Skip to main content
Log in

Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Short-term strength and power recovery patterns following fatigue have received little research attention, particularly as they pertain to age-specific responses, and the leg flexors (i.e., hamstrings) muscle group. Thus, research is warranted addressing these issues because both age-related alterations in the neuromuscular system and mode of muscle action (e.g., eccentric, concentric, isometric) may differentially influence recovery responses from fatigue. The aim of this study was to investigate the strength and power recovery responses for eccentric, concentric, and isometric muscle actions of the leg flexors in young and older men following an isometric, intermittent fatigue-inducing protocol. Nineteen young (age = 25 ± 3 years) and nineteen older (71 ± 4) men performed maximal voluntary contractions (MVCs) for eccentric, concentric, and isometric muscle actions followed by a fatigue protocol of intermittent (0.6 duty cycle) isometric contractions of the leg flexors at 60 % of isometric MVC. MVCs of each muscle action were performed at 0, 7, 15, and 30 min following fatigue. Peak torque (PT) and mean power values were calculated from the MVCs and the eccentric/concentric ratio (ECR) was derived. For PT and mean power, young men showed incomplete recovery at all time phases, whereas the older men had recovered by 7 min. Eccentric and isometric muscle actions showed incomplete recovery at all time phases, but concentric recovered by 7 min, independent of age. The ECR was depressed for up to 30 min following fatigue. More rapid and pronounced recovery in older men and concentric contractions may be related to physiological differences specific to aging and muscle action motor unit patterns. Individuals and clinicians may use these time course responses as a guide for recovery following activity-induced fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Trolle M, Bangsbo J, Klausen K (1995) Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode. Acta Physiol Scand 154:421–427

    Article  PubMed  CAS  Google Scholar 

  • Allen DG, Westerblad H (2001) Role of phosphate and calcium stores in muscle fatigue. J Physiol 536:657–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allman BL, Rice CL (2001) Incomplete recovery of voluntary isometric force after fatigue is not affected by old age. Muscle Nerve 24:1156–1167

    Article  PubMed  CAS  Google Scholar 

  • Baker AJ, Kostov KG, Miller RG, Weiner MW (1993) Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol (1985) 74:2294–2300

    CAS  Google Scholar 

  • Baylor SM, Hollingworth S (2012) Intracellular calcium movements during excitation-contraction coupling in mammalian slow-twitch and fast-twitch muscle fibers. J Gen Physiol 139:261–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett JG, Stauber WT (1986) Evaluation and treatment of anterior knee pain using eccentric exercise. Med Sci Sports Exerc 18:526–530

    Article  PubMed  CAS  Google Scholar 

  • Bento PC, Pereira G, Ugrinowitsch C, Rodacki AL (2010) Peak torque and rate of torque development in elderly with and without fall history. Clin Biomech (Bristol, Avon) 25:450–454

    Article  Google Scholar 

  • Bigland-Ritchie B, Cafarelli E, Vollestad NK (1986) Fatigue of submaximal static contractions. Acta Physiol Scand Suppl 556:137–148

    PubMed  CAS  Google Scholar 

  • Bilodeau M, Erb MD, Nichols JM, Joiner KL, Weeks JB (2001) Fatigue of elbow flexor muscles in younger and older adults. Muscle Nerve 24:98–106

    Article  PubMed  CAS  Google Scholar 

  • Boncompagni S, d’Amelio L, Fulle S, Fano G, Protasi F (2006) Progressive disorganization of the excitation-contraction coupling apparatus in aging human skeletal muscle as revealed by electron microscopy: a possible role in the decline of muscle performance. J Gerontol A Biol Sci Med Sci 61:995–1008

    Article  PubMed  Google Scholar 

  • Bruton JD, Lannergren J, Westerblad H (1998) Mechanisms underlying the slow recovery of force after fatigue: importance of intracellular calcium. Acta Physiol Scand 162:285–293

    Article  PubMed  CAS  Google Scholar 

  • Callahan DM, Foulis SA, Kent-Braun JA (2009) Age-related fatigue resistance in the knee extensor muscles is specific to contraction mode. Muscle Nerve 39:692–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin ER, Allen DG (1996) The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. J Physiol 491(Pt 3):813–824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chin ER, Balnave CD, Allen DG (1997) Role of intracellular calcium and metabolites in low-frequency fatigue of mouse skeletal muscle. Am J Physiol 272:C550–C559

