Skip to main content
Erschienen in: Immunologic Research 1/2011

01.10.2011

Membrane attack by complement: the assembly and biology of terminal complement complexes

verfasst von: Cosmin A. Tegla, Cornelia Cudrici, Snehal Patel, Richard Trippe III, Violeta Rus, Florin Niculescu, Horea Rus

Erschienen in: Immunologic Research | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis.
Literatur
1.
Zurück zum Zitat Ehrlich P, Sachs H. Ueber die Vielheit der Complemente des Serums. Berliner Klinische Wochenschrift. 1902;14:297–338. Ehrlich P, Sachs H. Ueber die Vielheit der Complemente des Serums. Berliner Klinische Wochenschrift. 1902;14:297–338.
2.
Zurück zum Zitat Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–47.PubMedCrossRef Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. 1988;57:321–47.PubMedCrossRef
4.
Zurück zum Zitat Hugli TE. Biochemistry and biology of anaphylatoxins. Complement. 1986;3:111–27.PubMed Hugli TE. Biochemistry and biology of anaphylatoxins. Complement. 1986;3:111–27.PubMed
5.
Zurück zum Zitat Frank MM. Complement disorders and hereditary angioedema. J Allergy Clin Immunol. 2010;125:S262–71.PubMedCrossRef Frank MM. Complement disorders and hereditary angioedema. J Allergy Clin Immunol. 2010;125:S262–71.PubMedCrossRef
7.
Zurück zum Zitat Nonaka M, Yoshizaki F. Primitive complement system of invertebrates. Immunol Rev. 2004;198:203–15.PubMedCrossRef Nonaka M, Yoshizaki F. Primitive complement system of invertebrates. Immunol Rev. 2004;198:203–15.PubMedCrossRef
8.
Zurück zum Zitat Petersen SV, Thiel S, Jensen L, Vorup-Jensen T, Koch C, Jensenius JC. Control of the classical and the MBL pathway of complement activation. Mol Immunol. 2000;37:803–11.PubMedCrossRef Petersen SV, Thiel S, Jensen L, Vorup-Jensen T, Koch C, Jensenius JC. Control of the classical and the MBL pathway of complement activation. Mol Immunol. 2000;37:803–11.PubMedCrossRef
9.
Zurück zum Zitat Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, Vorup-Jensen T, Jensenius JC. MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity. 2001;15:127–35.PubMedCrossRef Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, Vorup-Jensen T, Jensenius JC. MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity. 2001;15:127–35.PubMedCrossRef
10.
Zurück zum Zitat Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U, Reid KB, Jensenius JC. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386:506–10.PubMedCrossRef Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U, Reid KB, Jensenius JC. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386:506–10.PubMedCrossRef
11.
Zurück zum Zitat Rossi V, Cseh S, Bally I, Thielens NM, Jensenius JC, Arlaud GJ. Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J Biol Chem. 2001;276:40880–7.PubMedCrossRef Rossi V, Cseh S, Bally I, Thielens NM, Jensenius JC, Arlaud GJ. Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J Biol Chem. 2001;276:40880–7.PubMedCrossRef
12.
Zurück zum Zitat Mayer MM. Membrane damage by complement. Johns Hopkins Med J. 1981;148:243–58.PubMed Mayer MM. Membrane damage by complement. Johns Hopkins Med J. 1981;148:243–58.PubMed
13.
Zurück zum Zitat Bhakdi S, Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol. 1987;107:147–223.PubMedCrossRef Bhakdi S, Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol. 1987;107:147–223.PubMedCrossRef
14.
Zurück zum Zitat Shin ML, Rus HG, Niculescu FI. Membranes attack by complement: assembly and biology of the terminal complement complexes. In: Lee A, editor. Biomembranes. Greenwitch: JAI Press; 1996. p. 123–49. Shin ML, Rus HG, Niculescu FI. Membranes attack by complement: assembly and biology of the terminal complement complexes. In: Lee A, editor. Biomembranes. Greenwitch: JAI Press; 1996. p. 123–49.
15.
Zurück zum Zitat Wetsel RA, Ogata RT, Tack BF. Primary structure of the fifth component of murine complement. Biochemistry. 1987;26:737–43.PubMedCrossRef Wetsel RA, Ogata RT, Tack BF. Primary structure of the fifth component of murine complement. Biochemistry. 1987;26:737–43.PubMedCrossRef
16.
Zurück zum Zitat Wetsel RA, Lemons RS, Le Beau MM, Barnum SR, Noack D, Tack BF. Molecular analysis of human complement component C5: localization of the structural gene to chromosome 9. Biochemistry. 1988;27:1474–82.PubMedCrossRef Wetsel RA, Lemons RS, Le Beau MM, Barnum SR, Noack D, Tack BF. Molecular analysis of human complement component C5: localization of the structural gene to chromosome 9. Biochemistry. 1988;27:1474–82.PubMedCrossRef
17.
Zurück zum Zitat Haviland DL, Haviland JC, Fleischer DT, Wetsel RA. Structure of the murine fifth complement component (C5) gene. A large, highly interrupted gene with a variant donor splice site and organizational homology with the third and fourth complement component genes. J Biol Chem. 1991;266:11818–25.PubMed Haviland DL, Haviland JC, Fleischer DT, Wetsel RA. Structure of the murine fifth complement component (C5) gene. A large, highly interrupted gene with a variant donor splice site and organizational homology with the third and fourth complement component genes. J Biol Chem. 1991;266:11818–25.PubMed
18.
Zurück zum Zitat DiScipio RG, Smith CA, Muller-Eberhard HJ, Hugli TE. The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem. 1983;258:10629–36.PubMed DiScipio RG, Smith CA, Muller-Eberhard HJ, Hugli TE. The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem. 1983;258:10629–36.PubMed
19.
Zurück zum Zitat Haeflinger JA, Tschopp J, Vial N, Jenne DE. Complete primary structure and functional characterization of the sixth component of the human complement system. J Biol Chem. 1989;264:18041–51. Haeflinger JA, Tschopp J, Vial N, Jenne DE. Complete primary structure and functional characterization of the sixth component of the human complement system. J Biol Chem. 1989;264:18041–51.
20.
Zurück zum Zitat Hobart MJ, Fernie B, DiScipio RG. Structure of the human C6 gene. Biochemistry. 1993;32:6198–205.PubMedCrossRef Hobart MJ, Fernie B, DiScipio RG. Structure of the human C6 gene. Biochemistry. 1993;32:6198–205.PubMedCrossRef
21.
Zurück zum Zitat Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM. Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol. 2008;379:331–42.PubMedCrossRef Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM. Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol. 2008;379:331–42.PubMedCrossRef
22.
Zurück zum Zitat Rao AG, Howard OM, Ng SC, Whitehead AS, Colten HR, Sodetz JM. Complementary DNA and derived amino acid sequence of the alpha subunit of human complement protein C8: evidence for the existence of a separate alpha subunit messenger RNA. Biochemistry. 1987;26:3556–64.PubMedCrossRef Rao AG, Howard OM, Ng SC, Whitehead AS, Colten HR, Sodetz JM. Complementary DNA and derived amino acid sequence of the alpha subunit of human complement protein C8: evidence for the existence of a separate alpha subunit messenger RNA. Biochemistry. 1987;26:3556–64.PubMedCrossRef
23.
Zurück zum Zitat Sodetz JM. Stucture and function of C8 in the membrane attack sequence of complement. In: Podack ER, editor. Cytotoxic effector mechanisms. Berlin: Springer; 1988. p. 19–31. Sodetz JM. Stucture and function of C8 in the membrane attack sequence of complement. In: Podack ER, editor. Cytotoxic effector mechanisms. Berlin: Springer; 1988. p. 19–31.
24.
Zurück zum Zitat Bubeck D, Roversi P, Donev R, Morgan BP, Llorca O, Lea SM. Structure of human complement C8, a precursor to membrane attack. J Mol Biol. 2010;405:325–30.PubMedCrossRef Bubeck D, Roversi P, Donev R, Morgan BP, Llorca O, Lea SM. Structure of human complement C8, a precursor to membrane attack. J Mol Biol. 2010;405:325–30.PubMedCrossRef
25.
Zurück zum Zitat Marazziti D, Eggertsen G, Fey GH, Stanley KK. Relationships between the gene and protein structure in human complement component C9. Biochemistry. 1988;27:6529–34.PubMedCrossRef Marazziti D, Eggertsen G, Fey GH, Stanley KK. Relationships between the gene and protein structure in human complement component C9. Biochemistry. 1988;27:6529–34.PubMedCrossRef
26.
Zurück zum Zitat Haefliger JA, Tschopp J, Vial N, Jenne DE. Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6. J Biol Chem. 1989;264:18041–51.PubMed Haefliger JA, Tschopp J, Vial N, Jenne DE. Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6. J Biol Chem. 1989;264:18041–51.PubMed
27.
Zurück zum Zitat Ishida B, Wisnieski BJ, Lavine CH, Esser AF. Photolabeling of a hydrophobic domain of the ninth component of human complement. J Biol Chem. 1982;257:10551–3.PubMed Ishida B, Wisnieski BJ, Lavine CH, Esser AF. Photolabeling of a hydrophobic domain of the ninth component of human complement. J Biol Chem. 1982;257:10551–3.PubMed
28.
