Skip to main content
Log in

Mitochondria in activated microglia in vitro

  • Published:
Journal of Neurocytology

Abstract

In the CNS, microglia become activated, i.e. change their functional state and phenotype, in response to a wide variety of pathological stimuli. Since this activation is triggered at a very low threshold and at the same time remains territorially restricted, the spatial distribution of activated microglia can be used as a sensitive, generic measure of the anatomical localisation of ongoing disease processes. One protein complex, undetectable in resting microglia but highly up-regulated upon activation in vivo and in vitro, is the ‘peripheral benzodiazepine binding site’, as measured by binding of the isoquinoline derivate PK11195. Particularly numerous in the outer membrane of mitochondria, this binding site has also been referred to as the ‘mitochondrial benzodiazepine receptor’. The de novo expression of this receptor by activated microglia suggests that the process of activation may be associated with important qualitative changes in the state of mitochondria. Here, we provide confocal light- and electron microscopic evidence that the activation of microglia indeed entails conspicuous mitochondrial alterations. In cultured rat microglia stained with the fluorescent probe, JC-1, a sensitive indicator of mitochondrial membrane potential, we demonstrate that stimulation by bacterial lipopolysaccharide and interferon-γ increases the number of microglial mitochondrial profiles and leads to marked changes in their morphology. Prominent elongated, “needle-like” mitochondria are a characteristic feature of activated microglia in vitro. Electron microscopically, an abundance of abnormal profiles, including circular cristae or ring- and U-shaped membranes, are found. Our observations support the notion that the previously reported increase in microglial binding of PK11195, that labelled with carbon-11 ([11C] (R)-PK11195) has clinical use for the visualisation of activated microglia in vivo by positron emission tomography, may at least in part relate to an increased number and altered functional state of microglial mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANHOLT, R. R., PEDERSEN, P. L., DESOUZA, E. B. & SNYDER, S. H. (1986) The peripheral-type enzodiazepine receptor. Localisation to the mitochondrial outer memrane. Journal of iological Chemistry 261, 776–783.

    Google Scholar 

  • BANATI, R. B., ROTHE, G., VALET, G. & KREUTZERG, G. W. (1991) Respiratory urst activity in rain macrophages: A flow cytometric study on cultured rat microglia. Neuropathology and Applied Neuroiology 17, 223–230.

    CAS  Google Scholar 

  • BANATI, R. B. & GRAEER, M. B. (1994) Surveillance, intervention and cytotoxicity: Is there a protective role of microglia? Developmental Neuroscience 16, 114–127.

    CAS  PubMed  Google Scholar 

  • BANATI, R. B., MYERS, R. & KREUTZERG, G. W. (1997) PK (‘peripheral enzodiazepine’)-inding sites in the CNS indicate early and discrete rain lesions: Microautoradiographic detection of [3H]PK11195 inding to activated microglia. Journal of Neurocytology 26, 77–82.

    CAS  PubMed  Google Scholar 

  • BANATI, R. B., GOERRES, G. W., MYERS, R., GUNN, R. N., TURKHEIMER, F. E., KREUTZERG, G. W., ROOKS, D. J., JONES, T. & DUNCAN, J. S. (1999) [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 53, 2199–2203.

    CAS  PubMed  Google Scholar 

  • BANATI, R. B., NEWCOME, J., GUNN, R. N., CAGNIN, A., TURKHERNER, F., HEPPNER, F., PRICE, G., WEGNER, F., GIOVANONI, G., MILLER, D., PERKINS, D., SMITH, T., HEWSON, A., YDDER, G., KREUTZERG, G. W., JONES, T. CUZNER, M. L. & MYERS, R. (2000) The peripheral enzodiazepine inding site in the rain in multiple sclerosis: Quantitative in vivo-imaging of microglia as a measure of disease activity. rain 123, 2321–2337.

    Google Scholar 

  • ARTON, C. H., WHITEHEAD, S. H. & LACKWELL, J. M. (1995) Nramp transfection transfers Ity/Lsh/cg-related pleiotropic effects on macrophage activation: Influence on oxidative urst and nitric oxide pathways. Molecular Medicine 1, 267–279.

    PubMed  Google Scholar 

  • EREITER-HAHN, J. (1990) Behavior of mitochondria in the living cell. International Review of Cytology 122, 1–63.

    PubMed  Google Scholar 

  • EREITER-HAHN, J. & VÖTH, M. (1994) Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microscopy Research and Technique 27, 198–219.

    PubMed  Google Scholar 

  • ENAVIDES, J., CORNU, P., DENNIS, T., DUOIS, A., HAUW, J.-J., MACKENZIE, E. T., SAZDIVITCH, V. & SCATTON, B. (1988) Imaging of human rain lesions with an omega3 site radioligand. Annals of Neurology 24, 708–212.