    PubMed  CAS  Google Scholar 

  • Christie A, Snook EM, Kent-Braun JA (2011) Systematic review and meta-analysis of skeletal muscle fatigue in old age. Med Sci Sports Exerc 43:568–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung LH, Callahan DM, Kent-Braun JA (2007) Age-related resistance to skeletal muscle fatigue is preserved during ischemia. J Appl Physiol 103:1628–1635

    Article  PubMed  Google Scholar 

  • Conchola EC, Thompson BJ, Smith DB (2013) Effects of neuromuscular fatigue on the electromechanical delay of the leg extensors and flexors in young and old men. Eur J Appl Physiol 113:2391–2399

    Article  PubMed  CAS  Google Scholar 

  • Del Valle A, Thomas CK (2005) Firing rates of motor units during strong dynamic contractions. Muscle Nerve 32:316–325

    Article  PubMed  Google Scholar 

  • Delbono O, O’Rourke KS, Ettinger WH (1995) Excitation-calcium release uncoupling in aged single human skeletal muscle fibers. J Membr Biol 148:211–222

    Article  PubMed  CAS  Google Scholar 

  • Deschenes MR (2011) Motor unit and neuromuscular junction remodeling with aging. Curr Aging Sci 4:209–220

    Article  PubMed  CAS  Google Scholar 

  • Dutka TL, Cole L, Lamb GD (2005) Calcium phosphate precipitation in the sarcoplasmic reticulum reduces action potential-mediated Ca2+ release in mammalian skeletal muscle. Am J Physiol Cell Physiol 289:C1502–C1512

    Article  PubMed  CAS  Google Scholar 

  • Enoka RM (1996) Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol (1985) 81:2339–2346

    CAS  Google Scholar 

  • Gray JC, Chandler JM (1989) Percent decline in peak torque production during repeated concentric and eccentric contractions of the quadriceps femoris muscle. J Orthop Sports Phys Ther 10:309–314

    Article  PubMed  CAS  Google Scholar 

  • Greig M (2008) The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med 36:1403–1409

    Article  PubMed  Google Scholar 

  • Hortobagyi T, Zheng D, Weidner M, Lambert NJ, Westbrook S, Houmard JA (1995) The influence of aging on muscle strength and muscle fiber characteristics with special reference to eccentric strength. J Gerontol A Biol Sci Med Sci 50:B399–B406

    Article  PubMed  CAS  Google Scholar 

  • Hunter SK, Duchateau J, Enoka RM (2004) Muscle fatigue and the mechanisms of task failure. Exerc Sport Sci Rev 32:44–49

    Article  PubMed  Google Scholar 

  • Hvid LG, Gejl K, Bech RD, Nygaard T, Jensen K, Frandsen U, Ortenblad N (2013) Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes. Acta Physiol (Oxf) 208:265–273

    Article  CAS  Google Scholar 

  • Iguchi M, Shields RK (2010) Quadriceps low-frequency fatigue and muscle pain are contraction-type-dependent. Muscle Nerve 42:230–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkins ND, Hawkey MJ, Costa PB, Fiddler RE, Thompson BJ, Ryan ED, Smith D, Sobolewski EJ, Conchola EC, Akehi K, Cramer JT (2013) Functional hamstrings: quadriceps ratios in elite women’s soccer players. J Sports Sci 31:612–617

    Article  PubMed  Google Scholar 

  • Jones DA (1996) High-and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270

    Article  PubMed  CAS  Google Scholar 

  • Kallio J, Sogaard K, Avela J, Komi PV, Selanne H, Linnamo V (2013) Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions. PLoS One 8, e53425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamen G, Sison SV, Du CC, Patten C (1995) Motor unit discharge behavior in older adults during maximal-effort contractions. J Appl Physiol (1985) 79:1908–1913

    CAS  Google Scholar 

  • Kent-Braun JA (2009) Skeletal muscle fatigue in old age: whose advantage? Exerc Sport Sci Rev 37:3–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Lanza IR, Russ DW, Kent-Braun JA (2004) Age-related enhancement of fatigue resistance is evident in men during both isometric and dynamic tasks. J Appl Physiol 97:967–975

    Article  PubMed  Google Scholar 

  • Lanza IR, Befroy DE, Kent-Braun JA (2005) Age-related changes in ATP-producing pathways in human skeletal muscle in vivo. J Appl Physiol (1985) 99:1736–1744

    Article  CAS  Google Scholar 

  • Lanza IR, Larsen RG, Kent-Braun JA (2007) Effects of old age on human skeletal muscle energetics during fatiguing contractions with and without blood flow. J Physiol 583:1093–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee WS, Cheung WH, Qin L, Tang N, Leung KS (2006) Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin Orthop Relat Res 450:231–237

