRefPubMed Matthews E, Fialho D, Tan SV, Venance SL, Cannon SC, Sternberg D, et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain. 2010;133(Pt 1):9–22.CrossRefPubMed
32.
Zurück zum Zitat Ptacek LJ, George AL, Jr., Barchi RL, Griggs RC, Riggs JE, Robertson M, et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron. 1992;8(5):891–7.CrossRefPubMed Ptacek LJ, George AL, Jr., Barchi RL, Griggs RC, Riggs JE, Robertson M, et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron. 1992;8(5):891–7.CrossRefPubMed
33.
Zurück zum Zitat Ricker K, Moxley RT, III, Heine R, Lehmann-Horn F. Myotonia fluctuans. A third type of muscle sodium channel disease. Arch Neurol. 1994;51(11):1095–102.CrossRefPubMed Ricker K, Moxley RT, III, Heine R, Lehmann-Horn F. Myotonia fluctuans. A third type of muscle sodium channel disease. Arch Neurol. 1994;51(11):1095–102.CrossRefPubMed
34.
Zurück zum Zitat Trudell RG, Kaiser KK, Griggs RC. Acetazolamide-responsive myotonia congenita. Neurology. 1987;37(3):488–91.CrossRefPubMed Trudell RG, Kaiser KK, Griggs RC. Acetazolamide-responsive myotonia congenita. Neurology. 1987;37(3):488–91.CrossRefPubMed
35.
Zurück zum Zitat Singh RR, Tan SV, Hanna MG, Robb SA, Clarke A, Jungbluth H. Mutations in SCN4A: a rare but treatable cause of recurrent life-threatening laryngospasm. Pediatrics. 2014;134(5):e1447–50.CrossRefPubMed Singh RR, Tan SV, Hanna MG, Robb SA, Clarke A, Jungbluth H. Mutations in SCN4A: a rare but treatable cause of recurrent life-threatening laryngospasm. Pediatrics. 2014;134(5):e1447–50.CrossRefPubMed
36.
Zurück zum Zitat Matthews E, Silwal A, Sud R, Hanna MG, Manzur AY, Muntoni F, et al. Skeletal Muscle Channelopathies: Rare Disorders with Common Pediatric Symptoms. J Pediatr. 2017;188:181–5 e6.CrossRefPubMed Matthews E, Silwal A, Sud R, Hanna MG, Manzur AY, Muntoni F, et al. Skeletal Muscle Channelopathies: Rare Disorders with Common Pediatric Symptoms. J Pediatr. 2017;188:181–5 e6.CrossRefPubMed
38.
39.
Zurück zum Zitat Hanisch F, Kraya T, Kornhuber M, Zierz S. Diagnostic impact of myotonic discharges in myofibrillar myopathies. Muscle Nerve. 2013;47(6):845–8.CrossRefPubMed Hanisch F, Kraya T, Kornhuber M, Zierz S. Diagnostic impact of myotonic discharges in myofibrillar myopathies. Muscle Nerve. 2013;47(6):845–8.CrossRefPubMed
40.
Zurück zum Zitat Fournier E, Arzel M, Sternberg D, Vicart S, Laforet P, Eymard B, et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol. 2004;56(5):650–61.CrossRefPubMed Fournier E, Arzel M, Sternberg D, Vicart S, Laforet P, Eymard B, et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol. 2004;56(5):650–61.CrossRefPubMed
41.
Zurück zum Zitat Fournier E, Viala K, Gervais H, Sternberg D, Arzel-Hezode M, Laforet P, et al. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol. 2006;60(3):356–65.CrossRefPubMed Fournier E, Viala K, Gervais H, Sternberg D, Arzel-Hezode M, Laforet P, et al. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol. 2006;60(3):356–65.CrossRefPubMed
42.
Zurück zum Zitat McManis PG, Lambert EH, Daube JR. The exercise test in periodic paralysis. Muscle Nerve. 1986;9(8):704–10.CrossRefPubMed McManis PG, Lambert EH, Daube JR. The exercise test in periodic paralysis. Muscle Nerve. 1986;9(8):704–10.CrossRefPubMed
43.