    CAS  PubMed  Google Scholar 

  • CAGNIN, A., ROOKS, D. J., KENNEDY, A. M., GUNN, R. N., MYERS, R., TURKHEIMER, F. E., JONES, T. & BANATI, R. B. (2001) In-vivo measurement of activated microglia in demntia. Lancet 358, 461–467.

    CAS  PubMed  Google Scholar 

  • CAHARD, D., CANAT, X., CARAYON, P., ROQUE, C., CASELLAS, P. & LE FUR, G. (1994) Sucelluar localization of peripheral enzodiazepine receptors on human leukocytes. Laoratory Investigations 70, 23–28.

    CAS  Google Scholar 

  • CARAYON, P., PORTIER, M., DUSSOSSOY, D., ORD, A., PETITPRETRE, G., CANAT, X., LEFUR, G. & CASELLAS, P. (1996) Involvement of peripheral enzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage. lood 87, 3170–3178.

    CAS  Google Scholar 

  • COLTON, C. A. & GILERT, D. L. (1993) Microglia, an in vivo source of reactive oxygen species in the rain. Advances in Neurology 59, 321–326.

    CAS  PubMed  Google Scholar 

  • DIMA, V. F., PETROVICI, A. & DIMA, S. V. (1989) Activation of guinea pig peritoneal macrophages y riosomal extract of Salmonella typhi strain. Electron microscopy studies. Archives Roumaines de Pathologie Experimentales et de Microiologie 48, 323–340.

    CAS  Google Scholar 

  • DUKE, D. C. MORAN, L. B., TURKHEIMER, F. E., BANATI, R. B. & GRAEER, M. B. (2004) Microglia in culture: What genes do they express? Developmental Neurosience 26, 30–37.

    CAS  Google Scholar 

  • FRANK, S., GAUME, B., ERGMANN-LEITNER, E. S., LEITNER, W. W., ROERT, E. G., CATEZ, F., SMITH, C. L. & YOULE, R. J. (2001) The role of dynamin-related protein 1, a mediators of mitochondrial fission, in apoptosis. Developmental Cell 1, 515–525.

    CAS  PubMed  Google Scholar 

  • GALAOVA, R. & PETKOV, P. (1975) Electron microscopy of the endocrine pancreas of cattle (os taurus L.). Acta Anatomica (asel) 92, 560–569.

    Google Scholar 

  • GOOD, P. F., WERNER, P., HSU, A., OLANOW, C. W. & PERL, D. P. (1996) Evidence for neuronal oxidative damage in Alzheimer’s disease. American Journal of Pathology 149, 21–28.

    CAS  PubMed  Google Scholar 

  • FERRARESE, C., PIERPAOLI, C., LINFANTE, I., BOBO, R. H., GUTHRIE, ., KUFTA, C., DUHANEY, M. O., MELISI, J. & FULHAM, M. J. (1994) Peripheral enzodiazepine receptors and glucose metaolism in human gliomas. Journal of Neurooncology 22, 15–22.

    CAS  Google Scholar 

  • GRAEER, M. B. (2004) Microglia. In: Encyclopedia of Neuroscience, 3rd. (edited y Adelmann, G. & Smith, . H., Elsevier) CD-ROM.

  • GRAEER, M. B., BANATI, R. B., STREIT, W. J. & KREUTZERG, G. W. (1989) Immunophenotypic characterization of rat rain macrophages in culture. Neuroscience Letters 103, 241–246.

    PubMed  Google Scholar 

  • HALL, G. L., WING, M. G., COMPSTON, D. A. & SCOLDING, N. J. (1997) beta-Interferon regulates the immunomodulatory activity of neonatal rodent microglia. Journal of Neuroimmunology 72, 11–19.

    CAS  PubMed  Google Scholar 

  • HAMPTON, J. A., KLAUNIG, J. E. & GOLDLATT, P. J. (1987) Resident sinusoidal macrophages in the liver of the rown ullhead (Ictalurus neulosus): An ultrastructural, functional and cytochemical study. Anatomical Record 219, 338–346.

    CAS  PubMed  Google Scholar 

  • HERLAN, M., VOGEL, F., ORNHOVD, C., NEUPERT, W. & REICHERT, A. S. (2003) Processing of Mgm 1 y the rhomoid-type protease Pcp 1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. Journal of iological Chemistry 278, 27781–27788.

    CAS  Google Scholar 

  • KEPES, J. J., O’OYNICK, P., JONES, S., AUM, D., MCMILLAN, J. & ADAMS, M. E. (1990) Adrenal cortical adenoma in the spinal canal of an 8-year-old girl. American Journal of Surgical Pathology 14, 481–484.

