Skip to main content
Erschienen in: Current Allergy and Asthma Reports 5/2014

01.05.2014 | BASIC AND APPLIED SCIENCE (M FRIERI AND PJ BRYCE, SECTION EDITORS)

B cell Biology: An Overview

verfasst von: Hermann Eibel, Helene Kraus, Heiko Sic, Anne-Kathrin Kienzler, Marta Rizzi

Erschienen in: Current Allergy and Asthma Reports | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

In this review we summarize recent insights into the development of human B cells primarily by studying immunodeficiencies. Development and differentiation of B cells can be considered as a paradigm for many other developmental processes in cell biology. However, it differs from the development of many other cell types by phases of extremely rapid cell division and by defined series of somatic recombination and mutation events required to assemble and refine the B cell antigen receptors. Both somatic DNA alteration and proliferation phases take place in defined sites but in different organs. Thus, cell migration and timely arrival at defined sites are additional features of B cell development. By comparing experimental mouse models with insights gained from studying defined genetic defects leading to primary immunodeficiencies and hypogammaglobulinemia, we address important features that are characteristic for human B cells. We also summarize recent advances made by developing improved in vitro and in vivo systems allowing the development of human B cells from hematopoietic stem cells. Combined with genetic and functional studies of immunodeficiencies, these models will contribute not only to a better understanding of disease affecting the B lymphocyte compartment, but also to designing better and safer novel B cell-targeted therapies in autoimmunity and allergy.
Literatur
1.
Zurück zum Zitat Ghia P, ten Boekel E, Rolink AG, Melchers F. B-cell development: a comparison between mouse and man. Immunol Today. 1998;19:480–5.PubMed Ghia P, ten Boekel E, Rolink AG, Melchers F. B-cell development: a comparison between mouse and man. Immunol Today. 1998;19:480–5.PubMed
2.
Zurück zum Zitat Ferreiros-Vidal I et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood. 2013;121:1769–82.PubMed Ferreiros-Vidal I et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood. 2013;121:1769–82.PubMed
3.
Zurück zum Zitat Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2:162–74.PubMed Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2:162–74.PubMed
4.
Zurück zum Zitat Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.PubMed Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.PubMed
5.
Zurück zum Zitat Thompson EC et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–44.PubMed Thompson EC et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–44.PubMed
6.
Zurück zum Zitat Ma S et al. Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol. 2010;30:4149–58.PubMedCentralPubMed Ma S et al. Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol Cell Biol. 2010;30:4149–58.PubMedCentralPubMed
7.
Zurück zum Zitat Sun L et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1999;96:680–5.PubMedCentralPubMed Sun L et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1999;96:680–5.PubMedCentralPubMed
8.•
Zurück zum Zitat Holmfeldt L et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52. This extensive genomic profiling approach to ALL reports chromosomal alterations linked to Ras, Ikaros and TP53. PubMedCentralPubMed Holmfeldt L et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52. This extensive genomic profiling approach to ALL reports chromosomal alterations linked to Ras, Ikaros and TP53. PubMedCentralPubMed
9.
Zurück zum Zitat Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994;14:8292–303.PubMedCentralPubMed Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994;14:8292–303.PubMedCentralPubMed
10.
Zurück zum Zitat Papathanasiou P et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity. 2003;19:131–44.PubMed Papathanasiou P et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity. 2003;19:131–44.PubMed
11.••
Zurück zum Zitat Schjerven H et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14:1073–83. The authors demonstrate distinct roles of individual Ikaros Zn-fingers in gene regulation. PubMedCentralPubMed Schjerven H et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14:1073–83. The authors demonstrate distinct roles of individual Ikaros Zn-fingers in gene regulation. PubMedCentralPubMed
12.
Zurück zum Zitat Kim J et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity. 1999;10:345–55.PubMed Kim J et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity. 1999;10:345–55.PubMed
13.•
Zurück zum Zitat Zhang J et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol. 2012;13:86–94. The paper describes how Ikaros regulates nucleosome remodeling and histone modification. Zhang J et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol. 2012;13:86–94. The paper describes how Ikaros regulates nucleosome remodeling and histone modification.
14.
Zurück zum Zitat Turner Jr CA, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77:297–306.PubMed Turner Jr CA, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77:297–306.PubMed
15.
Zurück zum Zitat Ye BH et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet. 1997;16:161–70.PubMed Ye BH et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet. 1997;16:161–70.PubMed
16.
Zurück zum Zitat Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432:635–9.PubMed Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432:635–9.PubMed
17.
Zurück zum Zitat Kosan C et al. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity. 2010;33:917–28.PubMed Kosan C et al. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity. 2010;33:917–28.PubMed
