Skip to main content
Log in

Segmentation of Lymph Nodes in Ultrasound Images Using U-Net Convolutional Neural Networks and Gabor-Based Anisotropic Diffusion

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

The automated segmentation of lymph nodes (LNs) in ultrasound images is challenging, largely because of speckle noise and echogenic hila. This paper proposes a fully automatic and accurate method for LN segmentation in ultrasound that overcomes these issues.

Methods

The proposed segmentation method integrates diffusion-based despeckling, U-Net convolutional neural networks and morphological operations. First, the speckle noise is suppressed and the lymph node edges are enhanced using Gabor-based anisotropic diffusion (GAD). Then, a modified U-Net model is used to segment the LNs excluding any echogenic hila. Finally, morphological operations are undertaken to segment the entire LNs by filling in any regions occupied by echogenic hila.

Results

A total of 531 lymph nodes from 526 patients were segmented using the proposed method. Its segmentation performance was evaluated in terms of its accuracy, sensitivity, specificity, Jaccard similarity and Dice coefficient, for which it achieved values of 0.934, 0.939, 0.937, 0.763 and 0.865, respectively.

Conclusion

The proposed method automatically and accurately segments LNs in ultrasound images, enhancing the prospects of being able to undertake artificial intelligence (AI)-based diagnosis of lymph node diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evans, K. D., Sammet, S., Ramos, Y., & Knopp, M. V. (2008). Image segmentation for evaluating axillary lymph nodes. Journal of Diagnostic Medical Sonography, 24(6), 329–336.

    Article  Google Scholar 

  2. Zhang, Y., Ying, M. T., Yang, L., Ahuja, A. T., & Chen, D. Z. (2016, December). Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images. In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 443-448). IEEE.

  3. Pham, D. L., Xu, C., & Prince, J. L. (2000). A survey of current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–337.

    Article  CAS  Google Scholar 

  4. Sarle, W. S. (2012). Algorithms for Clustering Data. Technometrics, 32(2), 227–229.

    Article  Google Scholar 

  5. Zhang, K., Zhang, L., Song, H., et al. (2013). Reinitialization-free level set evolution via reaction diffusion. IEEE Transactions on Image Processing, 22(1), 258–271.

    Article  Google Scholar 

  6. Zhang, Q., Song, S., Xiao, Y., et al. (2019). Dual-mode artificially-intelligent diagnosis of breast tumours in shear-wave elastography and B-mode ultrasound using deep polynomial networks. Medical Engineering & Physics, 64, 1–6.

    Article  Google Scholar 

  7. McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2), 91–108.

    Article  CAS  Google Scholar 

  8. Kuo, J., Mamou, J., Wang, Y., et al. (2017). Segmentation of 3-d high-frequency ultrasound images of human lymph nodes using graph cut with energy functional adapted to local intensity distribution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(10), 1514–1525.

    Article  Google Scholar 

  9. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, 14(4), 1–14.

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

    Article  Google Scholar 

  11. Gulshan, V., et al. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402.

    Article  Google Scholar 

  12. Al-antari, M. A., Al-masni, M. A., Choi, M., Han, S., & Kim, T. (2018). A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. International Journal of Medical Informatics, 117(May), 44–54.

    Article  Google Scholar 

  13. Dimauro, G., et al. (2019). Nasal cytology with deep learning techniques. International Journal of Medical Informatics, 122, 13–19.

    Article  Google Scholar 

  14. Ciresan, D., Giusti, A., Gambardella, L., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. Advances in Neural Information Processing Systems, 25, 2843–2851.

    Google Scholar 

  15. Avendi, M. R., Kheradvar, A., & Jafarkhani, H. (2016). A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical Image Analysis, 30, 108–119.

    Article  CAS  Google Scholar 

  16. Cha, K. H., Hadjiiski, L. M., Samala, R. K., Chan, H.-P., Cohan, R. H., & Caoili, E. M. (2016). Comparison of bladder segmentation using deep-learning convolutional neural network with and without level sets. Medical Imaging: Computer-aided Diagnosis, 43(4), 97512.

    Google Scholar 

  17. Nida, N., Irtaza, A., Javed, A., Yousaf, M. H., & Mahmood, M. T. (2019). Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. International Journal of Medical Informatics, 124, 37–48.

    Article  Google Scholar 

  18. Shelhamer, E., Long, J., & Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651.

    Article  Google Scholar 

  19. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.

    Article  Google Scholar 

  20. Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2881–2890).

  21. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 1–14.

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention, 9351, 234–241.

    Google Scholar 

  23. Yuan, Y., Chao, M., & Lo, Y. (2017). Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Transactions on Medical Imaging, 36(9), 1876–1886.

    Article  Google Scholar 

  24. Alom, M. Z., Yakopcic, C., Taha, T. M., & Asari, V. K. (2018). Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net). IEEE National Aerospace & Electronics Conference, 227(1–3), 327–333.

    Google Scholar 

  25. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  26. Zhang, Q., Han, H., Ji, C., Yu, J., Wang, Y., & Wang, W. (2014). Gabor-based anisotropic diffusion for speckle noise reduction in medical ultrasonography. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(6), 1273–1283.

    Article  Google Scholar 

  27. Rosário, P. W. S., et al. (2005). Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. Journal of Ultrasound in Medicine, 24(10), 1385–1389.

    Article  Google Scholar 

  28. Evans, R. M., Ahuja, A., & Metreweli, C. (1993). The linear echogenic hilus in cervical lymphadenopathy—A sign of benignity or malignancy? Clinical Radiology, 47(4), 262–264.

    Article  CAS  Google Scholar 

  29. Ying, M., Ahuja, A., Brook, F., & Metreweli, C. (2001). Vascularity and grey-scale sonographic features of normal cervical lymph nodes: Variations with nodal size. Clinical Radiology, 56(5), 416–419.

    Article  CAS  Google Scholar 

  30. Dong, H., Yang, G., Liu, F., Mo, Y., & Guo, Y. (2017). Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. Med Image Underst Anal Conf, 723, 506–517.

    Article  Google Scholar 

  31. Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV) (pp. 565–571). IEEE.

  32. Bottou, L. (2012). Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade, 7700, 421–436.

    Google Scholar 

  33. Kingma, D. P. & Ba, L. (2014). Adam: A method for stochastic optimization. http://arxiv.org/abs/1412.6980.

  34. Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003, August). Best practices for convolutional neural networks applied to visual document analysis. In Int Conf Doc Anal Rec, (vol. 3, pp. 958–963).

  35. Supriyanto, E., & Zulkifli, N. (2011). Abnormal tissue detection of breast ultrasound image using combination of morphological technique. In WSEAS CSCC Multiconference, (pp. 234–239).

  36. Kayalibay, B., Jensen, G., & van der Smagt, P. (2017). CNN-based segmentation of medical imaging data. Bioelectrochemistry, 75(2), 130–135.

    Google Scholar 

  37. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. (2016). The importance of skip connections in biomedical image segmentation. Lecture Notes in Computer Science, 10008, 179–187.

    Article  Google Scholar 

  38. Tajbakhsh, N., et al. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 35(5), 1299–1312.

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (Grant Nos. 62071285 and 61911530249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Chen or Qi Zhang.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, Y., Shi, J. et al. Segmentation of Lymph Nodes in Ultrasound Images Using U-Net Convolutional Neural Networks and Gabor-Based Anisotropic Diffusion. J. Med. Biol. Eng. 41, 942–952 (2021). https://doi.org/10.1007/s40846-021-00670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-021-00670-8

Keywords

Navigation