Skip to main content
Log in

A Three-Dimensional Computational Fluid Dynamics Model of Regurgitant Mitral Valve Flow: Validation Against In Vitro Standards and 3D Color Doppler Methods

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

3D color Doppler echocardiography has recently been employed to evaluate 3D proximal isovelocity surface area (PISA) and vena contracta (VC) area measures of regurgitant valve severity. Computational fluid dynamics (CFD) modeling may provide insight into the strengths and limitations of emerging 3D color Doppler applications for the quantification of mitral regurgitation (MR). The objective of this study is to evaluate a recently developed CFD simulation of regurgitant mitral jets under tailored hemodynamic conditions. Moderate MR (30 mL/beat) and severe MR (70 mL/beat) were simulated using an in vitro flow loop with an imaging chamber configured to model a regurgitant mitral orifice. A novel application of a 3D CFD model based on a finite element method approximation of the Navier–Stokes equation was used to simulate the regurgitant flow conditions. The CFD derived peak transorifice pressure gradient and velocity were compared against in vitro measurement standards. CFD simulation of proximal regurgitant flow events were compared against 2D and 3D color Doppler PISA and VC measurements. Compared to an in-line flow meter reference, the CFD model provided an accurate estimate of peak transorifice flow velocity (mean 459 vs. 442 m/s, respectively; relative error 5.7%). Compared to high-fidelity pressure transducers, the CFD model provided accurate estimates of peak transorifice pressure gradient (mean 90 vs. 85 mmHg, respectively; relative error 10.4%). Compared to 3D color Doppler PISA measures, the CFD model of isovelocity surface area was larger (relative difference 7–23%). The error was greatest for higher flow conditions. When compared to the actual orifice area, the 3D Doppler VC area was larger (3–14% relative error), whereas the CFD VC area was smaller (8–9% relative error) and more consistent with the expected reduction in area due to transvalvular flow compression. 3D CFD simulations of complex intracardiac flow events are accurate when compared to in vitro pressure and flow measures and are consistent with recently introduced 3D echocardiographic flow quantification methods. Future studies may employ validated CFD models to assess the strengths and limitations of emerging 3D color Doppler applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Astorino, M., J. F. Gerbeau, O. Pantz, and K. F. Traore. Fluid-structure interaction and multi-body contact. Applications to aortic valves. Comput. Methods Appl. Mech. Eng. 198:3603–3612, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  2. Autieri, F., N. Parolini, and L. Quartapelle. Numerical investigation on the stability of singular driven cavity flow. J. Comput. Phys. 183:1–25, 2002.

    Article  MathSciNet  Google Scholar 

  3. Badia, S., A. Quaini, and A. Quarteroni. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput. Methods Appl. Mech. Eng. 197:4216–4232, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  4. Badia, S., A. Quaini, and A. Quarteroni. Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput. 30:1778–1805, 2008.

    Article  MathSciNet  Google Scholar 

  5. Bargiggia, G. S., L. Tronconi, D. J. Sahn, F. Recusani, A. Raisaro, S. S. De, L. M. Valdes-Cruz, and C. Montemartini. A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84:1481–1489, 1991.

    Google Scholar 

  6. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35:1533–1540, 2002.

    Article  Google Scholar 

  7. Borazjani, I., L. Ge, and F. Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227:7587–7620, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  8. Borazjani, I., L. Ge, and F. Sotiropoulos. High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann. Biomed. Eng. 38:326–344, 2010.

    Article  Google Scholar 

  9. Cosine, D., E. Donal, L. Sanchez, F. Billy, L. Christiaens, and R. Perrault. Determination of the optimal region for interaliasing distance measurement for flow regurgitant rate calculation: a fluid simulation study. J. Am. Soc. Echocardiogr. 16:485–493, 2003.

    Article  Google Scholar 

  10. de, H. J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.

    Article  Google Scholar 

  11. Fehske, W., H. Omran, M. Manz, J. Kohler, A. Hagendorff, and B. Luderitz. Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am. J. Cardiol. 73:268–274, 1994.

    Article  Google Scholar 

  12. Ge, L., S. C. Jones, F. Sotiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125:709–718, 2003.

    Article  Google Scholar 

  13. Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127:782–797, 2005.

    Article  Google Scholar 

  14. Ghia, U., K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48:387–411, 1982.

    Article  MATH  Google Scholar 

  15. Griffith, B. E., X. Luo, D. M. McQueen, and C. S. Peskin. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1:137–177, 2009.

    Article  Google Scholar 

  16. Hall, S. A., M. E. Brickner, D. L. Willett, W. N. Irani, I. Afridi, and P. A. Grayburn. Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 95:636–642, 1997.