18.
Zurück zum Zitat Moroy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol. 2011;23:368–78.PubMed Moroy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol. 2011;23:368–78.PubMed
19.
Zurück zum Zitat de Almeida Ribeiro C et al. The DNA-binding protein CTCF limits proximal Vkappa recombination and restricts kappa enhancer interactions to the immunoglobulin kappa light chain locus. Immunity. 2011;35:501–13. de Almeida Ribeiro C et al. The DNA-binding protein CTCF limits proximal Vkappa recombination and restricts kappa enhancer interactions to the immunoglobulin kappa light chain locus. Immunity. 2011;35:501–13.
20.
Zurück zum Zitat Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26:715–25.PubMed Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26:715–25.PubMed
21.
Zurück zum Zitat Singh H, Medina KL, Pongubala JM. Contingent gene regulatory networks and B cell fate specification. Proc Natl Acad Sci U S A. 2005;102:4949–53.PubMedCentralPubMed Singh H, Medina KL, Pongubala JM. Contingent gene regulatory networks and B cell fate specification. Proc Natl Acad Sci U S A. 2005;102:4949–53.PubMedCentralPubMed
22.•
Zurück zum Zitat Nechanitzky R et al. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat Immunol. 2013;14:867–75. The paper shows that EBF1 and Pax5 induce lineage commitment by repressing alternative cell fates. PubMed Nechanitzky R et al. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat Immunol. 2013;14:867–75. The paper shows that EBF1 and Pax5 induce lineage commitment by repressing alternative cell fates. PubMed
23.
Zurück zum Zitat Borghesi L et al. E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J Exp Med. 2005;202:1669–77.PubMedCentralPubMed Borghesi L et al. E47 is required for V(D)J recombinase activity in common lymphoid progenitors. J Exp Med. 2005;202:1669–77.PubMedCentralPubMed
24.
Zurück zum Zitat Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature. 1995;376:263–7.PubMed Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature. 1995;376:263–7.PubMed
25.
Zurück zum Zitat Vallespinos M et al. B Lymphocyte commitment program is driven by the proto-oncogene c-Myc. J Immunol. 2011;186:6726–36.PubMed Vallespinos M et al. B Lymphocyte commitment program is driven by the proto-oncogene c-Myc. J Immunol. 2011;186:6726–36.PubMed
26.
Zurück zum Zitat Seo W, Ikawa T, Kawamoto H, Taniuchi I. Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. J Exp Med. 2012;209:1255–62.PubMedCentralPubMed Seo W, Ikawa T, Kawamoto H, Taniuchi I. Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. J Exp Med. 2012;209:1255–62.PubMedCentralPubMed
27.
Zurück zum Zitat Lin YC et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010;11:635–43.PubMedCentralPubMed Lin YC et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010;11:635–43.PubMedCentralPubMed
28.
Zurück zum Zitat Zandi S et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol. 2008;181:3364–72.PubMed Zandi S et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol. 2008;181:3364–72.PubMed
29.
Zurück zum Zitat Welinder E, Ahsberg J, Sigvardsson M. B-lymphocyte commitment: identifying the point of no return. Semin Immunol. 2011;23:335–40.PubMed Welinder E, Ahsberg J, Sigvardsson M. B-lymphocyte commitment: identifying the point of no return. Semin Immunol. 2011;23:335–40.PubMed
30.
Zurück zum Zitat Dengler HS et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9:1388–98.PubMedCentralPubMed Dengler HS et al. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9:1388–98.PubMedCentralPubMed
31.
Zurück zum Zitat Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.PubMed Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401:556–62.PubMed
32.
Zurück zum Zitat Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol. 2001;20:65–82.PubMed Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol. 2001;20:65–82.PubMed
33.
Zurück zum Zitat Delogu A et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24:269–81.PubMed Delogu A et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24:269–81.PubMed
34.
Zurück zum Zitat Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8:463–70.PubMed Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nat Immunol. 2007;8:463–70.PubMed
35.
Zurück zum Zitat Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity. 2002;17:781–93.PubMed Souabni A, Cobaleda C, Schebesta M, Busslinger M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity. 2002;17:781–93.PubMed
36.
Zurück zum Zitat Sanz E, Alvarez-Mon M, Martinez AC, de la Hera A. Human cord blood CD34+Pax-5+ B-cell progenitors: single-cell analyses of their gene expression profiles. Blood. 2003;101:3424–30.PubMed Sanz E, Alvarez-Mon M, Martinez AC, de la Hera A. Human cord blood CD34+Pax-5+ B-cell progenitors: single-cell analyses of their gene expression profiles. Blood. 2003;101:3424–30.PubMed
37.
Zurück zum Zitat Reynaud D, Lefort N, Manie E, Coulombel L, Levy Y. In vitro identification of human pro-B cells that give rise to macrophages, natural killer cells, and T cells. Blood. 2003;101:4313–21.PubMed Reynaud D, Lefort N, Manie E, Coulombel L, Levy Y. In vitro identification of human pro-B cells that give rise to macrophages, natural killer cells, and T cells. Blood. 2003;101:4313–21.PubMed
38.
Zurück zum Zitat van Zelm MC et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol. 2005;175:5912–22.PubMed van Zelm MC et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol. 2005;175:5912–22.PubMed
39.
Zurück zum Zitat Puck JM et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet. 1993;2:1099–104.PubMed Puck JM et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet. 1993;2:1099–104.PubMed