    CAS  PubMed  Google Scholar 

  • KEYHANI, E. (1980) Oservations on the mitochondrial reticulum in the yeast Candida utilis as revealed y freeze-fracture electron microscopy. Journal of Cell Science 46, 289–297.

    CAS  PubMed  Google Scholar 

  • KOZIK, L., GODLESKI, J. J. & RAIN, J. D. (1990a) Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis. Journal of Immunology 144, 4312–4319.

    Google Scholar 

  • KOZIK, L., GODLESKI, J. J. & RAIN, J. D. (1990) Oxidative metaolism in the alveolar macrophage: Analysis y flow cytometry. Journal of Leukocyte iology 47, 295–303.

    Google Scholar 

  • KREUTZERG, G. W. (1996) Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences 19, 312–318.

    PubMed  Google Scholar 

  • KRUEGER, K. E. & PAPADOPOULOS, A. (1993) The role of mitochondrial enzodiazepine receptors in steroidogenesis. In: Peripheral enzodiazepine Receptors. (edited y Giessen-Crouse, E.) London, Academic Press, 87–111.

    Google Scholar 

  • LAUER, J. K. (1982) Retinal pigment epithelium: ring mitochondria and lesions induced y continuous light. Current Eye Research 2, 855–862.

    PubMed  Google Scholar 

  • LEE, C. S., MORGAN, G. & WOODING, F. B. (1979) Mitochondria and mitochondria-tonofilament-desmosomal associations in the mammary gland secretory epithelium of lactating cows. Journal of Cell Science 38, 125–135.

    CAS  PubMed  Google Scholar 

  • MCQUIAN, G. A., SAURYA, S.& FREEMAN, M. (2003) Mitochondrial memrane remodelling regulated y a conserved rhomoid protease. Nature 423, 537–541.

    PubMed  Google Scholar 

  • MORAN, L. B., DUKE, D. C., TURKHEIMER, F. E., BANATI, R. B. & GRAEER, M. B. (2004) Towards a transcriptome definition of microglial cells. Neurogenetics 5, 95–108.

    CAS  PubMed  Google Scholar 

  • MORENO-SANCHEZ, R., HOGUE, . A., RAVO, C., NEWMAN, A. H., ASILE, A. S. & CHIANG, P. K. (1991) Inhiition of sustrate oxidation in mitochondria y the peripheral-type enzodiazepine receptor ligand AHN 086. iochemical Pharmacology 41, 1479–1484.

    CAS  Google Scholar 

  • OLANOW, C. W. (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Annals of Neurology 32, 2–9.

    Article  Google Scholar 

  • REICHNER, J. S., MULLIGAN, J. A. & ODENHEIMER, H. C. JR. (1995) Electron transport chain activity in normal and activated rat macrophages. Journal of Surgical Research 59, 636–643.

    Article  CAS  PubMed  Google Scholar 

  • SHIRAISHI, T., LACK, K. L., IKEZAKI, K. & ECKER, D. P. (1991) Peripheral enzodiazepine induces morphological changes and proliferation of mitochondria in glioma cells. Journal of Neuroscience Research 30, 463–474.

    Article  CAS  PubMed  Google Scholar 

  • SZAO, C., O’CONNOR, M. & SALZMAN, A. L. (1997) Endogenously produced peroxynitrite induces the oxidation of mitochondrial and nuclear proteins in immunostimulated macrophages. FES Letters 409, 147–150.

    Article  Google Scholar 

  • TORRES, S. R., NARDI, G. M., FERRARA, P., RIEIRO-DO-VALLE, R. M. & FARGES, R. C. (1999) Potential role of peripheral enzodiazepine receptors in inflammatory responses. European Journal of Pharmacology 385, R1–R2.

    Article  CAS  PubMed  Google Scholar 

  • ULSHAFER, R. J. & ALLEN, C. B. (1985) Ultrastructural changes in the retinal pigment epithelium of congenitally lind chickens. Current Eye Research 4, 1009–1021.

    CAS  PubMed  Google Scholar 

  • YAFFE, M. P. (1999) Dynamic mitochondria Nature Cell iology 1, E149–E150.

    Article  CAS  Google Scholar 

  • ZIELASEK, J. & HARTUNG, H. P. (1996) Molecular mechanisms of microglial activation. Advances in Neuroimmunology 6, 191–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banati, R.B., Egensperger, R., Maassen, A. et al. Mitochondria in activated microglia in vitro. J Neurocytol 33, 535–541 (2004). https://doi.org/10.1007/s11068-004-0515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-004-0515-7

Keywords

Navigation