Zurück zum Zitat Tan SV, Matthews E, Barber M, Burge JA, Rajakulendran S, Fialho D, et al. Refined exercise testing can aid DNA-based diagnosis in muscle channelopathies. Ann Neurol. 2011;69(2):328–40.CrossRefPubMedPubMedCentral Tan SV, Matthews E, Barber M, Burge JA, Rajakulendran S, Fialho D, et al. Refined exercise testing can aid DNA-based diagnosis in muscle channelopathies. Ann Neurol. 2011;69(2):328–40.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Morrow JM, Matthews E, Raja Rayan DL, Fischmann A, Sinclair CD, Reilly MM, et al. Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias. Neuromuscul Disord. 2013;23(8):637–46.CrossRefPubMedPubMedCentral Morrow JM, Matthews E, Raja Rayan DL, Fischmann A, Sinclair CD, Reilly MM, et al. Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias. Neuromuscul Disord. 2013;23(8):637–46.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Wu FF, Ryan A, Devaney J, Warnstedt M, Korade-Mirnics Z, Poser B, et al. Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain. 2002;125(Pt 11):2392–407.CrossRefPubMed Wu FF, Ryan A, Devaney J, Warnstedt M, Korade-Mirnics Z, Poser B, et al. Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain. 2002;125(Pt 11):2392–407.CrossRefPubMed
46.
Zurück zum Zitat Saviane C, Conti F, Pusch M. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol. 1999;113(3):457–68.CrossRefPubMedPubMedCentral Saviane C, Conti F, Pusch M. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol. 1999;113(3):457–68.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Bryant SH, Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol. 1971;219(2):367–83.CrossRefPubMedPubMedCentral Bryant SH, Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol. 1971;219(2):367–83.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Pusch M, Steinmeyer K, Koch MC, Jentsch TJ. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron. 1995;15(6):1455–63.CrossRefPubMed Pusch M, Steinmeyer K, Koch MC, Jentsch TJ. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron. 1995;15(6):1455–63.CrossRefPubMed
50.
Zurück zum Zitat Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992;257(5071):797–800.CrossRefPubMed Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992;257(5071):797–800.CrossRefPubMed
51.
Zurück zum Zitat George AL, Jr., Crackower MA, Abdalla JA, Hudson AJ, Ebers GC. Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nat Genet. 1993;3(4):305–10.CrossRefPubMed George AL, Jr., Crackower MA, Abdalla JA, Hudson AJ, Ebers GC. Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nat Genet. 1993;3(4):305–10.CrossRefPubMed
52.
Zurück zum Zitat George AL, Jr., Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R, Pascuzzi RM. Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet. 1994;3(11):2071–2.PubMed George AL, Jr., Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R, Pascuzzi RM. Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet. 1994;3(11):2071–2.PubMed
53.
Zurück zum Zitat Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet. 1995;57(6):1325–34.PubMedPubMedCentral Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet. 1995;57(6):1325–34.PubMedPubMedCentral
54.
Zurück zum Zitat Zhang J, George AL, Jr., Griggs RC, Fouad GT, Roberts J, Kwiecinski H, et al. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology. 1996;47(4):993–8.CrossRefPubMed Zhang J, George AL, Jr., Griggs RC, Fouad GT, Roberts J, Kwiecinski H, et al. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology. 1996;47(4):993–8.CrossRefPubMed
55.
Zurück zum Zitat Papponen H, Toppinen T, Baumann P, Myllyla V, Leisti J, Kuivaniemi H, et al. Founder mutations and the high prevalence of myotonia congenita in northern Finland. Neurology. 1999;53(2):297–302.CrossRefPubMed Papponen H, Toppinen T, Baumann P, Myllyla V, Leisti J, Kuivaniemi H, et al. Founder mutations and the high prevalence of myotonia congenita in northern Finland. Neurology. 1999;53(2):297–302.CrossRefPubMed
56.