40.
Zurück zum Zitat Prieyl JA, LeBien TW. Interleukin 7 independent development of human B cells. Proc Natl Acad Sci U S A. 1996;93:10348–53.PubMedCentralPubMed Prieyl JA, LeBien TW. Interleukin 7 independent development of human B cells. Proc Natl Acad Sci U S A. 1996;93:10348–53.PubMedCentralPubMed
41.
Zurück zum Zitat Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20:394–7.PubMed Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20:394–7.PubMed
42.
Zurück zum Zitat Campana D, Farrant J, Inamdar N, Webster AD, Janossy G. Phenotypic features and proliferative activity of B cell progenitors in X-linked agammaglobulinemia. J Immunol. 1990;145:1675–80.PubMed Campana D, Farrant J, Inamdar N, Webster AD, Janossy G. Phenotypic features and proliferative activity of B cell progenitors in X-linked agammaglobulinemia. J Immunol. 1990;145:1675–80.PubMed
43.
Zurück zum Zitat Tsukada S et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.PubMed Tsukada S et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.PubMed
44.
Zurück zum Zitat Minegishi Y et al. An essential role for BLNK in human B cell development. Science. 1999;286:1954–7.PubMed Minegishi Y et al. An essential role for BLNK in human B cell development. Science. 1999;286:1954–7.PubMed
45.
Zurück zum Zitat Mansur A, Therattil J, Young RM, Frieri M. An atypical case of hypogammaglobulinemia. Ann Allergy Asthma Immunol. 2000;84:583–6.PubMed Mansur A, Therattil J, Young RM, Frieri M. An atypical case of hypogammaglobulinemia. Ann Allergy Asthma Immunol. 2000;84:583–6.PubMed
46.
Zurück zum Zitat Goldman JP et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol. 1998;103:335–42.PubMed Goldman JP et al. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol. 1998;103:335–42.PubMed
47.
Zurück zum Zitat van der Loo JC et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood. 1998;92:2556–70.PubMed van der Loo JC et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood. 1998;92:2556–70.PubMed
48.
Zurück zum Zitat Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.PubMed Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.PubMed
49.
Zurück zum Zitat Ueda T et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells. 2000;18:204–13.PubMed Ueda T et al. Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells. 2000;18:204–13.PubMed
50.
Zurück zum Zitat Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A. 2002;99:413–8.PubMedCentralPubMed Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci U S A. 2002;99:413–8.PubMedCentralPubMed
51.
Zurück zum Zitat Ito M et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.PubMed Ito M et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.PubMed
52.
Zurück zum Zitat Traggiai E et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304:104–7.PubMed Traggiai E et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304:104–7.PubMed
53.
Zurück zum Zitat Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005;79:13797–9.PubMedCentralPubMed Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005;79:13797–9.PubMedCentralPubMed
54.
Zurück zum Zitat Gorantla S et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol. 2007;81:2700–12.PubMedCentralPubMed Gorantla S et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol. 2007;81:2700–12.PubMedCentralPubMed
55.
Zurück zum Zitat Yu CI et al. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood. 2008;112:3671–8.PubMedCentralPubMed Yu CI et al. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood. 2008;112:3671–8.PubMedCentralPubMed
56.
Zurück zum Zitat Banerjee P et al. Adult T-cell leukemia/lymphoma development in HTLV-1-infected humanized SCID mice. Blood. 2010;115:2640–8.PubMedCentralPubMed Banerjee P et al. Adult T-cell leukemia/lymphoma development in HTLV-1-infected humanized SCID mice. Blood. 2010;115:2640–8.PubMedCentralPubMed
57.
Zurück zum Zitat Rathinam C et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood. 2011;118:3119–28.PubMed Rathinam C et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood. 2011;118:3119–28.PubMed
58.
Zurück zum Zitat Hu Z, Yang YG. Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood. 2012;120:1713–6.PubMedCentralPubMed Hu Z, Yang YG. Full reconstitution of human platelets in humanized mice after macrophage depletion. Blood. 2012;120:1713–6.PubMedCentralPubMed
59.
Zurück zum Zitat Tanaka S et al. Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rgammaKO mice. J Immunol. 2012;188:6145–55.PubMedCentralPubMed Tanaka S et al. Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2rgammaKO mice. J Immunol. 2012;188:6145–55.PubMedCentralPubMed
60.•
Zurück zum Zitat Kraus H et al. A feeder free differentiation system identifies autonomously proliferating B cell precursors in human bone marrow. J Immunol. 2014;192(3):1044–54. This paper reports a feeder cell-free differentiation system for human B cells and autonomous proliferation of human pro-B and pre-B cells. The paper reports autonomous development and proliferation of human B cell precursors. PubMed Kraus H et al. A feeder free differentiation system identifies autonomously proliferating B cell precursors in human bone marrow. J Immunol. 2014;192(3):1044–54. This paper reports a feeder cell-free differentiation system for human B cells and autonomous proliferation of human pro-B and pre-B cells. The paper reports autonomous development and proliferation of human B cell precursors. PubMed
61.