    Google Scholar 

  17. Houzeaux, G., and R. Codina. A finite element model for the simulation of lost foam casting. Int. J. Numer. Methods Fluids 46:203–226, 2004.

    Article  MATH  Google Scholar 

  18. Houzeaux, G., and R. Codina. A finite element method for the solution of rotary pumps. Comput. Fluids 36:667–679, 2007.

    Article  MATH  Google Scholar 

  19. Huang, Z. J., C. L. Merkle, S. Abdallah, and J. M. Tarbell. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J. Biomech. 27:391–402, 1994.

    Article  Google Scholar 

  20. Kahlert, P., B. Plicht, I. M. Schenk, R. A. Janosi, R. Erbel, and T. Buck. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21:912–921, 2008.

    Article  Google Scholar 

  21. Kawaguti, M. Numerical solution of the Navier-Stokes equations for the flow in a two dimensional cavity. J. Phys. Soc. Jpn. 16:2307–2315, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  22. Khanna, D., S. Vengala, A. P. Miller, N. C. Nanda, S. G. Lloyd, S. Ahmed, A. Sinha, F. Mehmood, K. Bodiwala, S. Upendram, M. Gownder, H. S. Dod, A. Nunez, A. D. Pacifico, D. C. McGiffin, J. K. Kirklin, and V. K. Misra. Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743, 2004.

    Article  Google Scholar 

  23. King, M. J., T. David, and J. Fisher. An initial parametric study on fluid flow through bileaflet mechanical heart valves using computational fluid dynamics. J. Eng. Med. 208:63–72, 1994.

    Article  Google Scholar 

  24. King, M. J., J. Corden, T. David, and J. Fisher. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29:609–618, 1996.

    Article  Google Scholar 

  25. King, M. J., T. David, and J. Fisher. Three-dimensional study of the effect of two leaflet opening angles on the time-dependent flow through a bileaflet mechanical heart valve. Med. Eng. Phys. 19:235–241, 1997.

    Article  Google Scholar 

  26. Li, X., T. Shiota, A. Delabays, D. Teien, X. Zhou, B. Sinclair, N. G. Pandian, and D. J. Sahn. Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: an in vitro quantitative flow study. J. Am. Soc. Echocardiogr. 12:1035–1044, 1999.

    Article  Google Scholar 

  27. Li, X., S. Wanitkun, X. Li, I. Hashimoto, Y. Mori, R. Rusk, S. Hicks, and D. Sahn. Simple method for estimating regurgitant volume with use of a single radius for measuring proximal isovelocity surface area: an in vitro study of simulated mitral regurgitation. J. Am. Soc. Echocardiogr. 15:1189–1196, 2002.

    Article  Google Scholar 

  28. Little, S. H., S. R. Igo, B. Pirat, M. McCulloch, C. J. Hartley, Y. Nose, and W. A. Zoghbi. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am. J. Cardiol. 99:1440–1447, 2007.

    Article  Google Scholar 

  29. Little, S. H., B. Pirat, R. Kumar, S. R. Igo, M. McCulloch, C. J. Hartley, J. Xu, and W. A. Zoghbi. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc. Imaging 1:695–704, 2008.

    Article  Google Scholar 

  30. Little, S. H., S. R. Igo, M. McCulloch, C. J. Hartley, Y. Nose, and W. A. Zoghbi. Three-dimensional ultrasound imaging model of mitral valve regurgitation: design and evaluation. Ultrasound Med. Biol. 34:647–654, 2008.

    Article  Google Scholar 

  31. Mascherbauer, J., R. Rosenhek, B. Bittner, J. Binder, P. Simon, G. Maurer, H. Schima, and H. Baumgartner. Doppler echocardiographic assessment of valvular regurgitation severity by measurement of the vena contracta: an in vitro validation study. J. Am. Soc. Echocardiogr. 18:999–1006, 2005.

    Article  Google Scholar 

  32. Matsumura, Y., G. Saracino, K. Sugioka, H. Tran, N. L. Greenberg, N. Wada, M. Toyono, S. Fukuda, T. Hozumi, J. D. Thomas, J. Yoshikawa, M. Yoshiyama, and T. Shiota. Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J. Am. Soc. Echocardiogr. 21:1251–1256, 2008.

    Article  Google Scholar 

  33. Pekkan, K., Z. D. de, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study. Ann. Biomed. Eng. 33:284–300, 2005.

    Article  Google Scholar 

  34. Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10:252–271, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  35. Plicht, B., P. Kahlert, R. Goldwasser, R. A. Janosi, P. Hunold, R. Erbel, and T. Buck. Direct quantification of mitral regurgitant flow volume by real-time three-dimensional echocardiography using dealiasing of color Doppler flow at the vena contracta. J. Am. Soc. Echocardiogr. 21:1337–1346, 2008.