Zurück zum Zitat Lehmann-Horn F, Rudel R, Dengler R, Lorkovic H, Haass A, Ricker K. Membrane defects in paramyotonia congenita with and without myotonia in a warm environment. Muscle Nerve. 1981;4(5):396–406.CrossRefPubMed Lehmann-Horn F, Rudel R, Dengler R, Lorkovic H, Haass A, Ricker K. Membrane defects in paramyotonia congenita with and without myotonia in a warm environment. Muscle Nerve. 1981;4(5):396–406.CrossRefPubMed
57.
Zurück zum Zitat Lehmann-Horn F, Rudel R, Ricker K, Lorkovic H, Dengler R, Hopf HC. Two cases of adynamia episodica hereditaria: in vitro investigation of muscle cell membrane and contraction parameters. Muscle Nerve. 1983;6(2):113–21.CrossRefPubMed Lehmann-Horn F, Rudel R, Ricker K, Lorkovic H, Dengler R, Hopf HC. Two cases of adynamia episodica hereditaria: in vitro investigation of muscle cell membrane and contraction parameters. Muscle Nerve. 1983;6(2):113–21.CrossRefPubMed
58.
Zurück zum Zitat Fontaine B, Khurana TS, Hoffman EP, Bruns GA, Haines JL, Trofatter JA, et al. Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science. 1990;250(4983):1000–2.CrossRefPubMed Fontaine B, Khurana TS, Hoffman EP, Bruns GA, Haines JL, Trofatter JA, et al. Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science. 1990;250(4983):1000–2.CrossRefPubMed
59.
Zurück zum Zitat Ebers GC, George AL, Barchi RL, Ting-Passador SS, Kallen RG, Lathrop GM, et al. Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene. Ann Neurol. 1991;30(6):810–6.CrossRefPubMed Ebers GC, George AL, Barchi RL, Ting-Passador SS, Kallen RG, Lathrop GM, et al. Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene. Ann Neurol. 1991;30(6):810–6.CrossRefPubMed
61.
Zurück zum Zitat Rose MR, Sadjadi R, Weinman J, Akhtar T, Pandya S, Kissel JT, et al. Role of disease severity, illness perceptions, and mood on quality of life in muscle disease. Muscle Nerve. 2012;46(3):351–9.CrossRefPubMed Rose MR, Sadjadi R, Weinman J, Akhtar T, Pandya S, Kissel JT, et al. Role of disease severity, illness perceptions, and mood on quality of life in muscle disease. Muscle Nerve. 2012;46(3):351–9.CrossRefPubMed
62.
Zurück zum Zitat Sansone VA, Ricci C, Montanari M, Apolone G, Rose M, Meola G. Measuring quality of life impairment in skeletal muscle channelopathies. Eur J Neurol. 2012;19(11):1470–6.CrossRefPubMedPubMedCentral Sansone VA, Ricci C, Montanari M, Apolone G, Rose M, Meola G. Measuring quality of life impairment in skeletal muscle channelopathies. Eur J Neurol. 2012;19(11):1470–6.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Statland J, Phillips L, Trivedi JR. Muscle channelopathies. Neurol Clin. 2014;32(3):801–15, x.CrossRefPubMed Statland J, Phillips L, Trivedi JR. Muscle channelopathies. Neurol Clin. 2014;32(3):801–15, x.CrossRefPubMed
65.