Zurück zum Zitat Stanley KK. The molecular mechanisms of complement C9. Insertion and polymerization in biological membranes. Curr Topics Microbiol Immunol. 1988;140:49–65. Stanley KK. The molecular mechanisms of complement C9. Insertion and polymerization in biological membranes. Curr Topics Microbiol Immunol. 1988;140:49–65.
29.
Zurück zum Zitat Hu VW, Esser AF, Podack ER, Wisnieski BJ. The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol. 1981;127:380–6.PubMed Hu VW, Esser AF, Podack ER, Wisnieski BJ. The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol. 1981;127:380–6.PubMed
30.
Zurück zum Zitat Shin ML, Paznekas WA, Abramovitz AS, Mayer MM. On the mechanism of membrane damage by C: exposure of hydrophobic sites on activated C proteins. J Immunol. 1977;119:1358–64.PubMed Shin ML, Paznekas WA, Abramovitz AS, Mayer MM. On the mechanism of membrane damage by C: exposure of hydrophobic sites on activated C proteins. J Immunol. 1977;119:1358–64.PubMed
31.
Zurück zum Zitat Ramm LE, Michaels DW, Whitlow MB, Mayer MM. On the heterogenity and molecular composition of the transmembrane channels produced by complement. In: August T, editor. Biological response mediators and modulators. San Diego: Academic Press; 1983. p. 117–32. Ramm LE, Michaels DW, Whitlow MB, Mayer MM. On the heterogenity and molecular composition of the transmembrane channels produced by complement. In: August T, editor. Biological response mediators and modulators. San Diego: Academic Press; 1983. p. 117–32.
32.
Zurück zum Zitat Podack ER. Assembly and structure of membrane attack complex (MAC) of complement. In: Podack ER, editor. Cytolytic lymphocyte and complement: effectors of the immune system. Boca Raton: CRC Press; 1988. p. 174–84. Podack ER. Assembly and structure of membrane attack complex (MAC) of complement. In: Podack ER, editor. Cytolytic lymphocyte and complement: effectors of the immune system. Boca Raton: CRC Press; 1988. p. 174–84.
33.
Zurück zum Zitat Carney DF, Koski CL, Shin ML. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol. 1985;134:1804–9.PubMed Carney DF, Koski CL, Shin ML. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol. 1985;134:1804–9.PubMed
34.
Zurück zum Zitat Vanguri P, Shin ML. Hydrolysis of myelin basic protein in human myelin by terminal complement complexes. J Biol Chem. 1988;263:7228–34.PubMed Vanguri P, Shin ML. Hydrolysis of myelin basic protein in human myelin by terminal complement complexes. J Biol Chem. 1988;263:7228–34.PubMed
35.
Zurück zum Zitat Niculescu F, Rus H, Shin S, Lang T, Shin ML. Generation of diacylglycerol and ceramide during homologous complement activation. J Immunol. 1993;150:214–24.PubMed Niculescu F, Rus H, Shin S, Lang T, Shin ML. Generation of diacylglycerol and ceramide during homologous complement activation. J Immunol. 1993;150:214–24.PubMed
36.
Zurück zum Zitat DiScipio RG, Chakravarti DN, Muller-Eberhard HJ, Fey GH. The structure of human complement component C7 and the C5b-7 complex. J Biol Chem. 1988;263:549–60.PubMed DiScipio RG, Chakravarti DN, Muller-Eberhard HJ, Fey GH. The structure of human complement component C7 and the C5b-7 complex. J Biol Chem. 1988;263:549–60.PubMed
37.
Zurück zum Zitat Ramm LE, Whitlow MB, Mayer MM. Size of the transmembrane channels produced by complement proteins C5b-8. J Immunol. 1982;129:1143–6.PubMed Ramm LE, Whitlow MB, Mayer MM. Size of the transmembrane channels produced by complement proteins C5b-8. J Immunol. 1982;129:1143–6.PubMed
38.
Zurück zum Zitat Gee AP, Boyle MD, Borsos T. Distinction between C8-mediated and C8/C9-mediated hemolysis on the basis of independent 86Rb and hemoglobin release. J Immunol. 1980;124:1905–10.PubMed Gee AP, Boyle MD, Borsos T. Distinction between C8-mediated and C8/C9-mediated hemolysis on the basis of independent 86Rb and hemoglobin release. J Immunol. 1980;124:1905–10.PubMed
39.
Zurück zum Zitat Martin DE, Chiu FJ, Gigli I, Muller-Eberhard HJ. Killing of human melanoma cells by the membrane attack complex of human complement as a function of its molecular composition. J Clin Invest. 1987;80:226–33.PubMedCrossRef Martin DE, Chiu FJ, Gigli I, Muller-Eberhard HJ. Killing of human melanoma cells by the membrane attack complex of human complement as a function of its molecular composition. J Clin Invest. 1987;80:226–33.PubMedCrossRef
40.
Zurück zum Zitat Morgan BP, Imagawa DK, Dankert JR, Ramm LE. Complement lysis of U937, a nucleated mammalian cell line in the absence of C9: effect of C9 on C5b-8 mediated cell lysis. J Immunol. 1986;136:3402–6.PubMed Morgan BP, Imagawa DK, Dankert JR, Ramm LE. Complement lysis of U937, a nucleated mammalian cell line in the absence of C9: effect of C9 on C5b-8 mediated cell lysis. J Immunol. 1986;136:3402–6.PubMed
41.
Zurück zum Zitat Deguchi M, Gillin FD, Gigli I. Mechanism of killing of Giardia lamblia trophozoites by complement. J Clin Invest. 1987;79:1296–302.PubMedCrossRef Deguchi M, Gillin FD, Gigli I. Mechanism of killing of Giardia lamblia trophozoites by complement. J Clin Invest. 1987;79:1296–302.PubMedCrossRef
42.
Zurück zum Zitat Niculescu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res. 2001;24:191–9.PubMedCrossRef Niculescu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res. 2001;24:191–9.PubMedCrossRef
43.
Zurück zum Zitat Podack ER, Tschopp J. Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA. 1982;79:574–8.PubMedCrossRef Podack ER, Tschopp J. Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA. 1982;79:574–8.PubMedCrossRef
44.
Zurück zum Zitat Tschopp J, Podack ER, Muller-Eberhard HJ. The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol. 1985;134:495–9.PubMed Tschopp J, Podack ER, Muller-Eberhard HJ. The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization. J Immunol. 1985;134:495–9.PubMed
45.
Zurück zum Zitat Whitlow MB, Ramm LE, Mayer MM. Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space. J Biol Chem. 1985;260:998–1005.PubMed Whitlow MB, Ramm LE, Mayer MM. Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space. J Biol Chem. 1985;260:998–1005.PubMed
46.
Zurück zum Zitat Laine RO, Esser AF. Detection of refolding conformers of complement protein C9 during insertion into membranes. Nature. 1989;341:63–5.PubMedCrossRef Laine RO, Esser AF. Detection of refolding conformers of complement protein C9 during insertion into membranes. Nature. 1989;341:63–5.PubMedCrossRef
47.
Zurück zum Zitat Joiner KA. Complement evasion by bacteria and parasites. Annu Rev Microbiol. 1988;42:201–30.PubMedCrossRef Joiner KA. Complement evasion by bacteria and parasites. Annu Rev Microbiol. 1988;42:201–30.PubMedCrossRef
48.
Zurück zum Zitat Dalmasso AP, Benson BA. Lesions of different functional size produced by human and guinea pig complement in sheep red cell membranes. J Immunol. 1981;127:2214–8.PubMed Dalmasso AP, Benson BA. Lesions of different functional size produced by human and guinea pig complement in sheep red cell membranes. J Immunol. 1981;127:2214–8.PubMed
49.
Zurück zum Zitat Ramm LE, Whitlow MB, Mayer MM. The relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol. 1985;134:2594–9.PubMed Ramm LE, Whitlow MB, Mayer MM. The relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol. 1985;134:2594–9.PubMed
50.
Zurück zum Zitat Young JD, Cohn ZA, Podack ER. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science. 1986;233:184–90.PubMedCrossRef Young JD, Cohn ZA, Podack ER. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science. 1986;233:184–90.PubMedCrossRef
51.
Zurück zum Zitat Podack ER, Muller-Eberhard HJ. Binding of desoxycholate, phosphatidylcholine vesicles, lipoprotein and of the S-protein to complexes of terminal complement components. J Immunol. 1978;121:1025–30.PubMed Podack ER, Muller-Eberhard HJ. Binding of desoxycholate, phosphatidylcholine vesicles, lipoprotein and of the S-protein to complexes of terminal complement components. J Immunol. 1978;121:1025–30.PubMed
52.
Zurück zum Zitat Corallini F, Bossi F, Gonelli A, Tripodo C, Castellino G, Mollnes TE, Tedesco F, Rizzi L, Trotta F, Zauli G, Secchiero P. The soluble terminal complement complex (SC5b-9) up-regulates osteoprotegerin expression and release by endothelial cells: implications in rheumatoid arthritis. Rheumatology (Oxford). 2009;48:293–8.CrossRef Corallini F, Bossi F, Gonelli A, Tripodo C, Castellino G, Mollnes TE, Tedesco F, Rizzi L, Trotta F, Zauli G, Secchiero P. The soluble terminal complement complex (SC5b-9) up-regulates osteoprotegerin expression and release by endothelial cells: implications in rheumatoid arthritis. Rheumatology (Oxford). 2009;48:293–8.CrossRef
53.