    Article  Google Scholar 

  36. Quere, J. P., C. Tribouilloy, and M. Enriquez-Sarano. Vena contracta width measurement: theoretic basis and usefulness in the assessment of valvular regurgitation severity. Curr. Cardiol. Rep. 5:110–115, 2003.

    Article  Google Scholar 

  37. Schreiber, R., and H. Keller. Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49:310–333, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  38. Shiota, T., B. Sinclair, M. Ishii, X. Zhou, S. Ge, D. E. Teien, M. Gharib, and D. J. Sahn. Three-dimensional reconstruction of color Doppler flow convergence regions and regurgitant jets: an in vitro quantitative study. J. Am. Coll. Cardiol. 27:1511–1518, 1996.

    Article  Google Scholar 

  39. Simpson, I. A., T. Shiota, M. Gharib, and D. J. Sahn. Current status of flow convergence for clinical applications: is it a leaning tower of “PISA”? J. Am. Coll. Cardiol. 27:504–509, 1996.

    Article  Google Scholar 

  40. Sitges, M., M. Jones, T. Shiota, J. X. Qin, H. Tsujino, F. Bauer, Y. J. Kim, D. A. Agler, L. A. Cardon, A. D. Zetts, J. A. Panza, and J. D. Thomas. Real-time three-dimensional color Doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental animal study and initial clinical experience. J. Am. Soc. Echocardiogr. 16:38–45, 2003.

    Article  Google Scholar 

  41. Stevenson, D. M., and A. P. Yoganathan. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves—I. Computational scheme and methodology. J. Biomech. 18:899–907, 1985.

    Article  Google Scholar 

  42. Stevenson, D. M., A. P. Yoganathan, and F. P. Williams. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves—II. Results on five models. J. Biomech. 18:909–926, 1985.

    Article  Google Scholar 

  43. Van Loon, R., P. D. Anderson, F. P. T. Baaijens, and F. N. Van de Vosse. A three-dimensional fluid-structure interaction method for heart valve modeling. C. R. Mechanique 333:856–866, 2005.

    MATH  Google Scholar 

  44. Wong, M. C., D. J. Clark, M. C. Horrigan, E. Grube, G. Matalanis, and H. M. Farouque. Advances in percutaneous treatment for adult valvular heart disease. Intern. Med. J. 39:465–474, 2009.

    Article  Google Scholar 

  45. Yosefy, C., R. A. Levine, J. Solis, M. Vaturi, M. D. Handschumacher, and J. Hung. Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J. Am. Soc. Echocardiogr. 20:389–396, 2007.

    Article  Google Scholar 

  46. Zhou, X., M. Jones, T. Shiota, I. Yamada, D. Teien, and D. J. Sahn. Vena contracta imaged by Doppler color flow mapping predicts the severity of eccentric mitral regurgitation better than color jet area: a chronic animal study. J. Am. Coll. Cardiol. 30:1393–1398, 1997.

    Article  Google Scholar 

  47. Zoghbi, W. A., M. Enriquez-Sarano, E. Foster, P. A. Grayburn, C. D. Kraft, R. A. Levine, P. Nihoyannopoulos, C. M. Otto, M. A. Quinones, H. Rakowski, W. J. Stewart, A. Waggoner, and N. J. Weissman. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echocardiogr. 16:777–802, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Annalisa Quaini was supported, in part, by the Texas Higher Education Board under ARP grant #003652-0051-2006, by the NSF/NIGMS grant DMS-0443826, and by UH IBIS 2008 Seed Award. Dr. Suncica Canic was supported, in part, by the NSF under grant DMS-0806941, by the NSF/NIGMS under grant DMS-0443826, by the Texas Higher Education Board under ARP grant #003652-0051-2006, by the 2007–2008 UH GEAR grant, by UH IBIS 2008 Seed Award, and by the Lillie Roy Cranz Cullen Professorship Award. Dr. Giovanna Guidoboni was supported, in part, by the NSF under grant DMS-0811138, by the Texas Higher Education Board under ARP grant #003652-0051-2006 and by UH IBIS 2008 Seed Award. Dr. Craig J. Hartley was supported under NIH R01 grant #HL22512. Dr. Stephen H. Little was supported in part by a Methodist DeBakey Heart & Vascular Center Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Little.

Additional information

Associate Editor Tim McGloughlin oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaini, A., Canic, S., Guidoboni, G. et al. A Three-Dimensional Computational Fluid Dynamics Model of Regurgitant Mitral Valve Flow: Validation Against In Vitro Standards and 3D Color Doppler Methods. Cardiovasc Eng Tech 2, 77–89 (2011). https://doi.org/10.1007/s13239-011-0038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0038-6

Keywords

Navigation