Zurück zum Zitat Statland JM, Bundy BN, Wang Y, Rayan DR, Trivedi JR, Sansone VA, et al. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial. JAMA. 2012;308(13):1357–65.CrossRefPubMedPubMedCentral Statland JM, Bundy BN, Wang Y, Rayan DR, Trivedi JR, Sansone VA, et al. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial. JAMA. 2012;308(13):1357–65.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Arnold WD, Kline D, Sanderson A, Hawash AA, Bartlett A, Novak KR, et al. Open-label trial of ranolazine for the treatment of myotonia congenita. Neurology. 2017;89(7):710–3.CrossRefPubMedPubMedCentral Arnold WD, Kline D, Sanderson A, Hawash AA, Bartlett A, Novak KR, et al. Open-label trial of ranolazine for the treatment of myotonia congenita. Neurology. 2017;89(7):710–3.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Dunø M, Colding-Jørgensen E. Myotonia Congenita. In: Pagon RA AM, Bird TD, Dolan CR, Fong CT, Stephens K, editors, editor. GeneReviews [Internet]. University of Washington, Seattle2005 [updated 2011 Apr 12]. . Dunø M, Colding-Jørgensen E. Myotonia Congenita. In: Pagon RA AM, Bird TD, Dolan CR, Fong CT, Stephens K, editors, editor. GeneReviews [Internet]. University of Washington, Seattle2005 [updated 2011 Apr 12]. .
68.
Zurück zum Zitat Aichele R, Paik H, Heller AH. Efficacy of phenytoin, procainamide, and tocainide in murine genetic myotonia. Exp Neurol. 1985;87(2):377–81.CrossRefPubMed Aichele R, Paik H, Heller AH. Efficacy of phenytoin, procainamide, and tocainide in murine genetic myotonia. Exp Neurol. 1985;87(2):377–81.CrossRefPubMed
69.
Zurück zum Zitat Desaphy JF, Modoni A, Lomonaco M, Camerino DC. Dramatic improvement of myotonia permanens with flecainide: a two-case report of a possible bench-to-bedside pharmacogenetics strategy. Eur J Clin Pharmacol. 2013;69(4):1037–9.CrossRefPubMed Desaphy JF, Modoni A, Lomonaco M, Camerino DC. Dramatic improvement of myotonia permanens with flecainide: a two-case report of a possible bench-to-bedside pharmacogenetics strategy. Eur J Clin Pharmacol. 2013;69(4):1037–9.CrossRefPubMed
70.
Zurück zum Zitat Berardinelli A, Gorni K, Orcesi S. Response to carbamazepine of recessive-type myotonia congenita. Muscle Nerve. 2000;23(1):138–9.CrossRefPubMed Berardinelli A, Gorni K, Orcesi S. Response to carbamazepine of recessive-type myotonia congenita. Muscle Nerve. 2000;23(1):138–9.CrossRefPubMed
71.
Zurück zum Zitat B Shapiro RR. Disorders of skeletal muscle membrane excitability: myotonia congenita, paramyotonia congenita, periodic paralysis, and related disorders. In: Katirji B KH, Preston D, Ruff R, Shapiro B, editor. Neuromuscular Disorders in Clinical Practice: Butterworth-Heinemann; 2002. p. 987–1020. B Shapiro RR. Disorders of skeletal muscle membrane excitability: myotonia congenita, paramyotonia congenita, periodic paralysis, and related disorders. In: Katirji B KH, Preston D, Ruff R, Shapiro B, editor. Neuromuscular Disorders in Clinical Practice: Butterworth-Heinemann; 2002. p. 987–1020.
72.
Zurück zum Zitat Skov M, de Paoli FV, Nielsen OB, Pedersen TH. The anti-convulsants lacosamide, lamotrigine, and rufinamide reduce myotonia in isolated human and rat skeletal muscle. Muscle Nerve. 2017;56(1):136–42.CrossRefPubMed Skov M, de Paoli FV, Nielsen OB, Pedersen TH. The anti-convulsants lacosamide, lamotrigine, and rufinamide reduce myotonia in isolated human and rat skeletal muscle. Muscle Nerve. 2017;56(1):136–42.CrossRefPubMed
73.
Zurück zum Zitat Andersen G, Hedermann G, Witting N, Duno M, Andersen H, Vissing J. The antimyotonic effect of lamotrigine in non-dystrophic myotonias: a double-blind randomized study. Brain. 2017;140(9):2295–305.CrossRefPubMed Andersen G, Hedermann G, Witting N, Duno M, Andersen H, Vissing J. The antimyotonic effect of lamotrigine in non-dystrophic myotonias: a double-blind randomized study. Brain. 2017;140(9):2295–305.CrossRefPubMed
74.