Zurück zum Zitat French LE, Chonn A, Ducrest D, Baumann B, Belin D, Wohlwend A, Kiss JZ, Sappino AP, Tschopp J, Schifferli JA. Murine clusterin: molecular cloning and mRNA localization of a gene associated with epithelial differentiation processes during embryogenesis. J Cell Biol. 1993;122:1119–30.PubMedCrossRef French LE, Chonn A, Ducrest D, Baumann B, Belin D, Wohlwend A, Kiss JZ, Sappino AP, Tschopp J, Schifferli JA. Murine clusterin: molecular cloning and mRNA localization of a gene associated with epithelial differentiation processes during embryogenesis. J Cell Biol. 1993;122:1119–30.PubMedCrossRef
54.
Zurück zum Zitat McDonald JF, Nelsestuen GL. Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. Biochemistry. 1997;36:7464–73.PubMedCrossRef McDonald JF, Nelsestuen GL. Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. Biochemistry. 1997;36:7464–73.PubMedCrossRef
55.
Zurück zum Zitat Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A, Ono H, Tanaka H, Kondo N, Orii T, Okada N, et al. Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1990;323:1184–9.PubMedCrossRef Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A, Ono H, Tanaka H, Kondo N, Orii T, Okada N, et al. Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1990;323:1184–9.PubMedCrossRef
56.
Zurück zum Zitat Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, Maeda K, Kitani T, Kinoshita T. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993;259:1318–20.PubMedCrossRef Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, Maeda K, Kitani T, Kinoshita T. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science. 1993;259:1318–20.PubMedCrossRef
57.
Zurück zum Zitat Meri S, Waldmann H, Lachmann PJ. Distribution of protecting (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Invest. 1991;65:532–7.PubMed Meri S, Waldmann H, Lachmann PJ. Distribution of protecting (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Invest. 1991;65:532–7.PubMed
58.
Zurück zum Zitat Ninomiya H, Sims PJ. The human complement regulatory protein CD59 binds to the alpha-chain of C8 and to the “b” domain of C9. J Biol Chem. 1992;267:13675–80.PubMed Ninomiya H, Sims PJ. The human complement regulatory protein CD59 binds to the alpha-chain of C8 and to the “b” domain of C9. J Biol Chem. 1992;267:13675–80.PubMed
59.
Zurück zum Zitat Kimberley FC, Sivasankar B, Paul Morgan B. Alternative roles for CD59. Mol Immunol. 2007;44:73–81.PubMedCrossRef Kimberley FC, Sivasankar B, Paul Morgan B. Alternative roles for CD59. Mol Immunol. 2007;44:73–81.PubMedCrossRef
60.
Zurück zum Zitat Koski CL, Ramm LE, Hammer CH, Mayer MM, Shin ML. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci USA. 1983;80:3816–20.PubMedCrossRef Koski CL, Ramm LE, Hammer CH, Mayer MM, Shin ML. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci USA. 1983;80:3816–20.PubMedCrossRef
61.
Zurück zum Zitat Papadimitriou JC, Ramm LE, Drachenberg CB, Trump BF, Shin ML. Quantitative analysis of adenine nucleotides during the prelytic phase of cell death mediated by C5b-9. J Immunol. 1991;147:212–7.PubMed Papadimitriou JC, Ramm LE, Drachenberg CB, Trump BF, Shin ML. Quantitative analysis of adenine nucleotides during the prelytic phase of cell death mediated by C5b-9. J Immunol. 1991;147:212–7.PubMed
62.
Zurück zum Zitat Papadimitriou JC, Drachenberg CB, Shin ML, Trump BF. Ultrastructural studies of complement mediated cell death: a biological reaction model to plasma membrane injury. Virchows Arch. 1994;424:677–85.PubMedCrossRef Papadimitriou JC, Drachenberg CB, Shin ML, Trump BF. Ultrastructural studies of complement mediated cell death: a biological reaction model to plasma membrane injury. Virchows Arch. 1994;424:677–85.PubMedCrossRef
63.
Zurück zum Zitat Cragg MS, Howatt WJ, Bloodworth L, Anderson VA, Morgan BP, Glennie MJ. Complement mediated cell death is associated with DNA fragmentation. Cell Death Differ. 2000;7:48–58.PubMedCrossRef Cragg MS, Howatt WJ, Bloodworth L, Anderson VA, Morgan BP, Glennie MJ. Complement mediated cell death is associated with DNA fragmentation. Cell Death Differ. 2000;7:48–58.PubMedCrossRef
64.
Zurück zum Zitat Ziporen L, Donin N, Shmushkovich T, Gross A, Fishelson Z. Programmed necrotic cell death induced by complement involves a Bid-dependent pathway. J Immunol. 2009;182:515–21.PubMed Ziporen L, Donin N, Shmushkovich T, Gross A, Fishelson Z. Programmed necrotic cell death induced by complement involves a Bid-dependent pathway. J Immunol. 2009;182:515–21.PubMed
65.
Zurück zum Zitat Gancz D, Donin N, Fishelson Z. Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol. 2009;47:310–7.PubMedCrossRef Gancz D, Donin N, Fishelson Z. Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol. 2009;47:310–7.PubMedCrossRef
66.
Zurück zum Zitat Morgan BP, Dankert JR, Esser AF. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987;138:246–53.PubMed Morgan BP, Dankert JR, Esser AF. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987;138:246–53.PubMed
67.
Zurück zum Zitat Carney DF, Lang TJ, Shin ML. Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol. 1990;145:623–9.PubMed Carney DF, Lang TJ, Shin ML. Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol. 1990;145:623–9.PubMed
68.
Zurück zum Zitat Moskovich O, Fishelson Z. Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem. 2007;282:29977–86.PubMedCrossRef Moskovich O, Fishelson Z. Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem. 2007;282:29977–86.PubMedCrossRef
69.
Zurück zum Zitat Scolding NJ, Houston WA, Morgan BP, Campbell AK, Compston DA. Reversible injury of cultured rat oligodendrocytes by complement. Immunology. 1989;67:441–6.PubMed Scolding NJ, Houston WA, Morgan BP, Campbell AK, Compston DA. Reversible injury of cultured rat oligodendrocytes by complement. Immunology. 1989;67:441–6.PubMed
70.
Zurück zum Zitat Kerjaschki D, Schulze M, Binder S, Kain R, Ojha PP, Susani M, Horvat R, Baker PJ, Couser WG. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J Immunol. 1989;143:546–52.PubMed Kerjaschki D, Schulze M, Binder S, Kain R, Ojha PP, Susani M, Horvat R, Baker PJ, Couser WG. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J Immunol. 1989;143:546–52.PubMed
71.
Zurück zum Zitat Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol. 2005;17:1239–48.PubMedCrossRef Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol. 2005;17:1239–48.PubMedCrossRef
72.
Zurück zum Zitat Carney DF, Hammer CH, Shin ML. Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+ and association with cellular Ca2+. J Immunol. 1986;137:263–70.PubMed Carney DF, Hammer CH, Shin ML. Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+ and association with cellular Ca2+. J Immunol. 1986;137:263–70.PubMed
73.
Zurück zum Zitat Niculescu F, Rus H, Shin ML. Receptor-independent activation of guanine nucleotide-binding regulatory proteins by terminal complement complexes. J Biol Chem. 1994;269:4417–23.PubMed Niculescu F, Rus H, Shin ML. Receptor-independent activation of guanine nucleotide-binding regulatory proteins by terminal complement complexes. J Biol Chem. 1994;269:4417–23.PubMed
74.
Zurück zum Zitat Niculescu F, Rus H, van Biesen T, Shin ML. Activation of Ras and mitogen-activated protein kinase pathway by terminal complement complexes is G protein dependent. J Immunol. 1997;158:4405–12.PubMed Niculescu F, Rus H, van Biesen T, Shin ML. Activation of Ras and mitogen-activated protein kinase pathway by terminal complement complexes is G protein dependent. J Immunol. 1997;158:4405–12.PubMed
75.
Zurück zum Zitat Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.PubMedCrossRef Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.PubMedCrossRef
76.
Zurück zum Zitat Rus HG, Niculescu F, Shin ML. Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol. 1996;156:4892–900.PubMed Rus HG, Niculescu F, Shin ML. Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol. 1996;156:4892–900.PubMed
77.
Zurück zum Zitat Rus H, Niculescu F, Badea T, Shin ML. Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. Immunopharmacol. 1997;38:177–87.CrossRef Rus H, Niculescu F, Badea T, Shin ML. Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. Immunopharmacol. 1997;38:177–87.CrossRef
78.
Zurück zum Zitat Kraus S, Seger R, Fishelson Z. Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis. Clin Exp Immunol. 2001;123:366–74.PubMedCrossRef Kraus S, Seger R, Fishelson Z. Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis. Clin Exp Immunol. 2001;123:366–74.PubMedCrossRef
79.
Zurück zum Zitat Peng H, Takano T, Papillon J, Bijian K, Khadir A, Cybulsky AV. Complement activates the c-Jun N-terminal kinase/stress-activated protein kinase in glomerular epithelial cells. J Immunol. 2002;169:2594–601.PubMed Peng H, Takano T, Papillon J, Bijian K, Khadir A, Cybulsky AV. Complement activates the c-Jun N-terminal kinase/stress-activated protein kinase in glomerular epithelial cells. J Immunol. 2002;169:2594–601.PubMed
80.