    Article  PubMed  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber-type composition. J Gerontol A-Biol Sci Med Sci 50:11–16

    PubMed  Google Scholar 

  • Li JL, Wang XN, Fraser SF, Carey MF, Wrigley TV, McKenna MJ (2002) Effects of fatigue and training on sarcoplasmic reticulum Ca(2+) regulation in human skeletal muscle. J Appl Physiol (1985) 92:912–922

    Article  CAS  Google Scholar 

  • Macdonald WA, Stephenson DG (2006) Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue. J Physiol 573:187–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall PW, Mannion J, Murphy BA (2010) The eccentric, concentric strength relationship of the hamstring muscles in chronic low back pain. J Electromyogr Kinesiol 20:39–45

    Article  PubMed  Google Scholar 

  • Miller RG, Kent-Braun JA, Sharma KR, Weiner MW (1995) Mechanisms of human muscle fatigue. Quantitating the contribution of metabolic factors and activation impairment. Adv Exp Med Biol 384:195–210

    Article  PubMed  CAS  Google Scholar 

  • Nardone A, Romano C, Schieppati M (1989) Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol 409:451–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer TB, Thiele RM, Williams KB, Adams BM, Akehi K, Smith DB, Thompson BJ (2014) The identification of fall history using maximal and rapid isometric torque characteristics of the hip extensors in healthy, recreationally active elderly females: a preliminary investigation. Aging Clin Exp Res

  • Posterino GS, Dunn SL (2008) Comparison of the effects of inorganic phosphate on caffeine-induced Ca2+ release in fast- and slow-twitch mammalian skeletal muscle. Am J Physiol Cell Physiol 294:C97–C105

    Article  PubMed  CAS  Google Scholar 

  • Powers RK, Binder MD (1991) Effects of low-frequency stimulation on the tension-frequency relations of fast-twitch motor units in the cat. J Neurophysiol 66:905–918

    PubMed  CAS  Google Scholar 

  • Rijkelijkhuizen JM, de Ruiter CJ, Huijing PA, de Haan A (2003) Low-frequency fatigue is fibre type related and most pronounced after eccentric activity in rat medial gastrocnemius muscle. Pflugers Arch 447:239–246

    Article  PubMed  CAS  Google Scholar 

  • Small K, McNaughton L, Greig M, Lovell R (2010) The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport 13:120–125

    Article  PubMed  CAS  Google Scholar 

  • Smith IC, Newham DJ (2007) Fatigue and functional performance of human biceps muscle following concentric or eccentric contractions. J Appl Physiol (1985) 102:207–213

    Article  Google Scholar 

  • Tesch PA, Dudley GA, Duvoisin MR, Hather BM, Harris RT (1990) Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol Scand 138:263–271

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Ryan ED, Herda TJ, Costa PB, Walter AA, Sobolewski EJ, Cramer JT (2012) Consistency of rapid muscle force characteristics: influence of muscle contraction onset detection methodology. J Electromyogr Kinesiol 22:893–900

    Article  PubMed  Google Scholar 

  • Thompson BJ, Ryan ED, Sobolewski EJ, Smith DB, Conchola EC, Akehi K, Buckminster T (2013) Can maximal and rapid isometric torque characteristics predict playing level in division I American collegiate football players? J Strength Cond Res 27:655–661

    Article  PubMed  Google Scholar 

  • Verburg E, Murphy RM, Stephenson DG, Lamb GD (2005) Disruption of excitation-contraction coupling and titin by endogenous Ca2 + −activated proteases in toad muscle fibres. J Physiol 564:775–790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74:219–227

    Article  PubMed  CAS  Google Scholar 

  • Vollestad NK, Sejersted I, Saugen E (1997) Mechanical behavior of skeletal muscle during intermittent voluntary isometric contractions in humans. J Appl Physiol (1985) 83:1557–1565

    CAS  Google Scholar 

  • Westblad P, Tsai-Fellander L, Johansson C (1995) Eccentric and concentric knee extensor muscle performance in professional ballet dancers. Clin J Sport Med 5:48–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brennan J. Thompson.

Ethics declarations

Informed consent

All participants completed and signed an informed consent document and health history questionnaire prior to any testing.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, B.J., Conchola, E.C. & Stock, M.S. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors. AGE 37, 111 (2015). https://doi.org/10.1007/s11357-015-9845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-015-9845-2

Keywords

Navigation