Zurück zum Zitat Leyburn P, Walton JN. The treatment of myotonia: a controlled clinical trial. Brain. 1959;82(1):81–91.CrossRefPubMed Leyburn P, Walton JN. The treatment of myotonia: a controlled clinical trial. Brain. 1959;82(1):81–91.CrossRefPubMed
75.
Zurück zum Zitat Griggs RC, Davis RJ, Anderson DC, Dove JT. Cardiac conduction in myotonic dystrophy. Am J Med. 1975;59(1):37–42.CrossRefPubMed Griggs RC, Davis RJ, Anderson DC, Dove JT. Cardiac conduction in myotonic dystrophy. Am J Med. 1975;59(1):37–42.CrossRefPubMed
76.
Zurück zum Zitat Streib EW. AAEE minimonograph #27: differential diagnosis of myotonic syndromes. Muscle Nerve. 1987;10(7):603–15.CrossRefPubMed Streib EW. AAEE minimonograph #27: differential diagnosis of myotonic syndromes. Muscle Nerve. 1987;10(7):603–15.CrossRefPubMed
77.
Zurück zum Zitat Kwiecinski H, Ryniewicz B, Ostrzycki A. Treatment of myotonia with antiarrhythmic drugs. Acta Neurol Scand. 1992;86(4):371–5.CrossRefPubMed Kwiecinski H, Ryniewicz B, Ostrzycki A. Treatment of myotonia with antiarrhythmic drugs. Acta Neurol Scand. 1992;86(4):371–5.CrossRefPubMed
79.
Zurück zum Zitat Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R, et al. Correlating phenotype and genotype in the periodic paralyses. Neurology. 2004;63(9):1647–55.CrossRefPubMed Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R, et al. Correlating phenotype and genotype in the periodic paralyses. Neurology. 2004;63(9):1647–55.CrossRefPubMed
80.
Zurück zum Zitat Venance SL, Cannon SC, Fialho D, Fontaine B, Hanna MG, Ptacek LJ, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain. 2006;129(Pt 1):8–17.CrossRefPubMed Venance SL, Cannon SC, Fialho D, Fontaine B, Hanna MG, Ptacek LJ, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain. 2006;129(Pt 1):8–17.CrossRefPubMed
81.
Zurück zum Zitat Dalakas MC, Engel WK. Treatment of “permanent” muscle weakness in familial Hypokalemic Periodic Paralysis. Muscle Nerve. 1983;6(3):182–6.CrossRefPubMed Dalakas MC, Engel WK. Treatment of “permanent” muscle weakness in familial Hypokalemic Periodic Paralysis. Muscle Nerve. 1983;6(3):182–6.CrossRefPubMed
82.
Zurück zum Zitat Griggs RC, Engel WK, Resnick JS. Acetazolamide treatment of hypokalemic periodic paralysis. Prevention of attacks and improvement of persistent weakness. Ann Intern Med. 1970;73(1):39–48.CrossRefPubMed Griggs RC, Engel WK, Resnick JS. Acetazolamide treatment of hypokalemic periodic paralysis. Prevention of attacks and improvement of persistent weakness. Ann Intern Med. 1970;73(1):39–48.CrossRefPubMed
83.
Zurück zum Zitat Links TP, Zwarts MJ, Wilmink JT, Molenaar WM, Oosterhuis HJ. Permanent muscle weakness in familial hypokalaemic periodic paralysis. Clinical, radiological and pathological aspects. Brain. 1990;113 ( Pt 6):1873–89.CrossRefPubMed Links TP, Zwarts MJ, Wilmink JT, Molenaar WM, Oosterhuis HJ. Permanent muscle weakness in familial hypokalaemic periodic paralysis. Clinical, radiological and pathological aspects. Brain. 1990;113 ( Pt 6):1873–89.CrossRefPubMed
84.
85.