Zurück zum Zitat Aoudjit L, Stanciu M, Li H, Lemay S, Takano T. p38 mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury. Am J Physiol Renal Physiol. 2003;285:F765–74.PubMed Aoudjit L, Stanciu M, Li H, Lemay S, Takano T. p38 mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury. Am J Physiol Renal Physiol. 2003;285:F765–74.PubMed
81.
Zurück zum Zitat Dashiell SM, Rus H, Koski CL. Terminal complement complexes concomitantly stimulate proliferation and rescue of Schwann cells from apoptosis. Glia. 2000;30:187–98.PubMedCrossRef Dashiell SM, Rus H, Koski CL. Terminal complement complexes concomitantly stimulate proliferation and rescue of Schwann cells from apoptosis. Glia. 2000;30:187–98.PubMedCrossRef
82.
Zurück zum Zitat Rus HG, Niculescu FI, Shin ML. Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol Rev. 2001;180:49–55.PubMedCrossRef Rus HG, Niculescu FI, Shin ML. Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol Rev. 2001;180:49–55.PubMedCrossRef
83.
Zurück zum Zitat Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, Shin ML, Rus H. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.PubMedCrossRef Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, Shin ML, Rus H. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.PubMedCrossRef
84.
Zurück zum Zitat Niculescu F, Soane L, Badea T, Shin M, Rus H. Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology. 1999;42:187–93.PubMedCrossRef Niculescu F, Soane L, Badea T, Shin M, Rus H. Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology. 1999;42:187–93.PubMedCrossRef
85.
Zurück zum Zitat Furukawa Y, Piwnica-Worms H, Ernst TJ, Kanakura Y, Griffin JD. cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science. 1990;250:805–8.PubMedCrossRef Furukawa Y, Piwnica-Worms H, Ernst TJ, Kanakura Y, Griffin JD. cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science. 1990;250:805–8.PubMedCrossRef
86.
Zurück zum Zitat Marraccino RL, Firpo EJ, Roberts JM. Activation of the p34 CDC2 protein kinase at the start of S phase in the human cell cycle. Mol Biol Cell. 1992;3:389–401.PubMed Marraccino RL, Firpo EJ, Roberts JM. Activation of the p34 CDC2 protein kinase at the start of S phase in the human cell cycle. Mol Biol Cell. 1992;3:389–401.PubMed
87.
Zurück zum Zitat Moore JD, Kirk JA, Hunt T. Unmasking the S-phase-promoting potential of cyclin B1. Science. 2003;300:987–90.PubMedCrossRef Moore JD, Kirk JA, Hunt T. Unmasking the S-phase-promoting potential of cyclin B1. Science. 2003;300:987–90.PubMedCrossRef
88.
Zurück zum Zitat Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet. 2003;35:25–31.PubMedCrossRef Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet. 2003;35:25–31.PubMedCrossRef
89.
Zurück zum Zitat Tegla C, Cudrici C, Rozycka M, Soloviova K, Ito T, Singh AK, Khan A, Azimzadeh P, Andrian-Albescu M, Khan A, Niculescu F, Rus V, Judge SIV, Rus H. C5b-9-activated, Kv1.3 channels mediate oligodendrocyte cell cycle activation and dedifferentiation. Exp Mol Pathol. 2011;91:335–45.PubMedCrossRef Tegla C, Cudrici C, Rozycka M, Soloviova K, Ito T, Singh AK, Khan A, Azimzadeh P, Andrian-Albescu M, Khan A, Niculescu F, Rus V, Judge SIV, Rus H. C5b-9-activated, Kv1.3 channels mediate oligodendrocyte cell cycle activation and dedifferentiation. Exp Mol Pathol. 2011;91:335–45.PubMedCrossRef
90.
Zurück zum Zitat Shankland SJ, Pippin JW, Couser WG. Complement (C5b-9) induces glomerular epithelial cell DNA synthesis but not proliferation in vitro. Kidney Int. 1999;56:538–48.PubMedCrossRef Shankland SJ, Pippin JW, Couser WG. Complement (C5b-9) induces glomerular epithelial cell DNA synthesis but not proliferation in vitro. Kidney Int. 1999;56:538–48.PubMedCrossRef
91.
Zurück zum Zitat Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG, Shankland SJ. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J Clin Invest. 2003;111:877–85.PubMed Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG, Shankland SJ. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J Clin Invest. 2003;111:877–85.PubMed
92.
Zurück zum Zitat Halperin JA, Taratuska A, Nicholson-Weller A. Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Invest. 1993;91:1974–8.PubMedCrossRef Halperin JA, Taratuska A, Nicholson-Weller A. Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Invest. 1993;91:1974–8.PubMedCrossRef
93.
Zurück zum Zitat Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med. 1994;179:985–92.PubMedCrossRef Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med. 1994;179:985–92.PubMedCrossRef
94.
Zurück zum Zitat Zwaka TP, Torzewski J, Hoeflich A, Dejosez M, Kaiser S, Hombach V, Jehle PM. The terminal complement complex inhibits apoptosis in vascular smooth muscle cells by activating an autocrine IGF-1 loop. Faseb J. 2003;17:1346–8.PubMed Zwaka TP, Torzewski J, Hoeflich A, Dejosez M, Kaiser S, Hombach V, Jehle PM. The terminal complement complex inhibits apoptosis in vascular smooth muscle cells by activating an autocrine IGF-1 loop. Faseb J. 2003;17:1346–8.PubMed
95.
Zurück zum Zitat Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.PubMedCrossRef Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.PubMedCrossRef
96.
Zurück zum Zitat Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, Vlaicu S, Rus V, Niculescu F, Rus H. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.PubMedCrossRef Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, Vlaicu S, Rus V, Niculescu F, Rus H. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.PubMedCrossRef
97.
Zurück zum Zitat Lang TJ, Badea TC, Wade R, Shin ML. Sublytic terminal complement attack on myotubes decreases the expression of mRNAs encoding muscle-specific proteins. J Neurochem. 1997;68:1581–9.PubMedCrossRef Lang TJ, Badea TC, Wade R, Shin ML. Sublytic terminal complement attack on myotubes decreases the expression of mRNAs encoding muscle-specific proteins. J Neurochem. 1997;68:1581–9.PubMedCrossRef
98.
Zurück zum Zitat Badea TD, Park JH, Soane L, Niculescu T, Niculescu F, Rus H, Shin ML. Sublytic terminal complement attack induces c-fos transcriptional activation in myotubes. J Neuroimmunol. 2003;142:58–66.PubMedCrossRef Badea TD, Park JH, Soane L, Niculescu T, Niculescu F, Rus H, Shin ML. Sublytic terminal complement attack induces c-fos transcriptional activation in myotubes. J Neuroimmunol. 2003;142:58–66.PubMedCrossRef
99.
Zurück zum Zitat Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996;8:205–15.PubMedCrossRef Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996;8:205–15.PubMedCrossRef
100.
Zurück zum Zitat Kilgore KS, Schmid E, Shanley TP, Flory CM, Maheswari V, Tramontini NL, Cohen H, Ward PA, Friedl HP, Warren JS. Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol. 1997;150:2019–31.PubMed Kilgore KS, Schmid E, Shanley TP, Flory CM, Maheswari V, Tramontini NL, Cohen H, Ward PA, Friedl HP, Warren JS. Sublytic concentrations of the membrane attack complex of complement induce endothelial interleukin-8 and monocyte chemoattractant protein-1 through nuclear factor-kappa B activation. Am J Pathol. 1997;150:2019–31.PubMed
101.
Zurück zum Zitat Viedt C, Hansch GM, Brandes RP, Kubler W, Kreuzer J. The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-kappa B and AP-1. Faseb J. 2000;14:2370–2.PubMed Viedt C, Hansch GM, Brandes RP, Kubler W, Kreuzer J. The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-kappa B and AP-1. Faseb J. 2000;14:2370–2.PubMed
102.
Zurück zum Zitat Dashiell SM, Koski CL. Sublytic terminal complement complexes decrease P0 Gene expression in Schwann cells. J Neurochem. 1999;73:2321–30.PubMedCrossRef Dashiell SM, Koski CL. Sublytic terminal complement complexes decrease P0 Gene expression in Schwann cells. J Neurochem. 1999;73:2321–30.PubMedCrossRef
103.
Zurück zum Zitat Soane L, Rus H, Niculescu F, Shin ML. Inhibition of oligodendrocyte apoptosis by sublytic C5b-9 is associated with enhanced synthesis of bcl-2 and mediated by inhibition of caspase-3 activation. J Immunol. 1999;163:6132–8.PubMed Soane L, Rus H, Niculescu F, Shin ML. Inhibition of oligodendrocyte apoptosis by sublytic C5b-9 is associated with enhanced synthesis of bcl-2 and mediated by inhibition of caspase-3 activation. J Immunol. 1999;163:6132–8.PubMed
104.
Zurück zum Zitat Soane L, Cho HJ, Niculescu F, Rus H, Shin ML. C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol. 2001;167:2305–11.PubMed Soane L, Cho HJ, Niculescu F, Rus H, Shin ML. C5b-9 terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol. 2001;167:2305–11.PubMed
105.