Zurück zum Zitat Rawlings DJ, Quan SG, Kato RM, Witte ON. Long-term culture system for selective growth of human B-cell progenitors. Proc Natl Acad Sci U S A. 1995;92:1570–4.PubMedCentralPubMed Rawlings DJ, Quan SG, Kato RM, Witte ON. Long-term culture system for selective growth of human B-cell progenitors. Proc Natl Acad Sci U S A. 1995;92:1570–4.PubMedCentralPubMed
62.
Zurück zum Zitat Fluckiger AC et al. In vitro reconstitution of human B-cell ontogeny: from CD34(+) multipotent progenitors to Ig-secreting cells. Blood. 1998;92:4509–20.PubMed Fluckiger AC et al. In vitro reconstitution of human B-cell ontogeny: from CD34(+) multipotent progenitors to Ig-secreting cells. Blood. 1998;92:4509–20.PubMed
63.
Zurück zum Zitat Kurosaka D, LeBien TW, Pribyl JA. Comparative studies of different stromal cell microenvironments in support of human B-cell development. Exp Hematol. 1999;27:1271–81.PubMed Kurosaka D, LeBien TW, Pribyl JA. Comparative studies of different stromal cell microenvironments in support of human B-cell development. Exp Hematol. 1999;27:1271–81.PubMed
64.
Zurück zum Zitat La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood. 2005;105:1431–9.PubMed La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood. 2005;105:1431–9.PubMed
65.
Zurück zum Zitat Taguchi T et al. Interleukin-7 contributes to human pro-B-cell development in a mouse stromal cell-dependent culture system. Exp Hematol. 2007;35:1398–407.PubMed Taguchi T et al. Interleukin-7 contributes to human pro-B-cell development in a mouse stromal cell-dependent culture system. Exp Hematol. 2007;35:1398–407.PubMed
66.
Zurück zum Zitat Ichii M et al. Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Exp Hematol. 2008;36:587–97.PubMed Ichii M et al. Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Exp Hematol. 2008;36:587–97.PubMed
67.
Zurück zum Zitat Awong G et al. Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood. 2013;122:4210–9.PubMed Awong G et al. Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood. 2013;122:4210–9.PubMed
68.
Zurück zum Zitat Wardemann H et al. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.PubMed Wardemann H et al. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.PubMed
69.
Zurück zum Zitat Melamed D, Nemazee D. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc Natl Acad Sci U S A. 1997;94:9267–72.PubMedCentralPubMed Melamed D, Nemazee D. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc Natl Acad Sci U S A. 1997;94:9267–72.PubMedCentralPubMed
70.
Zurück zum Zitat Pelanda R et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity. 1997;7:765–75.PubMed Pelanda R et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity. 1997;7:765–75.PubMed
71.•
Zurück zum Zitat Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature. 1989;337:562–6. A seminal in vivo model to study clonal deletion of autoreactive B cells. PubMed Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature. 1989;337:562–6. A seminal in vivo model to study clonal deletion of autoreactive B cells. PubMed
72.
Zurück zum Zitat Brombacher F, Kohler G, Eibel H. B cell tolerance in mice transgenic for anti-CD8 immunoglobulin mu chain. J Exp Med. 1991;174:1335–46.PubMed Brombacher F, Kohler G, Eibel H. B cell tolerance in mice transgenic for anti-CD8 immunoglobulin mu chain. J Exp Med. 1991;174:1335–46.PubMed
73.
Zurück zum Zitat Erikson J et al. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature. 1991;349:331–4.PubMed Erikson J et al. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature. 1991;349:331–4.PubMed
74.
Zurück zum Zitat Hartley SB et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature. 1991;353:765–9.PubMed Hartley SB et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature. 1991;353:765–9.PubMed
75.•
Zurück zum Zitat Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature. 2012;489:160–4. A very elegant expermental model demonstrating that all peripheral B cells bind autoantigens although with different avidities. PubMedCentralPubMed Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature. 2012;489:160–4. A very elegant expermental model demonstrating that all peripheral B cells bind autoantigens although with different avidities. PubMedCentralPubMed
76.
Zurück zum Zitat Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol. 2003;15:182–9.PubMed Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol. 2003;15:182–9.PubMed
77.
Zurück zum Zitat Hartley SB et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell. 1993;72:325–35.PubMed Hartley SB et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell. 1993;72:325–35.PubMed
78.
Zurück zum Zitat Fields ML, Erikson J. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr Opin Immunol. 2003;15:709–17.PubMed Fields ML, Erikson J. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr Opin Immunol. 2003;15:709–17.PubMed
79.
Zurück zum Zitat Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.PubMed Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.PubMed
80.
Zurück zum Zitat Frieri M. Mechanisms of disease for the clinician: systemic lupus erythematosus. Ann Allergy Asthma Immunol. 2013;110:228–32.PubMed Frieri M. Mechanisms of disease for the clinician: systemic lupus erythematosus. Ann Allergy Asthma Immunol. 2013;110:228–32.PubMed
81.
Zurück zum Zitat Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol. 2002;3:958–65.PubMed Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol. 2002;3:958–65.PubMed
82.
Zurück zum Zitat Zubair A, Frieri M. NF-kappaB and systemic lupus erythematosus: examining the link. J Nephrol. 2013;26:953–9.PubMed Zubair A, Frieri M. NF-kappaB and systemic lupus erythematosus: examining the link. J Nephrol. 2013;26:953–9.PubMed
83.
Zurück zum Zitat Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med. 2006;203:2551–62.PubMedCentralPubMed Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med. 2006;203:2551–62.PubMedCentralPubMed