Zurück zum Zitat Jeong HN, Yi JS, Lee YH, Lee JH, Shin HY, Choi YC, et al. Lower-extremity magnetic resonance imaging in patients with hyperkalemic periodic paralysis carrying the SCN4A mutation T704M: 30-month follow-up of seven patients. Neuromuscul Disord. 2018. Jeong HN, Yi JS, Lee YH, Lee JH, Shin HY, Choi YC, et al. Lower-extremity magnetic resonance imaging in patients with hyperkalemic periodic paralysis carrying the SCN4A mutation T704M: 30-month follow-up of seven patients. Neuromuscul Disord. 2018.
86.
Zurück zum Zitat Plassart E, Elbaz A, Santos JV, Reboul J, Lapie P, Chauveau D, et al. Genetic heterogeneity in hypokalemic periodic paralysis (hypoPP). Hum Genet. 1994;94(5):551–6.CrossRefPubMed Plassart E, Elbaz A, Santos JV, Reboul J, Lapie P, Chauveau D, et al. Genetic heterogeneity in hypokalemic periodic paralysis (hypoPP). Hum Genet. 1994;94(5):551–6.CrossRefPubMed
87.
Zurück zum Zitat Horga A, Raja Rayan DL, Matthews E, Sud R, Fialho D, Durran SC, et al. Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology. 2013;80(16):1472–5.CrossRefPubMedPubMedCentral Horga A, Raja Rayan DL, Matthews E, Sud R, Fialho D, Durran SC, et al. Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology. 2013;80(16):1472–5.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.CrossRefPubMed Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.CrossRefPubMed
89.
Zurück zum Zitat Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110(3):381–8.CrossRefPubMedPubMedCentral Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110(3):381–8.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Ryan DP, da Silva MR, Soong TW, Fontaine B, Donaldson MR, Kung AW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010;140(1):88–98.CrossRefPubMedPubMedCentral Ryan DP, da Silva MR, Soong TW, Fontaine B, Donaldson MR, Kung AW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010;140(1):88–98.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Chinnery PF, Walls TJ, Hanna MG, Bates D, Fawcett PR. Normokalemic periodic paralysis revisited: does it exist? Ann Neurol. 2002;52(2):251–2.CrossRefPubMed Chinnery PF, Walls TJ, Hanna MG, Bates D, Fawcett PR. Normokalemic periodic paralysis revisited: does it exist? Ann Neurol. 2002;52(2):251–2.CrossRefPubMed
92.
Zurück zum Zitat Tawil R, Ptacek LJ, Pavlakis SG, DeVivo DC, Penn AS, Ozdemir C, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994;35(3):326–30.CrossRefPubMed Tawil R, Ptacek LJ, Pavlakis SG, DeVivo DC, Penn AS, Ozdemir C, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994;35(3):326–30.CrossRefPubMed
93.
Zurück zum Zitat Sansone V, Griggs RC, Meola G, Ptacek LJ, Barohn R, Iannaccone S, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.CrossRefPubMed Sansone V, Griggs RC, Meola G, Ptacek LJ, Barohn R, Iannaccone S, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.CrossRefPubMed
94.
Zurück zum Zitat Lehmann-Horn F, Jurkat-Rott K, Rudel R. Periodic paralysis: understanding channelopathies. Curr Neurol Neurosci Rep. 2002;2(1):61–9.CrossRefPubMed Lehmann-Horn F, Jurkat-Rott K, Rudel R. Periodic paralysis: understanding channelopathies. Curr Neurol Neurosci Rep. 2002;2(1):61–9.CrossRefPubMed
96.