Zurück zum Zitat Cudrici C, Summers D, Jansen T, Fosbrink M, Rus H. C5b-9 protects oligodendrocytes apoptosis by regulating BH-3-only proapoptotic proteins. FASEB J. 2005;19:324. Cudrici C, Summers D, Jansen T, Fosbrink M, Rus H. C5b-9 protects oligodendrocytes apoptosis by regulating BH-3-only proapoptotic proteins. FASEB J. 2005;19:324.
106.
Zurück zum Zitat Cudrici C, Niculescu F, Jensen T, Zafranskaia E, Fosbrink M, Rus V, Shin ML, Rus H. C5b-9 terminal complex protects oligodendrocytes from apoptotic cell death by inhibiting caspase-8 processing and up-regulating FLIP. J Immunol. 2006;176:3173–80.PubMed Cudrici C, Niculescu F, Jensen T, Zafranskaia E, Fosbrink M, Rus V, Shin ML, Rus H. C5b-9 terminal complex protects oligodendrocytes from apoptotic cell death by inhibiting caspase-8 processing and up-regulating FLIP. J Immunol. 2006;176:3173–80.PubMed
107.
Zurück zum Zitat Niculescu F, Rus HG, Vlaicu R. Immunohistochemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis. 1987;65:1–11.PubMedCrossRef Niculescu F, Rus HG, Vlaicu R. Immunohistochemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis. 1987;65:1–11.PubMedCrossRef
108.
Zurück zum Zitat Niculescu F, Rus HG, Porutiu D, Ghiurca V, Vlaicu R. Immunoelectron-microscopic localization of S-protein/vitronectin in human atherosclerotic wall. Atherosclerosis. 1989;78:197–203.PubMedCrossRef Niculescu F, Rus HG, Porutiu D, Ghiurca V, Vlaicu R. Immunoelectron-microscopic localization of S-protein/vitronectin in human atherosclerotic wall. Atherosclerosis. 1989;78:197–203.PubMedCrossRef
109.
Zurück zum Zitat Sanders ME, Alexander EL, Koski CL, Shin ML, Sano Y, Frank MM, Joiner KA. Terminal complement complexes (SC5b-9) in cerebrospinal fluid in autoimmune nervous system diseases. Ann NY Acad Sci. 1988;540:387–8.PubMedCrossRef Sanders ME, Alexander EL, Koski CL, Shin ML, Sano Y, Frank MM, Joiner KA. Terminal complement complexes (SC5b-9) in cerebrospinal fluid in autoimmune nervous system diseases. Ann NY Acad Sci. 1988;540:387–8.PubMedCrossRef
110.
Zurück zum Zitat Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63:16–25.PubMedCrossRef Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63:16–25.PubMedCrossRef
111.
Zurück zum Zitat Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassman H. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain. 2002;25:1450–61.CrossRef Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassman H. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain. 2002;25:1450–61.CrossRef
112.
Zurück zum Zitat Kuijpers TW, Nguyen M, Hopman CT, Nieuwenhuys E, Dewald G, Lankester AC, Roos A, van der Ende A, Fijen C, de Boer M. Complement factor 7 gene mutations in relation to meningococcal infection and clinical recurrence of meningococcal disease. Mol Immunol. 2010;47:671–7.PubMedCrossRef Kuijpers TW, Nguyen M, Hopman CT, Nieuwenhuys E, Dewald G, Lankester AC, Roos A, van der Ende A, Fijen C, de Boer M. Complement factor 7 gene mutations in relation to meningococcal infection and clinical recurrence of meningococcal disease. Mol Immunol. 2010;47:671–7.PubMedCrossRef
113.
Zurück zum Zitat Whitney KD, Andrews PI, McNamara JO. Immunoglobulin G and complement immunoreactivity in the cerebral cortex of patients with Rasmussen’s encephalitis. Neurology. 1999;53:699–708.PubMed Whitney KD, Andrews PI, McNamara JO. Immunoglobulin G and complement immunoreactivity in the cerebral cortex of patients with Rasmussen’s encephalitis. Neurology. 1999;53:699–708.PubMed
114.
Zurück zum Zitat Kovacs GG, Gasque P, Strobel T, Lindeck-Pozza E, Strohschneider M, Ironside JW, Budka H, Guentchev M. Complement activation in human prion disease. Neurobiol Dis. 2004;15:21–8.PubMedCrossRef Kovacs GG, Gasque P, Strobel T, Lindeck-Pozza E, Strohschneider M, Ironside JW, Budka H, Guentchev M. Complement activation in human prion disease. Neurobiol Dis. 2004;15:21–8.PubMedCrossRef
115.
Zurück zum Zitat McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis. 2010;19:355–61.PubMed McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis. 2010;19:355–61.PubMed
116.
Zurück zum Zitat Yasuhara O, Aimi Y, McGeer EG, McGeer PL. Expression of the complement membrane attack complex and its inhibitors in Pick disease brain. Brain Res. 1994;652:346–9.PubMedCrossRef Yasuhara O, Aimi Y, McGeer EG, McGeer PL. Expression of the complement membrane attack complex and its inhibitors in Pick disease brain. Brain Res. 1994;652:346–9.PubMedCrossRef
117.
Zurück zum Zitat Loeffler DA, Camp DM, Conant SB. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinflamm. 2006;3:29.CrossRef Loeffler DA, Camp DM, Conant SB. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinflamm. 2006;3:29.CrossRef
118.
Zurück zum Zitat Pedersen ED, Waje-Andreassen U, Vedeler CA, Aamodt G, Mollnes TE. Systemic complement activation following human acute ischaemic stroke. Clin Exp Immunol. 2004;137:117–22.PubMedCrossRef Pedersen ED, Waje-Andreassen U, Vedeler CA, Aamodt G, Mollnes TE. Systemic complement activation following human acute ischaemic stroke. Clin Exp Immunol. 2004;137:117–22.PubMedCrossRef
119.
Zurück zum Zitat Tulamo R, Frosen J, Junnikkala S, Paetau A, Pitkaniemi J, Kangasniemi M, Niemela M, Jaaskelainen J, Jokitalo E, Karatas A, Hernesniemi J, Meri S. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery. 2006;59:1069–76.PubMed Tulamo R, Frosen J, Junnikkala S, Paetau A, Pitkaniemi J, Kangasniemi M, Niemela M, Jaaskelainen J, Jokitalo E, Karatas A, Hernesniemi J, Meri S. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery. 2006;59:1069–76.PubMed
120.
Zurück zum Zitat Fosse E, Pillgram-Larsen J, Svennevig JL, Nordby C, Skulberg A, Mollnes TE, Abdelnoor M. Complement activation in injured patients occurs immediately and is dependent on the severity of the trauma. Injury. 1998;29:509–14.PubMedCrossRef Fosse E, Pillgram-Larsen J, Svennevig JL, Nordby C, Skulberg A, Mollnes TE, Abdelnoor M. Complement activation in injured patients occurs immediately and is dependent on the severity of the trauma. Injury. 1998;29:509–14.PubMedCrossRef
121.
Zurück zum Zitat Aronica E, Boer K, van Vliet EA, Redeker S, Baayen JC, Spliet WG, van Rijen PC, Troost D, da Silva FH, Wadman WJ, Gorter JA. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis. 2007;26:497–511.PubMedCrossRef Aronica E, Boer K, van Vliet EA, Redeker S, Baayen JC, Spliet WG, van Rijen PC, Troost D, da Silva FH, Wadman WJ, Gorter JA. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis. 2007;26:497–511.PubMedCrossRef
122.
Zurück zum Zitat Vezzani A. Innate immunity and inflammation in temporal lobe epilepsy: new emphasis on the role of complement activation. Epilepsy Curr. 2008;8:75–7.PubMedCrossRef Vezzani A. Innate immunity and inflammation in temporal lobe epilepsy: new emphasis on the role of complement activation. Epilepsy Curr. 2008;8:75–7.PubMedCrossRef
123.
Zurück zum Zitat Schmidt OI, Heyde CE, Ertel W, Stahel PF. Closed head injury—an inflammatory disease? Brain Res Brain Res Rev. 2005;48:388–99.PubMedCrossRef Schmidt OI, Heyde CE, Ertel W, Stahel PF. Closed head injury—an inflammatory disease? Brain Res Brain Res Rev. 2005;48:388–99.PubMedCrossRef
124.
Zurück zum Zitat Grönblad M, Habtemariam A, Virri J, Seitsalo S, Vanharanta H, Guyer RD. Complement membrane attack complexes in pathologic disc tissues. Spine. 2003;28:114–8.PubMedCrossRef Grönblad M, Habtemariam A, Virri J, Seitsalo S, Vanharanta H, Guyer RD. Complement membrane attack complexes in pathologic disc tissues. Spine. 2003;28:114–8.PubMedCrossRef
125.
Zurück zum Zitat Engel AG, Biesecker G. Complement activation in muscle fiber necrosis: demonstration of the membrane attack complex of complement in necrotic fibers. Ann Neurol. 1982;12:289–96.PubMedCrossRef Engel AG, Biesecker G. Complement activation in muscle fiber necrosis: demonstration of the membrane attack complex of complement in necrotic fibers. Ann Neurol. 1982;12:289–96.PubMedCrossRef
126.