84.
Zurück zum Zitat Thompson JS et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–11.PubMed Thompson JS et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–11.PubMed
85.
Zurück zum Zitat Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173:2245–52.PubMed Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173:2245–52.PubMed
86.
Zurück zum Zitat Warnatz K et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106:13945–50.PubMedCentralPubMed Warnatz K et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106:13945–50.PubMedCentralPubMed
87.
Zurück zum Zitat Pieper K, et al. A common SNP impairs B cell activating factor receptor’s multimerization, contributing to common variable immunodeficiency. J Allergy Clin Immunol. 2014. doi:10.1016/j.jaci.2013.11.021. Pieper K, et al. A common SNP impairs B cell activating factor receptor’s multimerization, contributing to common variable immunodeficiency. J Allergy Clin Immunol. 2014. doi:10.​1016/​j.​jaci.​2013.​11.​021.
88.
Zurück zum Zitat Greil J et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131:1376–83. e1373.PubMed Greil J et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131:1376–83. e1373.PubMed
89.•
Zurück zum Zitat Stepensky P et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131:477–85. The paper underlines the strict dependece of human B cell development on NF-kappaB signaling. PubMed Stepensky P et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131:477–85. The paper underlines the strict dependece of human B cell development on NF-kappaB signaling. PubMed
90.••
Zurück zum Zitat Schweighoffer E et al. The BAFF Receptor Transduces Survival Signals by Co-opting the B Cell Receptor Signaling Pathway. Immunity. 2013. The authors show that BAFFR-induced signals crossfeed into the BCR pathway and may represent “tonic” BCR signaling. Schweighoffer E et al. The BAFF Receptor Transduces Survival Signals by Co-opting the B Cell Receptor Signaling Pathway. Immunity. 2013. The authors show that BAFFR-induced signals crossfeed into the BCR pathway and may represent “tonic” BCR signaling.
91.
Zurück zum Zitat Yu X et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455:532–6.PubMedCentralPubMed Yu X et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455:532–6.PubMedCentralPubMed
92.
Zurück zum Zitat Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev. 2012;247:52–63.PubMed Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev. 2012;247:52–63.PubMed
93.
Zurück zum Zitat Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.PubMed Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.PubMed
94.
Zurück zum Zitat Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997;90:1073–83.PubMed Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997;90:1073–83.PubMed
95.
Zurück zum Zitat Liu YJ et al. Mechanism of antigen-driven selection in germinal centres. Nature. 1989;342:929–31.PubMed Liu YJ et al. Mechanism of antigen-driven selection in germinal centres. Nature. 1989;342:929–31.PubMed
96.
Zurück zum Zitat Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991;21:2951–62.PubMed Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991;21:2951–62.PubMed
97.
Zurück zum Zitat Allen CD, Okada T, Tang HL, Cyster JG. Imaging of germinal center selection events during affinity maturation. Science. 2007;315:528–31.PubMed Allen CD, Okada T, Tang HL, Cyster JG. Imaging of germinal center selection events during affinity maturation. Science. 2007;315:528–31.PubMed
98.
Zurück zum Zitat Muramatsu M et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.PubMed Muramatsu M et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.PubMed
99.
Zurück zum Zitat Revy P et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–75.PubMed Revy P et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–75.PubMed
100.
Zurück zum Zitat Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol. 2009;10:786–93.PubMedCentralPubMed Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol. 2009;10:786–93.PubMedCentralPubMed
101.
Zurück zum Zitat Okada T et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005;3:e150.PubMedCentralPubMed Okada T et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005;3:e150.PubMedCentralPubMed
102.
Zurück zum Zitat Pereira JP, Kelly LM, Xu Y, Cyster JG. EBI2 mediates B cell segregation between the outer and centre follicle. Nature. 2009;460:1122–6.PubMedCentralPubMed Pereira JP, Kelly LM, Xu Y, Cyster JG. EBI2 mediates B cell segregation between the outer and centre follicle. Nature. 2009;460:1122–6.PubMedCentralPubMed
103.
Zurück zum Zitat Hannedouche S et al. Oxysterols direct immune cell migration via EBI2. Nature. 2011;475:524–7.PubMed Hannedouche S et al. Oxysterols direct immune cell migration via EBI2. Nature. 2011;475:524–7.PubMed
104.
Zurück zum Zitat Yi T et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity. 2012;37:535–48.PubMedCentralPubMed Yi T et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity. 2012;37:535–48.PubMedCentralPubMed
105.
Zurück zum Zitat Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol. 2011;187:3026–32.PubMedCentralPubMed Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol. 2011;187:3026–32.PubMedCentralPubMed
106.••
Zurück zum Zitat Bannard O et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity. 2013;39:912–24. The paper shows how shuttling between dark and light zone regulates GC B cell proliferation, affinity maturation and memory vs. plasma cell development. PubMedCentralPubMed Bannard O et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity. 2013;39:912–24. The paper shows how shuttling between dark and light zone regulates GC B cell proliferation, affinity maturation and memory vs. plasma cell development. PubMedCentralPubMed