Zurück zum Zitat Wu F, Mi W, Burns DK, Fu Y, Gray HF, Struyk AF, et al. A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis. J Clin Invest. 2011;121(10):4082–94.CrossRefPubMedPubMedCentral Wu F, Mi W, Burns DK, Fu Y, Gray HF, Struyk AF, et al. A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis. J Clin Invest. 2011;121(10):4082–94.CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Wu F, Mi W, Hernandez-Ochoa EO, Burns DK, Fu Y, Gray HF, et al. A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest. 2012;122(12):4580–91.CrossRefPubMedPubMedCentral Wu F, Mi W, Hernandez-Ochoa EO, Burns DK, Fu Y, Gray HF, et al. A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest. 2012;122(12):4580–91.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Matthews E, Hanna MG. Muscle channelopathies: does the predicted channel gating pore offer new treatment insights for hypokalaemic periodic paralysis? J Physiol. 2010;588(Pt 11):1879–86.CrossRefPubMedPubMedCentral Matthews E, Hanna MG. Muscle channelopathies: does the predicted channel gating pore offer new treatment insights for hypokalaemic periodic paralysis? J Physiol. 2010;588(Pt 11):1879–86.CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Tricarico D, Mele A, Conte Camerino D. Carbonic anhydrase inhibitors ameliorate the symptoms of hypokalaemic periodic paralysis in rats by opening the muscular Ca2+-activated-K+ channels. Neuromuscul Disord. 2006;16(1):39–45.CrossRefPubMed Tricarico D, Mele A, Conte Camerino D. Carbonic anhydrase inhibitors ameliorate the symptoms of hypokalaemic periodic paralysis in rats by opening the muscular Ca2+-activated-K+ channels. Neuromuscul Disord. 2006;16(1):39–45.CrossRefPubMed
100.
Zurück zum Zitat Sansone VA. The Dystrophic and Nondystrophic Myotonias. Continuum (Minneap Minn). 2016;22(6, Muscle and Neuromuscular Junction Disorders):1889–915.PubMed Sansone VA. The Dystrophic and Nondystrophic Myotonias. Continuum (Minneap Minn). 2016;22(6, Muscle and Neuromuscular Junction Disorders):1889–915.PubMed
101.
Zurück zum Zitat Lichter PR, Newman LP, Wheeler NC, Beall OV. Patient tolerance to carbonic anhydrase inhibitors. Am J Ophthalmol. 1978;85(4):495–502.CrossRefPubMed Lichter PR, Newman LP, Wheeler NC, Beall OV. Patient tolerance to carbonic anhydrase inhibitors. Am J Ophthalmol. 1978;85(4):495–502.CrossRefPubMed
102.
Zurück zum Zitat Tawil R, Moxley RT, III, Griggs RC. Acetazolamide-induced nephrolithiasis: implications for treatment of neuromuscular disorders. Neurology. 1993;43(6):1105–6.CrossRefPubMed Tawil R, Moxley RT, III, Griggs RC. Acetazolamide-induced nephrolithiasis: implications for treatment of neuromuscular disorders. Neurology. 1993;43(6):1105–6.CrossRefPubMed
103.
Zurück zum Zitat Griggs RC, Resnick J, Engel WK. Intravenous treatment of hypokalemic periodic paralysis. Arch Neurol. 1983;40(9):539–40.CrossRefPubMed Griggs RC, Resnick J, Engel WK. Intravenous treatment of hypokalemic periodic paralysis. Arch Neurol. 1983;40(9):539–40.CrossRefPubMed
104.
Zurück zum Zitat Stunnenberg BC, Deinum J, Links TP, Wilde AA, Franssen H, Drost G. Cardiac arrhythmias in hypokalemic periodic paralysis: Hypokalemia as only cause? Muscle Nerve. 2014;50(3):327–32.CrossRefPubMed Stunnenberg BC, Deinum J, Links TP, Wilde AA, Franssen H, Drost G. Cardiac arrhythmias in hypokalemic periodic paralysis: Hypokalemia as only cause? Muscle Nerve. 2014;50(3):327–32.CrossRefPubMed
105.