Zurück zum Zitat Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MA, Van Der Esch E, Duimel H, Frederik P, Molenaar PC, Martinez–Martinez P, De Baets MH, Losen M. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity. 2010;43:353–70.PubMedCrossRef Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MA, Van Der Esch E, Duimel H, Frederik P, Molenaar PC, Martinez–Martinez P, De Baets MH, Losen M. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity. 2010;43:353–70.PubMedCrossRef
127.
Zurück zum Zitat Koski CL, Sanders ME, Swoveland PT, Lawley TJ, Shin ML, Frank MM, Joiner KA. Activation of terminal components of complement in patients with Guillain–Barre syndrome and other demyelinating neuropathies. J Clin Invest. 1987;80:1492–7.PubMedCrossRef Koski CL, Sanders ME, Swoveland PT, Lawley TJ, Shin ML, Frank MM, Joiner KA. Activation of terminal components of complement in patients with Guillain–Barre syndrome and other demyelinating neuropathies. J Clin Invest. 1987;80:1492–7.PubMedCrossRef
128.
Zurück zum Zitat Putzu G, Figarella-Branger D, Bouvier-Labit C, Liprandi A, Bianco N, Pellissier J. Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain–Barré Syndrome. J Neurol Sci. 2000;174:16–21.PubMedCrossRef Putzu G, Figarella-Branger D, Bouvier-Labit C, Liprandi A, Bianco N, Pellissier J. Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain–Barré Syndrome. J Neurol Sci. 2000;174:16–21.PubMedCrossRef
129.
Zurück zum Zitat Spuler S, Engel AG. Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology. 1998;50:41–6.PubMed Spuler S, Engel AG. Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology. 1998;50:41–6.PubMed
130.
Zurück zum Zitat Louboutin JP, Navenot JM, Rouger K, Blanchard D. S-protein is expressed in necrotic fibers in Duchenne muscular dystrophy and polymyositis. Muscle Nerve. 2003;27:575–81.PubMedCrossRef Louboutin JP, Navenot JM, Rouger K, Blanchard D. S-protein is expressed in necrotic fibers in Duchenne muscular dystrophy and polymyositis. Muscle Nerve. 2003;27:575–81.PubMedCrossRef
131.
Zurück zum Zitat Fernandez C, Figarella-Branger D, Alla P, Harle JR, Pellissier JF. Colchicine myopathy: a vacuolar myopathy with selective type I muscle fiber involvement. An immunohistochemical and electron microscopic study of two cases. Acta Neuropathol. 2002;103:100–6.PubMedCrossRef Fernandez C, Figarella-Branger D, Alla P, Harle JR, Pellissier JF. Colchicine myopathy: a vacuolar myopathy with selective type I muscle fiber involvement. An immunohistochemical and electron microscopic study of two cases. Acta Neuropathol. 2002;103:100–6.PubMedCrossRef
132.
Zurück zum Zitat Biesecker G, Katz S, Koffler D. Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis. J Exp Med. 1981;154:1779–94.PubMedCrossRef Biesecker G, Katz S, Koffler D. Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis. J Exp Med. 1981;154:1779–94.PubMedCrossRef
133.
Zurück zum Zitat Gawryl MS, Chudwin DS, Langlois PF, Lint TF. The terminal complement complex, C5b-9, a marker of disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 1988;31:188–95.PubMedCrossRef Gawryl MS, Chudwin DS, Langlois PF, Lint TF. The terminal complement complex, C5b-9, a marker of disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 1988;31:188–95.PubMedCrossRef
134.
Zurück zum Zitat Fujigaki Y, Muranaka Y, Sakakima M, Ohta I, Sakao Y, Fujikura T, Sun Y, Katafuchi R, Joh K, Hishida A. Analysis of intra-GBM microstructures in a SLE case with glomerulopathy associated with podocytic infolding. Clin Exp Nephrol. 2008;12:432–9.PubMedCrossRef Fujigaki Y, Muranaka Y, Sakakima M, Ohta I, Sakao Y, Fujikura T, Sun Y, Katafuchi R, Joh K, Hishida A. Analysis of intra-GBM microstructures in a SLE case with glomerulopathy associated with podocytic infolding. Clin Exp Nephrol. 2008;12:432–9.PubMedCrossRef
135.
Zurück zum Zitat Jerath R, Burek CL, Hoffman W. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol. 2005;116:11–7.PubMedCrossRef Jerath R, Burek CL, Hoffman W. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol. 2005;116:11–7.PubMedCrossRef
136.
Zurück zum Zitat Hoffman W, Cudrici C, Zafranskaia E, Rus H. Complement activation in diabetic ketoacidosis brains. Exp Mol Pathol. 2006;80:283–8.PubMedCrossRef Hoffman W, Cudrici C, Zafranskaia E, Rus H. Complement activation in diabetic ketoacidosis brains. Exp Mol Pathol. 2006;80:283–8.PubMedCrossRef
137.
Zurück zum Zitat Hinglais N, Kazatchkine MD, Bhakdi S, Appay MD, Mandet C, Grossetete J, Bariety J. Immunohistochemical study of the C5b-9 complex of complement in human kidneys. Kidney Int. 1986;30:399–410.PubMedCrossRef Hinglais N, Kazatchkine MD, Bhakdi S, Appay MD, Mandet C, Grossetete J, Bariety J. Immunohistochemical study of the C5b-9 complex of complement in human kidneys. Kidney Int. 1986;30:399–410.PubMedCrossRef
138.
Zurück zum Zitat Papagianni AA, Alexopoulos E, Leontsini M, Papadimitriou M. C5b-9 and adhesion molecules in human idiopathic membranous nephropathy. Nephrol Dial Transpl. 2002;17:57–63.CrossRef Papagianni AA, Alexopoulos E, Leontsini M, Papadimitriou M. C5b-9 and adhesion molecules in human idiopathic membranous nephropathy. Nephrol Dial Transpl. 2002;17:57–63.CrossRef
139.
Zurück zum Zitat Kobayashi Y, Hasegawa O, Honda M. Terminal complement complexes in childhood type I membranoproliferative glomerulonephritis. J Nephrol. 2006;19:746–50.PubMed Kobayashi Y, Hasegawa O, Honda M. Terminal complement complexes in childhood type I membranoproliferative glomerulonephritis. J Nephrol. 2006;19:746–50.PubMed
140.
Zurück zum Zitat Deppisch R, Schmitt V, Bommer J, Hansch GM, Ritz E, Rauterberg EW. Fluid phase generation of terminal complement complex as a novel index of bioincompatibility. Kidney Int. 1990;37:696–706.PubMedCrossRef Deppisch R, Schmitt V, Bommer J, Hansch GM, Ritz E, Rauterberg EW. Fluid phase generation of terminal complement complex as a novel index of bioincompatibility. Kidney Int. 1990;37:696–706.PubMedCrossRef
141.
Zurück zum Zitat Inoshita H, Ohsawa I, Kusaba G, Ishii M, Onda K, Horikoshi S, Ohi H, Tomino Y. Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis. BMC Nephrol. 2010;11:34.PubMedCrossRef Inoshita H, Ohsawa I, Kusaba G, Ishii M, Onda K, Horikoshi S, Ohi H, Tomino Y. Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis. BMC Nephrol. 2010;11:34.PubMedCrossRef
142.
Zurück zum Zitat Biesecker G, Lavin L, Ziskind M, Koffler D. Cutaneous localization of the membrane attack complex in discoid and systemic lupus erythematosus. N Engl J Med. 1982;306:264–70.PubMedCrossRef Biesecker G, Lavin L, Ziskind M, Koffler D. Cutaneous localization of the membrane attack complex in discoid and systemic lupus erythematosus. N Engl J Med. 1982;306:264–70.PubMedCrossRef
143.
Zurück zum Zitat Vasil KE, Magro MM. Cutaneous vascular deposition of C5b-9 and its role as a diagnostic adjunct in the setting of diabetes mellitus and porphyria cutanea tarda. J Am Acad Dermatol. 2006;56:96–104.CrossRef Vasil KE, Magro MM. Cutaneous vascular deposition of C5b-9 and its role as a diagnostic adjunct in the setting of diabetes mellitus and porphyria cutanea tarda. J Am Acad Dermatol. 2006;56:96–104.CrossRef
144.
Zurück zum Zitat Dahl MV, Falk RJ, Carpenter R, Michael AF. Deposition of the membrane attack complex of complement in bullous pemphigoid. J Invest Dermatol. 1984;82:132–5.PubMedCrossRef Dahl MV, Falk RJ, Carpenter R, Michael AF. Deposition of the membrane attack complex of complement in bullous pemphigoid. J Invest Dermatol. 1984;82:132–5.PubMedCrossRef
145.
Zurück zum Zitat Magro C, Dyrsen M. The use of C3d and C4d immunohistochemistry on formalin-fixed tissue as a diagnostic adjunct in the assessment of inflammatory skin disease. J Am Acad Dermatol. 2008;59:822–33.PubMedCrossRef Magro C, Dyrsen M. The use of C3d and C4d immunohistochemistry on formalin-fixed tissue as a diagnostic adjunct in the assessment of inflammatory skin disease. J Am Acad Dermatol. 2008;59:822–33.PubMedCrossRef
146.