107.
Zurück zum Zitat Wang X et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med. 2011;208:2497–510.PubMedCentralPubMed Wang X et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med. 2011;208:2497–510.PubMedCentralPubMed
108.
Zurück zum Zitat Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11:403–15.PubMedCentralPubMed Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11:403–15.PubMedCentralPubMed
109.
Zurück zum Zitat Hanel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J Off Publ Fed Am Soc Exp Biol. 2007;21:1202–9. Hanel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J Off Publ Fed Am Soc Exp Biol. 2007;21:1202–9.
110.
Zurück zum Zitat Yatomi Y et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood. 2000;96:3431–8.PubMed Yatomi Y et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood. 2000;96:3431–8.PubMed
111.
Zurück zum Zitat Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta. 2008;1781:477–82.PubMedCentralPubMed Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta. 2008;1781:477–82.PubMedCentralPubMed
112.
Zurück zum Zitat Venkataraman K et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102:669–76.PubMedCentralPubMed Venkataraman K et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102:669–76.PubMedCentralPubMed
113.
Zurück zum Zitat Pappu R et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–8.PubMed Pappu R et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–8.PubMed
114.
Zurück zum Zitat Schwab SR et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309:1735–9.PubMed Schwab SR et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309:1735–9.PubMed
115.
Zurück zum Zitat Matloubian M et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60.PubMed Matloubian M et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60.PubMed
116.•
Zurück zum Zitat Sic H., et al. S1P-receptors control B cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia and multiple sclerosis. J Allergy Clin Immunol. 2014 in press. The first comprehenisve analysis of S1P-receptor expression and signaling in human B cells. Sic H., et al. S1P-receptors control B cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia and multiple sclerosis. J Allergy Clin Immunol. 2014 in press. The first comprehenisve analysis of S1P-receptor expression and signaling in human B cells.
117.
Zurück zum Zitat Green JA, Cyster JG. S1PR2 links germinal center confinement and growth regulation. Immunol Rev. 2012;247:36–51.PubMedCentralPubMed Green JA, Cyster JG. S1PR2 links germinal center confinement and growth regulation. Immunol Rev. 2012;247:36–51.PubMedCentralPubMed
118.
Zurück zum Zitat MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12:117–39.PubMed MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12:117–39.PubMed
119.
Zurück zum Zitat Casamayor-Palleja M, Feuillard J, Ball J, Drew M, MacLennan IC. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int Immunol. 1996;8:737–44.PubMed Casamayor-Palleja M, Feuillard J, Ball J, Drew M, MacLennan IC. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int Immunol. 1996;8:737–44.PubMed
120.
Zurück zum Zitat Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411:489–94.PubMed Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411:489–94.PubMed
121.
Zurück zum Zitat Schwickert TA et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J Exp Med. 2011;208:1243–52.PubMedCentralPubMed Schwickert TA et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J Exp Med. 2011;208:1243–52.PubMedCentralPubMed
122.
Zurück zum Zitat Depoil D et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity. 2005;22:185–94.PubMed Depoil D et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity. 2005;22:185–94.PubMed
123.
Zurück zum Zitat Takahashi Y, Ohta H, Takemori T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity. 2001;14:181–92.PubMed Takahashi Y, Ohta H, Takemori T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity. 2001;14:181–92.PubMed
124.
Zurück zum Zitat Verbeke CS, Wenthe U, Zentgraf H. Fas ligand expression in the germinal centre. J Pathol. 1999;189:155–60.PubMed Verbeke CS, Wenthe U, Zentgraf H. Fas ligand expression in the germinal centre. J Pathol. 1999;189:155–60.PubMed
125.
Zurück zum Zitat Phan TG et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med. 2006;203:2419–24.PubMedCentralPubMed Phan TG et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med. 2006;203:2419–24.PubMedCentralPubMed
126.
Zurück zum Zitat Thiel J et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129:801–10. e806.PubMed Thiel J et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129:801–10. e806.PubMed
127.
Zurück zum Zitat van Zelm MC et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354:1901–12.PubMed van Zelm MC et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354:1901–12.PubMed
128.
Zurück zum Zitat van Zelm MC et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120:1265–74.PubMedCentralPubMed van Zelm MC et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120:1265–74.PubMedCentralPubMed
129.
Zurück zum Zitat Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 2003;170:686–94.PubMed Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 2003;170:686–94.PubMed
130.
Zurück zum Zitat Wang LC et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 1998;12:2392–402.PubMedCentralPubMed Wang LC et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes Dev. 1998;12:2392–402.PubMedCentralPubMed
131.