Zurück zum Zitat Matthews E, Portaro S, Ke Q, Sud R, Haworth A, Davis MB, et al. Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology. 2011;77(22):1960–4.CrossRefPubMedPubMedCentral Matthews E, Portaro S, Ke Q, Sud R, Haworth A, Davis MB, et al. Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology. 2011;77(22):1960–4.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Torres CF, Griggs RC, Moxley RT, Bender AN. Hypokalemic periodic paralysis exacerbated by acetazolamide. Neurology. 1981;31(11):1423–8.CrossRefPubMed Torres CF, Griggs RC, Moxley RT, Bender AN. Hypokalemic periodic paralysis exacerbated by acetazolamide. Neurology. 1981;31(11):1423–8.CrossRefPubMed
107.
Zurück zum Zitat Sternberg D, Maisonobe T, Jurkat-Rott K, Nicole S, Launay E, Chauveau D, et al. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain. 2001;124(Pt 6):1091–9.CrossRefPubMed Sternberg D, Maisonobe T, Jurkat-Rott K, Nicole S, Launay E, Chauveau D, et al. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain. 2001;124(Pt 6):1091–9.CrossRefPubMed
108.
Zurück zum Zitat Bendahhou S, Cummins TR, Griggs RC, Fu YH, Ptacek LJ. Sodium channel inactivation defects are associated with acetazolamide-exacerbated hypokalemic periodic paralysis. Ann Neurol. 2001;50(3):417–20.CrossRefPubMed Bendahhou S, Cummins TR, Griggs RC, Fu YH, Ptacek LJ. Sodium channel inactivation defects are associated with acetazolamide-exacerbated hypokalemic periodic paralysis. Ann Neurol. 2001;50(3):417–20.CrossRefPubMed
109.
Zurück zum Zitat Matthews E, Labrum R, Sweeney MG, Sud R, Haworth A, Chinnery PF, et al. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology. 2009;72(18):1544–7.CrossRefPubMedPubMedCentral Matthews E, Labrum R, Sweeney MG, Sud R, Haworth A, Chinnery PF, et al. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology. 2009;72(18):1544–7.CrossRefPubMedPubMedCentral
110.
Zurück zum Zitat Sansone V, Meola G, Links TP, Panzeri M, Rose MR. Treatment for periodic paralysis. Cochrane Database Syst Rev. 2008(1):CD005045. Sansone V, Meola G, Links TP, Panzeri M, Rose MR. Treatment for periodic paralysis. Cochrane Database Syst Rev. 2008(1):CD005045.
111.
Zurück zum Zitat Sharp L, Trivedi JR. Treatment and management of neuromuscular channelopathies. Curr Treat Options Neurol. 2014;16(10):313.CrossRefPubMed Sharp L, Trivedi JR. Treatment and management of neuromuscular channelopathies. Curr Treat Options Neurol. 2014;16(10):313.CrossRefPubMed
112.
Zurück zum Zitat Hanna MG, Stewart J, Schapira AH, Wood NW, Morgan-Hughes JA, Murray NM. Salbutamol treatment in a patient with hyperkalaemic periodic paralysis due to a mutation in the skeletal muscle sodium channel gene (SCN4A). J Neurol Neurosurg Psychiatry. 1998;65(2):248–50.CrossRefPubMedPubMedCentral Hanna MG, Stewart J, Schapira AH, Wood NW, Morgan-Hughes JA, Murray NM. Salbutamol treatment in a patient with hyperkalaemic periodic paralysis due to a mutation in the skeletal muscle sodium channel gene (SCN4A). J Neurol Neurosurg Psychiatry. 1998;65(2):248–50.CrossRefPubMedPubMedCentral
113.
Zurück zum Zitat Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, et al. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol. 2016;7:121.CrossRefPubMedPubMedCentral Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, et al. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol. 2016;7:121.CrossRefPubMedPubMedCentral
Metadaten
Titel
Skeletal Muscle Channelopathies
verfasst von
Lauren Phillips
Jaya R. Trivedi
Publikationsdatum
01.10.2018
Verlag
Springer International Publishing
Erschienen in
Neurotherapeutics / Ausgabe 4/2018
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-00678-0

Weitere Artikel der Ausgabe 4/2018

Neurotherapeutics 4/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.