Zurück zum Zitat Kissel JT, Mendell JR, Rammohan KW. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med. 1986;314:329–34.PubMedCrossRef Kissel JT, Mendell JR, Rammohan KW. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med. 1986;314:329–34.PubMedCrossRef
147.
Zurück zum Zitat Campo A, Hausmann G, Marti RM, Estrach T, Grau JM, Porcel JM, Herrero C. Complement activation products (C3a and C5b-9) as markers of activity of dermatomyositis. Comparison with usual biochemical parameters. Actas Dermosifiliogr. 2007;98:403–14.PubMedCrossRef Campo A, Hausmann G, Marti RM, Estrach T, Grau JM, Porcel JM, Herrero C. Complement activation products (C3a and C5b-9) as markers of activity of dermatomyositis. Comparison with usual biochemical parameters. Actas Dermosifiliogr. 2007;98:403–14.PubMedCrossRef
148.
Zurück zum Zitat Kawana S, Shen GH, Kobayashi Y, Nishiyama S. Membrane attack complex of complement in Henoch–Schonlein purpura skin and nephritis. Arch Dermatol Res. 1990;282:183–7.PubMedCrossRef Kawana S, Shen GH, Kobayashi Y, Nishiyama S. Membrane attack complex of complement in Henoch–Schonlein purpura skin and nephritis. Arch Dermatol Res. 1990;282:183–7.PubMedCrossRef
149.
Zurück zum Zitat Sprott H, Muller-Ladner U, Distler O, Gay RE, Barnum SR, Landthaler M, Scholmerich J, Lang B, Gay S. Detection of activated complement complex C5b-9 and complement receptor C5a in skin biopsies of patients with systemic sclerosis (scleroderma). J Rheumatol. 2000;27:402–4.PubMed Sprott H, Muller-Ladner U, Distler O, Gay RE, Barnum SR, Landthaler M, Scholmerich J, Lang B, Gay S. Detection of activated complement complex C5b-9 and complement receptor C5a in skin biopsies of patients with systemic sclerosis (scleroderma). J Rheumatol. 2000;27:402–4.PubMed
150.
Zurück zum Zitat Niculescu F, Rus H, Cristea A, Vlaicu R. Localization of the terminal C5b-9 complement complex in the human aortic atherosclerotic wall. Immunol Lett. 1985;10:109–14.PubMedCrossRef Niculescu F, Rus H, Cristea A, Vlaicu R. Localization of the terminal C5b-9 complement complex in the human aortic atherosclerotic wall. Immunol Lett. 1985;10:109–14.PubMedCrossRef
151.
Zurück zum Zitat Oksjoki R, Kovanene P, Mikko M, Laine P, Blom A, Meri S, Pentikainene M. Complement regulation in human atherosclerotic coronary lesions: Immunohistochemical evidence that C4b-binding protein negatively regulates the classical complement pathway, and that C5b-9 is formed via the alternative complement pathway. Atherosclerosis. 2007;192:40–8.PubMedCrossRef Oksjoki R, Kovanene P, Mikko M, Laine P, Blom A, Meri S, Pentikainene M. Complement regulation in human atherosclerotic coronary lesions: Immunohistochemical evidence that C4b-binding protein negatively regulates the classical complement pathway, and that C5b-9 is formed via the alternative complement pathway. Atherosclerosis. 2007;192:40–8.PubMedCrossRef
152.
Zurück zum Zitat Schafer H, Mathey D, Hugo F, Bhakdi S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol. 1986;137:1945–9.PubMed Schafer H, Mathey D, Hugo F, Bhakdi S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol. 1986;137:1945–9.PubMed
153.
Zurück zum Zitat Oren S, Maslovsky I, Schlesinger M, Reisin L. Complement activation in patients with acute myocardial infarction treated with streptokinase. Am J Med Sci. 1998;315:24–9.PubMedCrossRef Oren S, Maslovsky I, Schlesinger M, Reisin L. Complement activation in patients with acute myocardial infarction treated with streptokinase. Am J Med Sci. 1998;315:24–9.PubMedCrossRef
154.
Zurück zum Zitat Meuwissen M, van der Wal AC, Niessen HW, Koch KT, de Winter RJ, van der Loos CM, Rittersma SZ, Chamuleau SA, Tijssen JG, Becker AE, Piek JJ. Colocalisation of intraplaque C reactive protein, complement, oxidised low density lipoprotein, and macrophages in stable and unstable angina and acute myocardial infarction. J Clin Pathol. 2006;59:196–201.PubMedCrossRef Meuwissen M, van der Wal AC, Niessen HW, Koch KT, de Winter RJ, van der Loos CM, Rittersma SZ, Chamuleau SA, Tijssen JG, Becker AE, Piek JJ. Colocalisation of intraplaque C reactive protein, complement, oxidised low density lipoprotein, and macrophages in stable and unstable angina and acute myocardial infarction. J Clin Pathol. 2006;59:196–201.PubMedCrossRef
155.
Zurück zum Zitat Rus HG, Niculescu F, Vlaicu R. Presence of C5b-9 complement complex and S-protein in human myocardial areas with necrosis and sclerosis. Immunol Lett. 1987;16:15–20.PubMedCrossRef Rus HG, Niculescu F, Vlaicu R. Presence of C5b-9 complement complex and S-protein in human myocardial areas with necrosis and sclerosis. Immunol Lett. 1987;16:15–20.PubMedCrossRef
156.
Zurück zum Zitat Zwaka TP, Manolov D, Ozdemir C, Marx N, Kaya Z, Kochs M, Hoher M, Hombach V, Torzewski J. Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. Am J Pathol. 2002;161:449–57.PubMedCrossRef Zwaka TP, Manolov D, Ozdemir C, Marx N, Kaya Z, Kochs M, Hoher M, Hombach V, Torzewski J. Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. Am J Pathol. 2002;161:449–57.PubMedCrossRef
157.
Zurück zum Zitat Salama A, Hugo F, Heinrich D, Hoge R, Muller R, Kiefel V, Mueller-Eckhardt C, Bhakdi S. Deposition of terminal C5b-9 complement complexes on erythrocytes and leukocytes during cardiopulmonary bypass. N Engl J Med. 1988;318:408–14.PubMedCrossRef Salama A, Hugo F, Heinrich D, Hoge R, Muller R, Kiefel V, Mueller-Eckhardt C, Bhakdi S. Deposition of terminal C5b-9 complement complexes on erythrocytes and leukocytes during cardiopulmonary bypass. N Engl J Med. 1988;318:408–14.PubMedCrossRef
158.
Zurück zum Zitat Kumar RA, Cann C, Hall JE, Sudheer PS, Wilkes AR. Predictive value of IL-18 and SC5b-9 for neurocognitive dysfunction after cardiopulmonary bypass. Br J Anaesth. 2007;98:317–22.PubMedCrossRef Kumar RA, Cann C, Hall JE, Sudheer PS, Wilkes AR. Predictive value of IL-18 and SC5b-9 for neurocognitive dysfunction after cardiopulmonary bypass. Br J Anaesth. 2007;98:317–22.PubMedCrossRef
159.
Zurück zum Zitat Murataa K, Baldwin WM III. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection. Transpl Rev. 2009;23:139–50.CrossRef Murataa K, Baldwin WM III. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection. Transpl Rev. 2009;23:139–50.CrossRef
160.
Zurück zum Zitat ter Weeme M, Vonk AB, Kupreishvili K, van Ham M, Zeerleder S, Wouters D, Stooker W, Eijsman L, Van Hinsbergh VW, Krijnen PA, Niessen HW. Activated complement is more extensively present in diseased aortic valves than naturally occurring complement inhibitors: a sign of ongoing inflammation. Eur J Clin Invest. 2010;40:4–10.PubMedCrossRef ter Weeme M, Vonk AB, Kupreishvili K, van Ham M, Zeerleder S, Wouters D, Stooker W, Eijsman L, Van Hinsbergh VW, Krijnen PA, Niessen HW. Activated complement is more extensively present in diseased aortic valves than naturally occurring complement inhibitors: a sign of ongoing inflammation. Eur J Clin Invest. 2010;40:4–10.PubMedCrossRef
161.
Zurück zum Zitat Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Epithelial deposition of immunoglobulin G1 and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology. 1990;98:1264–71.PubMed Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Epithelial deposition of immunoglobulin G1 and activated complement (C3b and terminal complement complex) in ulcerative colitis. Gastroenterology. 1990;98:1264–71.PubMed
162.
Zurück zum Zitat Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Surface epithelium related activation of complement differs in Crohn’s disease and ulcerative colitis. Gut. 1992;33:902–8.PubMedCrossRef Halstensen TS, Mollnes TE, Garred P, Fausa O, Brandtzaeg P. Surface epithelium related activation of complement differs in Crohn’s disease and ulcerative colitis. Gut. 1992;33:902–8.PubMedCrossRef
163.
Zurück zum Zitat Ebert EC, Geng X, Lin J, Das KM. Autoantibodies against human tropomyosin isoform 5 in ulcerative colitis destroys colonic epithelial cells through antibody and complement-mediated lysis. Cell Immunol. 2006;244:43–9.PubMedCrossRef Ebert EC, Geng X, Lin J, Das KM. Autoantibodies against human tropomyosin isoform 5 in ulcerative colitis destroys colonic epithelial cells through antibody and complement-mediated lysis. Cell Immunol. 2006;244:43–9.PubMedCrossRef
164.