Zurück zum Zitat Hymowitz SG et al. Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J Biol Chem. 2005;280:7218–27.PubMed Hymowitz SG et al. Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J Biol Chem. 2005;280:7218–27.PubMed
132.
Zurück zum Zitat Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science. 2005;307:269–73.PubMed Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science. 2005;307:269–73.PubMed
133.
Zurück zum Zitat Kienzler AK, Rizzi M, Reith M, Nutt SL, Eibel H. Inhibition of human B-cell development into plasmablasts by histone deacetylase inhibitor valproic acid. J Allergy Clin Immunol. 2013;131:1695–9.PubMed Kienzler AK, Rizzi M, Reith M, Nutt SL, Eibel H. Inhibition of human B-cell development into plasmablasts by histone deacetylase inhibitor valproic acid. J Allergy Clin Immunol. 2013;131:1695–9.PubMed
134.
Zurück zum Zitat Yamaguchi T et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24:455–69.PubMedCentralPubMed Yamaguchi T et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24:455–69.PubMedCentralPubMed
135.
Zurück zum Zitat Matthias P, Rolink AG. Transcriptional networks in developing and mature B cells. Nat Rev Immunol. 2005;5:497–508.PubMed Matthias P, Rolink AG. Transcriptional networks in developing and mature B cells. Nat Rev Immunol. 2005;5:497–508.PubMed
136.
Zurück zum Zitat O’Riordan M, Grosschedl R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity. 1999;11:21–31.PubMed O’Riordan M, Grosschedl R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity. 1999;11:21–31.PubMed
137.
Zurück zum Zitat Horcher M, Souabni A, Busslinger M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity. 2001;14:779–90.PubMed Horcher M, Souabni A, Busslinger M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity. 2001;14:779–90.PubMed
138.
Zurück zum Zitat Lin Y, Wong K, Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 1997;276:596–9.PubMed Lin Y, Wong K, Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 1997;276:596–9.PubMed
139.
Zurück zum Zitat Angelin-Duclos C, Cattoretti G, Lin KI, Calame K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol. 2000;165:5462–71.PubMed Angelin-Duclos C, Cattoretti G, Lin KI, Calame K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol. 2000;165:5462–71.PubMed
140.
Zurück zum Zitat Lin KI, Angelin-Duclos C, Kuo TC, Calame K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol. 2002;22:4771–80.PubMedCentralPubMed Lin KI, Angelin-Duclos C, Kuo TC, Calame K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol. 2002;22:4771–80.PubMedCentralPubMed
141.
Zurück zum Zitat Shaffer AL et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17:51–62.PubMed Shaffer AL et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17:51–62.PubMed
142.
Zurück zum Zitat Shapiro-Shelef M et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.PubMed Shapiro-Shelef M et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.PubMed
143.
Zurück zum Zitat Kallies A et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med. 2004;200:967–77.PubMedCentralPubMed Kallies A et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med. 2004;200:967–77.PubMedCentralPubMed
144.
Zurück zum Zitat Shaffer AL et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.PubMed Shaffer AL et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21:81–93.PubMed
145.
Zurück zum Zitat Klein U et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.PubMed Klein U et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.PubMed
146.
Zurück zum Zitat Kallies A et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity. 2007;26:555–66.PubMed Kallies A et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity. 2007;26:555–66.PubMed
147.
Zurück zum Zitat Cattoretti G et al. BCL-6 protein is expressed in germinal-center B cells. Blood. 1995;86:45–53.PubMed Cattoretti G et al. BCL-6 protein is expressed in germinal-center B cells. Blood. 1995;86:45–53.PubMed
148.
Zurück zum Zitat Allman D et al. BCL-6 expression during B-cell activation. Blood. 1996;87:5257–68.PubMed Allman D et al. BCL-6 expression during B-cell activation. Blood. 1996;87:5257–68.PubMed
149.
Zurück zum Zitat Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276:589–92.PubMed Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276:589–92.PubMed
150.
Zurück zum Zitat Basso K et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood. 2010;115:975–84.PubMedCentralPubMed Basso K et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood. 2010;115:975–84.PubMedCentralPubMed
151.
Zurück zum Zitat Tunyaplin C et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol. 2004;173:1158–65.PubMed Tunyaplin C et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol. 2004;173:1158–65.PubMed
152.
Zurück zum Zitat Shaffer AL et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13:199–212.PubMed Shaffer AL et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13:199–212.PubMed
153.•
Zurück zum Zitat Abecasis GR et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. The report of the 1,000 genome project. PubMed Abecasis GR et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. The report of the 1,000 genome project. PubMed
154.
Zurück zum Zitat Saito M et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2009;106:11294–9.PubMedCentralPubMed Saito M et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2009;106:11294–9.PubMedCentralPubMed
155.
Zurück zum Zitat Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med. 2005;202:1471–6.PubMedCentralPubMed Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med. 2005;202:1471–6.PubMedCentralPubMed
156.