Zurück zum Zitat Rensen SS, Slaats Y, Driessen A, Peutz-Kootstra CJ, Nijhuis J, Steffense R, Greve JW, Buurman WA. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009;50:1809–17.PubMedCrossRef Rensen SS, Slaats Y, Driessen A, Peutz-Kootstra CJ, Nijhuis J, Steffense R, Greve JW, Buurman WA. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009;50:1809–17.PubMedCrossRef
165.
Zurück zum Zitat Fondevila C, Shen XD, Tsuchihashi S, Uchida Y, Freitas MC, Ke B, Busuttil RW, Kupiec-Weglinski JW. The membrane attack complex (C5b-9) in liver cold ischemia and reperfusion injury. Liver Transpl. 2008;14:1133–41.PubMedCrossRef Fondevila C, Shen XD, Tsuchihashi S, Uchida Y, Freitas MC, Ke B, Busuttil RW, Kupiec-Weglinski JW. The membrane attack complex (C5b-9) in liver cold ischemia and reperfusion injury. Liver Transpl. 2008;14:1133–41.PubMedCrossRef
166.
Zurück zum Zitat Polihronis M, Machet D, Saunders J, O’Bryan M, McRae J, Murphy B. Immunohistological detection of C5b-9 complement complexes in normal and pathological human livers. Pathology. 1993;25:20–3.PubMedCrossRef Polihronis M, Machet D, Saunders J, O’Bryan M, McRae J, Murphy B. Immunohistological detection of C5b-9 complement complexes in normal and pathological human livers. Pathology. 1993;25:20–3.PubMedCrossRef
167.
Zurück zum Zitat Bjerre M, Holland-Fischer P, Grønbæk H, Frystyk J, Hansen TK, Vilstrup H, Flyvbjerg A. Soluble membrane attack complex in ascites in patients with liver cirrhosis without infections. World J Hepatol. 2010;2:221–5.PubMedCrossRef Bjerre M, Holland-Fischer P, Grønbæk H, Frystyk J, Hansen TK, Vilstrup H, Flyvbjerg A. Soluble membrane attack complex in ascites in patients with liver cirrhosis without infections. World J Hepatol. 2010;2:221–5.PubMedCrossRef
168.
Zurück zum Zitat Biro L, Varga L, Par A, Nemesanszky E, Telegdy L, Ibranyi E, David K, Horvath G, Szentgyorgyi L, Nagy I, Dalmi L, Abonyi M, Fust G, Horanyi M, Csepregi A. C5b-9 and interleukin-6 in chronic hepatitis C. Surrogate markers predicting short-term response to interferon alpha-2b. Scand J Gastroenterol. 2000;35:1092–6.PubMedCrossRef Biro L, Varga L, Par A, Nemesanszky E, Telegdy L, Ibranyi E, David K, Horvath G, Szentgyorgyi L, Nagy I, Dalmi L, Abonyi M, Fust G, Horanyi M, Csepregi A. C5b-9 and interleukin-6 in chronic hepatitis C. Surrogate markers predicting short-term response to interferon alpha-2b. Scand J Gastroenterol. 2000;35:1092–6.PubMedCrossRef
169.
Zurück zum Zitat Scoazec JY, Borghi-Scoazec G, Durand F, Bernau J, Pham BN, Belghiti J, Feldmann G, Degott C. Complement activation after ischemia-reperfusion in human liver allografts: incidence and pathophysiological relevance. Gastroenterology. 1997;112:908–18.PubMedCrossRef Scoazec JY, Borghi-Scoazec G, Durand F, Bernau J, Pham BN, Belghiti J, Feldmann G, Degott C. Complement activation after ischemia-reperfusion in human liver allografts: incidence and pathophysiological relevance. Gastroenterology. 1997;112:908–18.PubMedCrossRef
170.
Zurück zum Zitat Niculescu F, Rus HG, Retegan M, Vlaicu R. Persistent complement activation on tumor cells in breast cancer. Am J Pathol. 1992;140:1039–43.PubMed Niculescu F, Rus HG, Retegan M, Vlaicu R. Persistent complement activation on tumor cells in breast cancer. Am J Pathol. 1992;140:1039–43.PubMed
171.
Zurück zum Zitat Inoue T, Yamakawa M, Takahashi T. Expression of complement regulating factors in gastric cancer cells. Mol Pathol. 2002;55:193–9.PubMedCrossRef Inoue T, Yamakawa M, Takahashi T. Expression of complement regulating factors in gastric cancer cells. Mol Pathol. 2002;55:193–9.PubMedCrossRef
172.
Zurück zum Zitat Fuke Y, Fujita T, Satomura A, Endo M, Matsumoto K. The role of complement activation, detected by urinary C5b-9 and urinary factor H, in the excretion of urinary albumin in cisplatin nephropathy. Clin Nephrol. 2009;71:110–7.PubMed Fuke Y, Fujita T, Satomura A, Endo M, Matsumoto K. The role of complement activation, detected by urinary C5b-9 and urinary factor H, in the excretion of urinary albumin in cisplatin nephropathy. Clin Nephrol. 2009;71:110–7.PubMed
173.
Zurück zum Zitat Charbel Issa P, Victor Chong N, Scholl HP. The significance of the complement system for the pathogenesis of age-related macular degeneration—current evidence and translation into clinical application. Graefes Arch Clin Exp Ophthalmol. 2010;249:163–74.PubMedCrossRef Charbel Issa P, Victor Chong N, Scholl HP. The significance of the complement system for the pathogenesis of age-related macular degeneration—current evidence and translation into clinical application. Graefes Arch Clin Exp Ophthalmol. 2010;249:163–74.PubMedCrossRef
174.
Zurück zum Zitat Kuehn MH, Kim CY, Ostojic J, Bellin M, Alward WL, Stone EM, Sakaguchi DS, Grozdanic SD, Kwon YH. Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp Eye Res. 2006;83:620–8.PubMedCrossRef Kuehn MH, Kim CY, Ostojic J, Bellin M, Alward WL, Stone EM, Sakaguchi DS, Grozdanic SD, Kwon YH. Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp Eye Res. 2006;83:620–8.PubMedCrossRef
175.
Zurück zum Zitat Gerl VB, Bohl J, Pitz S, Stoffelns B, Pfeiffer N, Bhakdi S. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2002;43:1104–8.PubMed Gerl VB, Bohl J, Pitz S, Stoffelns B, Pfeiffer N, Bhakdi S. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2002;43:1104–8.PubMed
176.
Zurück zum Zitat Mollnes TE, Paus A. Complement activation in synovial fluid and tissue from patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1986;29:1359–64.PubMedCrossRef Mollnes TE, Paus A. Complement activation in synovial fluid and tissue from patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1986;29:1359–64.PubMedCrossRef
177.
Zurück zum Zitat Sanders ME, Kopicky JA, Wigley FM, Shin ML, Frank MM, Joiner KA. Membrane attack complex of complement in rheumatoid synovial tissue demonstrated by immunofluorescent microscopy. J Rheumatol. 1986;13:1028–34.PubMed Sanders ME, Kopicky JA, Wigley FM, Shin ML, Frank MM, Joiner KA. Membrane attack complex of complement in rheumatoid synovial tissue demonstrated by immunofluorescent microscopy. J Rheumatol. 1986;13:1028–34.PubMed
178.
Zurück zum Zitat Guc D, Gulati P, Lemercier C, Lappin D, Birnie GD, Whaley K. Expression of the components and regulatory proteins of the alternative complement pathway and the membrane attack complex in normal and diseased synovium. Rheumatol Int. 1993;13:139–46.PubMedCrossRef Guc D, Gulati P, Lemercier C, Lappin D, Birnie GD, Whaley K. Expression of the components and regulatory proteins of the alternative complement pathway and the membrane attack complex in normal and diseased synovium. Rheumatol Int. 1993;13:139–46.PubMedCrossRef
179.
Zurück zum Zitat Doherty M, Whicher JT, Dieppe PA. Activation of the alternative pathway of complement by monosodium urate monohydrate crystals and other inflammatory particles. Ann Rheum Dis. 1983;42:285–91.PubMedCrossRef Doherty M, Whicher JT, Dieppe PA. Activation of the alternative pathway of complement by monosodium urate monohydrate crystals and other inflammatory particles. Ann Rheum Dis. 1983;42:285–91.PubMedCrossRef
180.
Zurück zum Zitat Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23:740–80.PubMedCrossRef Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23:740–80.PubMedCrossRef
181.
Zurück zum Zitat Rampersad R, Barton A, Sadovsky Y, Nelson DM. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro. Placenta. 2008;29:855–61.PubMedCrossRef Rampersad R, Barton A, Sadovsky Y, Nelson DM. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro. Placenta. 2008;29:855–61.PubMedCrossRef
Metadaten
Titel
Membrane attack by complement: the assembly and biology of terminal complement complexes
verfasst von
Cosmin A. Tegla
Cornelia Cudrici
Snehal Patel
Richard Trippe III
Violeta Rus
Florin Niculescu
Horea Rus
Publikationsdatum
01.10.2011
Verlag
Humana Press Inc
Erschienen in
Immunologic Research / Ausgabe 1/2011
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-011-8239-5

Weitere Artikel der Ausgabe 1/2011

Immunologic Research 1/2011 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.