Zurück zum Zitat Reimold AM et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med. 1996;183:393–401.PubMed Reimold AM et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med. 1996;183:393–401.PubMed
157.
Zurück zum Zitat Iwakoshi NN et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.PubMed Iwakoshi NN et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.PubMed
158.
Zurück zum Zitat Todd DJ et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med. 2009;206:2151–9.PubMedCentralPubMed Todd DJ et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med. 2009;206:2151–9.PubMedCentralPubMed
159.
Zurück zum Zitat Mittrucker HW et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275:540–3.PubMed Mittrucker HW et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275:540–3.PubMed
160.
Zurück zum Zitat Sciammas R et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25:225–36.PubMed Sciammas R et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25:225–36.PubMed
161.
Zurück zum Zitat Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol. 1994;153:4357–66.PubMed Berberich I, Shu GL, Clark EA. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J Immunol. 1994;153:4357–66.PubMed
162.
Zurück zum Zitat Han S et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol. 1995;155:556–67.PubMed Han S et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol. 1995;155:556–67.PubMed
163.
Zurück zum Zitat Basso K et al. Tracking CD40 signaling during germinal center development. Blood. 2004;104:4088–96.PubMed Basso K et al. Tracking CD40 signaling during germinal center development. Blood. 2004;104:4088–96.PubMed
164.
Zurück zum Zitat Saito M et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer cell. 2007;12:280–92.PubMed Saito M et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer cell. 2007;12:280–92.PubMed
165.
Zurück zum Zitat Ferrari S et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–9.PubMedCentralPubMed Ferrari S et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–9.PubMedCentralPubMed
166.
Zurück zum Zitat Jain A et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2:223–8.PubMed Jain A et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2:223–8.PubMed
167.
Zurück zum Zitat Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol. 2006;177:5236–47.PubMed Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol. 2006;177:5236–47.PubMed
168.
Zurück zum Zitat Ding BB, Bi E, Chen H, Yu JJ, Ye BH. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol. 2013;190:1827–36.PubMedCentralPubMed Ding BB, Bi E, Chen H, Yu JJ, Ye BH. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol. 2013;190:1827–36.PubMedCentralPubMed
169.
Zurück zum Zitat Ozaki K et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004;173:5361–71.PubMed Ozaki K et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004;173:5361–71.PubMed
170.
Zurück zum Zitat Pene J et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol. 2004;172:5154–7.PubMed Pene J et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol. 2004;172:5154–7.PubMed
171.•
Zurück zum Zitat Kotlarz D et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210:433–43. The paper shows the role of IL-21R signaling in immune responses of B, T and NK cells. PubMedCentralPubMed Kotlarz D et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210:433–43. The paper shows the role of IL-21R signaling in immune responses of B, T and NK cells. PubMedCentralPubMed
172.
Zurück zum Zitat Scheeren FA et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol. 2005;6:303–13.PubMed Scheeren FA et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol. 2005;6:303–13.PubMed
173.
Zurück zum Zitat Diehl SA et al. STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol. 2008;180:4805–15.PubMedCentralPubMed Diehl SA et al. STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol. 2008;180:4805–15.PubMedCentralPubMed
174.
Zurück zum Zitat Avery DT et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207:155–71.PubMedCentralPubMed Avery DT et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207:155–71.PubMedCentralPubMed
175.
Zurück zum Zitat Holland SM et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357:1608–19.PubMed Holland SM et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357:1608–19.PubMed
176.
Zurück zum Zitat Minegishi Y et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.PubMed Minegishi Y et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.PubMed
177.
Zurück zum Zitat Hsu AP et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol. 2013;131:1586–93.PubMed Hsu AP et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol. 2013;131:1586–93.PubMed
Metadaten
Titel
B cell Biology: An Overview
verfasst von
Hermann Eibel
Helene Kraus
Heiko Sic
Anne-Kathrin Kienzler
Marta Rizzi
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Current Allergy and Asthma Reports / Ausgabe 5/2014
Print ISSN: 1529-7322
Elektronische ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-014-0434-8

Weitere Artikel der Ausgabe 5/2014

Current Allergy and Asthma Reports 5/2014 Zur Ausgabe

ALLERGENS (RK BUSH AND JA WOODFOLK, SECTION EDITORS)

Allergen Ligands in the Initiation of Allergic Sensitization

ANAPHYLAXIS AND DRUG ALLERGY (DA KHAN AND M CASTELLS, SECTION EDITORS)

Oral Immunotherapy for Food Allergy, Ready for Prime Time? Heated Egg and Milk

ALLERGENS (RK BUSH AND JA WOODFOLK, SECTION EDITORS)

The Molecular Basis of Peanut Allergy

RHINITIS (JJ OPPENHEIMER AND J CORREN, SECTION EDITORS)

Cytokine Profiles in Allergic Rhinitis

ALLERGENS (RK BUSH AND JA WOODFOLK, SECTION EDITORS)

Relevance of Allergy in Adult Asthma

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.